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Dissolved silicon (DSi) is essential for aquatic primary production and its limitation relative to nitrogen (N) and phos-
phorus (P) facilitates cyanobacterial dominance. However, the effects of DSi on phytoplankton growth and community
structure have yet to be fully determined in tropical lakes, particularly in relation to N and P. Therefore, this study in-
vestigated the role of DSi in Tonlé Sap Lake, Cambodia, a tropical floodplain system well known for its flood-pulse
characteristics and high productivity. To that end, seasonal water sampling and in situ water quality measurements
were performed around the floating villages of Chhnok Tru region. The concentration of DSi was significantly higher
in the dry season than in the wet season at 16.3–22.1 versus 7.2–14.0 mg/L, respectively; however, both sets of mea-
surements were comparable with lakes in other parts of the world. Meanwhile, the average molar ratio of TN:TP:DSi
was 69:1:33 in the dry season and 39:1:24 in the wet season, which compared with the Redfield ratio of 16:1:16, sug-
gested limitation of TP and DSi in both seasons. In addition, phytoplankton biomass in terms of chlorophyll-a was
found to be a collective function of DSi, TN:TP, dissolved oxygen, and water temperature in both seasons. Taken to-
gether, these results suggest that DSi is affected by the annual hydrological cycle in the Tonlé Sap Lakeflood-pulse eco-
system, serving as a secondary limiting nutrient of primary production during both the dry and wet seasons.
tions & Emergency Response, US Environmental Protection Agency, Cincinnati, OH, USA.

19 November 2022; Accepted 1 December 2022

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2022.160696&domain=pdf
http://dx.doi.org/10.1016/j.scitotenv.2022.160696
mailto:Ibrahim.mohamed@epa.gov
http://dx.doi.org/10.1016/j.scitotenv.2022.160696
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


R. Heu et al. Science of the Total Environment 861 (2023) 160696
1. Introduction

Diatoms are the most abundant phytoplankton on Earth (Cameron,
2013; Reynolds, 2006). They play an essential role in sequestering carbon
dioxide from the atmosphere via the biological pump (Ittekkot, 2006;
Schelske, 2010), thereby playing an important role in the global primary
production and biogeochemical cycles. Aquatic ecosystems contain
an abundance of different phytoplankton, including cyanobacteria,
chlorphytes, diatoms, chrysophytes, dinogellates, and crptophytes. How-
ever, only diatoms dominantly rely on dissolved silicon (DSi) in its concen-
trated form, silicon dioxide (SiO2), to form their skeletal structures (Conley
et al., 2000; Harashima et al., 2006; Schelske, 2010). The presence of dia-
toms therefore depends on the availability of DSi, which in turn has a signif-
icant impact on the structure and functioning of the entire food web
(Townsend and Cammen, 1988) because diatoms are the main food source
of numerous organisms in the upper trophic levels (Ryther, 1969). The
availability of DSi therefore has a direct effect on the species composition
and biomass of phytoplankton communities (Canfield et al., 2005a,
2005b; Pasztaleniec, 2016; Reid, 2005). Changes in phytoplankton species
composition also have an effect on the efficiency of nutrient recycling. For
example, when the DSi concentration is low, diatom growth is limited and
the subsequent sinking rate increases dramatically (Titman and Kilham,
1976; Bienfang et al., 1982), providing the sediment layer with fresh or-
ganicmatter. This is because the sinking rate of phytoplankton is dependent
on phytoplanton biomass and the setting velocity (Bienfang, 1981; Wang
et al., 2022). Moreover, Titman and Kilham (1976) reported that the sink-
ing rate of freshwater phytoplankon is also affected by the nutrient-
depleted condition of their cells and the subsequent loss rate from the
mixed layer of the lake. Thus, the concentration of DSi in the surface
water impacts phytoplankton balance, food chain dynamics, and biogeo-
chemical cycling of aquatic ecosystems (Kristiansen and Hoell, 2002).

