Heterogeneous Electrochemical CO2 reduction

Adarsh Koovakattil Surendran Ph.D scholar Spectroscopy and catalysis, IMM

"Cu" – A promising catalyst October Color Color

Modification of the catalyst

Crystal phase

• Crystalline/amorphous nature

Crystal facet

- Cu -111 facets favours C₁ products (e.g. CH4, HCOOH)
- Cu -100 facets favours C₂ products (e.g. C₂H₄)

Morphology of the Nano-structured catalysts

Cu wires

Nanoscale, 2019,11, 12075-12079

http://www.fhiberlin.mpg.de/~hermann/Balsac /BalsacPictures/fccnet.gif

Molecular catalysts

- ✓ Easily tuneable active centres
- excellent selectivity(eg. Highly selective for c1 products)
- ✓ Mechanisms can be understand easily by homogenous catalysis studies

Thank you

References

- (1) Wang, J.; Dou, S.; Wang, X. Structural Tuning of Heterogeneous Molecular Catalysts for Electrochemical Energy Conversion. Sci. Adv. 2021, 7 (13), 1–14. https://doi.org/10.1126/sciadv.abf3989.
- (2) Adv Funct Materials 2021 Yu Recent Progresses in Electrochemical Carbon Dioxide Reduction on Copper-Based Catalysts.