DSi is derived from both diffuse and point sources within the river
basin. Silica weathering, atmospheric deposition, domestic wastewater
and paper pulp production are all sources of DSi in aquatic environments
(Canfield et al., 2005a, 2005b; Struyf et al., 2009; Lü et al., 2015;
Jennerjahn et al., 2006; Tegen and Kohfeld, 2006; Sferratore et al.,
2006). As such, DSi concentrations in aquatic ecosystems depend on the
source and subsequent transport, both of which are controlled by water-
shed geology, hydrology, and water uses in the river basin (Egge and
Aksnes, 1992; Canfield et al., 2005a, 2005b). Seasonal fluctuations in DSi
concentrations are also affected by flow (high versus low flow rates),
which in turn influences the seasonal dominance of phytoplankton in com-
plex reservoirs (An, 2003; Sigleo and Frick, 2003). In addition, seasonal
changes in water temperature and pH also affect the solubility of DSi in
these aquatic ecosystems (Blanchard, 1988).

As a result, Cloern (2001) revealed that DSi also plays a role in eutrophi-
cation of coastal and lake ecosystems. As a result of anthropogenic inputs,
nitrogen (N) and phosphorus (P) concentrations have doubled in most
major lakes and rivers worldwide (Seitzinger et al., 2005), causing changes
in the ratio of Si:N and Si:P, which affects the composition of phytoplankton
communities (Conley et al., 1993). Changes in the ratios of Si, N, and P can
also result in the dominance of non-diatoms such as flagellates (Officer and
Ryther, 1980). Limited DSi and subsequent reductions in phytoplankton
can therefore have a potential effect on the entire food web structure be-
cause zooplankton dynamics are also affected by the decreased ratios of
Si:N and Si:P. The main reason for reductions in DSi and subsequent toxic
algal blooms is unbalanced nutrient stoichiometry. Redfield et al. (1963)
previously reported the Redfield ratio of nutrient balance (N:P:Si =
16:1:16) required for phytoplankton health, with deviation indicating a
growth-limiting deficiency. Meanwhile, Teubner and Dokulil (2002) re-
ported that strong seasonal fluctuations in TN:TP are associated with
cyanobacterial dominance, while highly variable DSi concentrations fol-
lowing low seasonal variability in TN:TP favor diatom dominance in
hypereutrophic lakes. In addition, a shift in N:P towards P was also found
to favor diazotrophic phytoplankton over non-diazotrophs (Havens et al.,
2003), while limited DSi was found to cause a shift from siliceous diatoms
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to non-siliceous algal species (Harashima, 2007). Nutrient balance in terms
of N:P:Si therefore has a direct effect on the succession of phytoplankton
growth in rivers and lakes (Glooschenko and Alvis, 1973; Pandey and
Yadav, 2015; Pandey et al., 2016).

Studies on DSi stoichiometry in relation to N and P as well as the effect
of DSi on primary production in lakes and rivers are therefore gaining
increasing attention in the fields of biogeochemistry and limnology
(e.g., Choudhury and Bhadury, 2015; Dongfang et al., 2005; Pandey
et al., 2016; Turner et al., 2003). Accordingly, numerous studies have
documented DSi limitations in aquatic ecosystems; for example, in Solina-
Myczkowce mountain reservoirs of San River, SE Poland (Koszelnik and
Tomaszek, 2008), the Garonne river in France (Pandey et al., 2016;
Yadav and Pandey, 2018), and the Upper Mississippi River System
(UMRS) (Carey et al., 2019). Moreover, a negative correlation between
limitation of DSi and chlorophyll-a concentrations was also revealed
(Koszelnik and Tomaszek, 2008), suggesting that eutrophication enhances
phytoplankton growth, accelerating DSi uptake, which results in depletion
(Muylaert et al., 2009). Thus, depletion of DSi can also be caused by eutro-
phication, resulting in toxic algal blooms and subsequent changes to the
ecosystem dynamics (Conley et al., 1993).

Despite this, however, little is knownabout the stoichiometry of DSi and
other nutrients in shallow flood-pulse lakes, which tend to have a close re-
lationship with seasonal hydrological cycles and primary productivity. The
relationship between TN/TP and Chl-a in flood-pulse lakes suggests that
both TN and TP have a limiting effect on phytoplankton biomass (Melack
et al., 2021).Moreover, because the concentrations of TN and TP tend to in-
crease during the low water period, the trophic state of shallow flood-pulse
lakes also varies seasonally (Melack et al., 2021; Minor et al., 2014; Perŝí
and Horvatí, 2011). This is related to the sediment resuspension rate,
which is strongly affected by hydrological variations (e.g., fluctuating
water levels and flow reversal) (Khanal et al., 2021; Niemistö et al., 2008;
Siev et al., 2018). DSi is also significantly positively correlated with flow
velocity (Li et al., 2021), while in large floodplain riverscapes, DSi stoichi-
ometry is controlledmainly by the water residence time, inorganic nutrient
concentrations, and turbidity (Carey et al., 2019). The dynamics of DSi in
shallow lakes is therefore expected to be affected by seasonal variations,
which is also likely to affect phytoplankton growth. However, little is
known about seasonal variation in nutrient stoichiometry, particularly in
terms of the relationship between DSi and Chl-a, and the effect of nutrient
limitation in flood-pulse lakes.

Therefore, this study investigated the role of DSi in Tonlé Sap Lake
(TSL), Cambodia, which is characterized by a seasonal flood pulse. We
hypothesized that the effects of DSi on phytoplankton growth would vary
according to the seasonal flood pulse. Thus, the specific objectives were
1) to investigate the seasonal variations in DSi, TN, TP, and Chl-a in the sur-
face water of TSL, 2) to determine variation in nutrient stoichiometry with
seasonal events, and 3) to statistically elucidate the relationships between
nutrient stoichiometry and Chl-a.

2. Study site and methods

2.1. Study site

The field investigation was conducted in 2020 in the two distinct wet
and dry seasons in TSL, the largest freshwater lake in Southeast Asia. This
study targeted the area around Chhnok Tru floating villages in Kampong
Chhnang province, which is characterized by abundant natural resources
(Fig. 1). The water level of TSL is primarily controlled by seasonal reversal
flow of Tonlé Sap River (TSR), whereby TSR flows into TSL during the wet
season and out fromTSL into theMekong River during the dry season (Yang
et al., 2022). In the dry season, the surface area of the lake is approximately
2500 km2, with an average depth of <2 m. Meanwhile, in the wet season,
the lake extends to about 15,000 km2, with an average depth of between
7and 9 m (Sarkkula et al., 2003). Sedimentation flux in the lake also varies
substantially between the dry and wet seasons (Sarkkula et al., 2003). The
seasonal hydrological processes within TSL are distinctive and periodical,



Fig. 1. Sampling sites within the Chhnok Tru region.
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although the main hydrological characteristics, such as flow and water
depth, remain consistent throughout each respective season as described
by Arias et al. (2012), Kummu and Sarkkula (2008), and Lengthong et al.
(2022).

The climate in this region is tropical monsoon, with the wind blowing
from the northeast during the dry season and the southwest during the
wet season (Arias et al., 2014; Sarkkula et al., 2003). The 11 tributaries in
TSL drain directly into the lake as a source of water. During the dry season,
88 % of freshwater from the lake drains into the Mekong River through
TSR (1 % of which is overland flooding), while the other 12 % evaporates
from the lake. Meanwhile, during the wet season, 57 % of inflow floodwa-
ter enters TSL from the Mekong River via TSR, while tributaries contribute
to 30 % and precipitation to 13 % (Kummu et al., 2014; Kummu and
Sarkkula, 2008).

The TSL environment has been degraded by waste load in its water-
courses as well as by agriculture, logging of inundated forests, and hunting
of waterfowl (Wai et al., 2022). Eutrophication has been reported in some
parts of the lake, mainly during the dry or low-water season (Wai et al.,
2022). Diatoms dominate TSL from October to December, with the domi-
nant genus Aulacoseria (Planktonic diatom), and more minor Epithemia
(Benthic diatom) and Tabularia (Epontic diatom) (Sarkkula et al., 2003;
Tudesque et al., 2019). Possible Si limitations have been reported in June
and November based on the ratios of DSi: dissolved inorganic phosphorus
(DIP) and DSi: dissolved inorganic nitrogen (DIN), while P limitations
3

have been confirmed throughout the year based on DIN:DIP and Dsi:DIP
(Burnett et al., 2017). However, based on the monthly mean ratio of N:P,
Campbell et al. (2009) revealed that nitrogen is the main limiting factor
throughout the year in TSL.

2.2. Field investigation

Sampling and water quality monitoring were conducted on 5th March
2020 during the dry season and on 15th November 2020 during the wet
season. Water samples were collected at 18 sites in both the dry and wet
seasons. Sampling sites were selected to systematically cover the area of
Chhnok Tru, using the MAPS.ME program with an X-Y coordinate system
(WGS 1984). As such, sampling was performed across different ecosystems,
such as wetlands, floating villages, tributaries, and main rivers (Fig. 1).

On the sampling date inMarch, no precipitationwas confirmed, and the
minimum, average, and maximum air temperatures were 26.2 °C, 30.0 °C,
and 34.2 °C, respectively. Meanwhile, in November, rainfall was recorded
as 6.70 mm/day, and the minimum, average, and maximum air tempera-
tures were 24.8 °C, 25.7 °C, and 27.8 °C, respectively. Water depth was
measured at each sampling site in both sampling periods. Water tempera-
ture, pH, dissolved oxygen (DO), the oxidation-reduction potential (ORP),
conductivity, and Chl-a (phytoplankton biomass) were measured in-situ
using the EXO2 Multiparameter Sonde (YSI Inc., Yellow Springs, OH) at a
depth of 10 cm from the water surface.
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2.3. Analysis of nutrient contents

Measurements of DSi were obtained using an MD600 Photometer
(Tintometer Ltd., Amesbury, United Kingdom) with a Lovibond® Silica
Tablet Reagents set (Tintometer Ltd.) at a wavelength of 600 nm. DSi anal-
ysis was based on the silicomolybdate method with a measurable range of
SiO2 ranging from 0.05 to 4mg/L. The procedure followed themanufactur-
er's instructions (Lovibond, 2017). A Silica No.1 tablet, Silica PR tablet, and
Silica No.2 tablet were added in sequence to a vial containing 10 mL of
water sample. After dissolving completely, DSi was then measured based
on the “350 silica/silicon dioxide” method in the MD600 Photometer.

TN was also determined using the MD600 Photometer with a
Lovibond® VARIO Total Nitrogen LR Reagent Set (Tintometer Ltd.) at a
wavelength of 430 nm. This test kit is based on the persulfate digestion
method, with a measurable range of 0.5 to 25 mg/L. The procedure
followed the manufacturer's instructions (Lovibond, 2017). A TN Hydrox-
ide LR digestion vial, TN Acid LR vial, VARIO TN Persulfate Reagent
Powder Pack, VARIO TN Reagent A, VARIO TN Reagent B Powder Pack,
and deionized water as a blank sample were used in the analysis. A
MG2300 preheated reactor (ELEYA, Japan) was used to digest the vials at
a temperature of 100 °C for 30 min. The “280 Nitrogen LR TT” method in
the MD600 Photometer was then used to measure the TN concentration
of each water sample.

Analysis of TP in the water samples was also performed using the
MD600 Photometer at a wavelength of 660 nm with the Lovibond®
VARIO Total Phosphorus LR Reagent Set (Tintometer Ltd.). This test kit is
based on acid persulfate digestion and the ascorbic acid method, with a
measurable range of 0.02 to 1.1 mg/L. The procedure followed the manu-
facturer's instructions (Lovibond, 2017). PO4-P Acid reagent vials and
1.54 N sodium hydroxide solution were used for analysis. 5-mL water sam-
pleswas added to the PO4-P vial then digested using theMG2300preheated
reactor at a temperature of 100 °C for 30 min. The “326 Phosphorus TT”
method in the MD600 Photometer was then used to measure the TP con-
centration of each sample.

2.4. Data analysis

Prior to analysis, all data were log-transformed (y = log (x + 1))
to ensure normality. Pearson's correlation was used to determine the rela-
tionships between DSi and the basic water quality parameters (TN, TP,
and Chl-a). In addition, multiple linear regression (MLR) models were
computed to determine the statistical relationships between the studied
variables (DSi, TN, TP, TN: TP, DSi: TN, DSi: TP, pH, Temperature, DO,
ORP, and conductivity) and the concentration of Chl-a. Pearson's correla-
tion analysis and MLR were performed using R(version 4.0.3) (R Core
Team, 2021). The “olsrr” package was used to compute all possible MLR
models in order to determine the effect of each variable on Chl-a. From
these, the most significant model, which contained four explanatory
variables (DSi, TN:TP, Temperature, and DO; p < 0.05), was then selected
to describe the concentration of Chl-a.

Ternary plots were used to interpret the nutrient ratios at each site and
to compare these ratios with the Redfield ratio. In the ternary plot, the
Redfield ratio (16TN:1TP:16DSi) (Redfield et al., 1963) was considered nu-
trient balance or the optimum nutrient ratio. With the ternary plot, concen-
trations of TN, TP, and DSi were first converted into molar concentrations
then normalized using the following equations.

CTN ¼ CTNorig

RTN
(1)

CTP ¼ CTPorig

RTP
(2)

CDSi ¼ CDSiorig

RDSi
(3)
4

Here, RTN = 16, RTP= 1, RDSi = 16, and CTnorig, CTpori and CDsiorig rep-
resent the nutrient molar concentrations in μmol/L, C represents nutrient
concentration and R represents Redfield ratio (Teubner and Dokulil,
2002). The optimum Redfield ratio appears at the center of the ternary
plot (RTN = 0.33, RTP = 0.33, and RDSi = 0.33).

Using previously published data, DSi concentrations and DSi stoichiom-
etry were also compared with other lakes and rivers worldwide. The re-
corded DSi concentrations in TSL were compared with concentrations in
Asia, Europe, North America, South America, Africa, and Australasia, as
well as with concentrations in lakes, rivers, and freshwater around the
world. In terms of DSi stoichiometry, when only nitrate data were available
in the literature, the relationship between DIN and nitrate was examined,
and DIN was used as a measure of TN (Garnier et al., 2010). Likewise,
when only phosphate data were available, the relationship between TP
and phosphate was used to represent TP (Garnier et al. (2010).

3. Results

3.1. Seasonal variation in water quality

Water quality in TSL differed significantly between the dry and wet sea-
sons. DSi concentrations during the dry season were significantly higher
than during the wet season (t(34) = 14.66, p < 0.05). Chl-a distribution
also varied widely during the dry season, and values were significantly
higher than during the wet season (t(34)= 6.78, p < 0.05). The TN results
also revealed wide distribution spread during the dry season, with
significantly higher values than during the wet season (t(34) = 3.39,
p < 0.05). Similarly, the concentrations of TP were also significantly
higher (t(34) = 1.34, p < 0.05) and the distribution more widely spread
during the dry season compared with the wet season (Table 1, Fig. 2).
Temperature increased significantly during the dry season (t(34) =
9.62, p < 0.05), and pH was significantly higher than during the wet
season (t(34) = 35.78, p < 0.05). Meanwhile, the concentration of DO
was significantly lower during the dry season (t(34) = −2.05, p <
0.05), while conductivity was significantly lower during the wet season
(t(34) = 4.23, p < 0.05). ORP values also differed significantly between
the wet and dry seasons (t(33) = −17.79, p < 0.05) (Table 1). Average
water depths were recorded as 2.25 m in the dry season and 6.96 m in
the wet season (refer to Appendix A for details).

3.2. Relationships between Chl-a concentrations and water quality

Pearson's correlation analysis revealed that Chl-a was significantly
positively correlated with TN (r = 0.57, p = 0.01), TN:TP (r = 0.56, p =
0.01), temperature (r = 0.59, p < 0.01), and conductivity (r = 0.54, p =
0.02), and significantly negatively correlated with DSi:TN (r = −0.55,
p = 0.02), DO (r = −0.57, p = 0.01) and ORP (r = −0.72, p < 0.01)
during the dry season. Meanwhile, during the wet season, Chl-awas signif-
icantly positively correlated with temperature (r = 0.65, p = 0.004) and
negatively correlated with conductivity (r = −0.55, p = 0.02) and ORP
(r=−0.67, p=0.004) (Appendix A). MLR analysis was subsequently per-
formed to determine the best predictors of Chl-a. In the dry season, the re-
gression results revealed four variables (DSi, TN:TP, DO, and temperature)
as predictors of Chl-a with explanatory variance of 59 % (p < 0.01). Simi-
larly, during the wet season, the same four variables were identified as pre-
dictors of Chl-a with explanatory variance of 47 % (p < 0.05) (Table 2).

3.3. Limiting nutrients of phytoplankton growth

According to the Redfield ratio (Redfield et al., 1963), the elemental
ratios of nutrients required for sustained growth of aquatic organisms are
as follows: (1) DSi:TN = 1:1, (2) DSi:TP = 16:1, and (3) TN:TP = 16:1.
Turner et al. (2003) found that DSi limitation relative to N was the major
component affecting diatom growth, with an optimal ratio of DSi:TN < 1.
Accordingly, in the present study, the molar ratio of DSi and TN during
the dry season was found to be <1 in 14 of the sites sampled, suggesting



Table 1
Seasonal variation in the water quality parameters.

Season

Dry Wet

Min. Max. Mean Min. Max. Mean

DSi (mg/L) 16.3 22.1 19.3 ± 1.5 7.2 14.0 10.8 ± 1.5
Chl-a (μg/L) 1.71 14.71 4.32 ± 2.86 0.87 2.51 1.59 ± 0.45
TN (mg/L) 1.60 24.40 9.41 ± 6.23 1.90 9.70 4.02 ± 1.70
TP (mg/L) 0.06 0.65 0.30 ± 0.15 0.05 0.48 0.23 ± 0.12
Temperature (°C) 29.0 33.4 30.5 ± 31.1 27.4 28.8 28.0 ± 0.4
pH 7.67 9.93 8.59 ± 0.59 7.31 7.90 7.60 ± 0.16
DO (mg/L) 0.40 7.23 5.16 ± 0.40 4.75 7.10 6.40 ± 0.68
Conductivity (μS/cm) 76 783 187 ± 160 68 572 102 ± 18
ORP (mV) −1095 124 21 ± 279 333 239 290 ± 31
Water depth (m) 0.10 4.50 2.25 ± 1.49 3.92 11.34 6.96 ± 1.75

Note: DSi, dissolved silicon; Chl-a, chlorophyll-a; TN, total nitrogen; TP, total phosphorus; DO, dissolved oxygen; ORP, oxidation reduction potential.
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that DSi limitation relative to TN occurred in 77% of the study area. During
thewet season, DSi limitation occurred in 88%of the study area. Themolar
ratio of DSi and TN during the dry season ranged from 0.21 to 2.77, with a
mean value of 0.82 ± 0.76, while during the wet season, the molar ratio
Fig. 2. Seasonal variation in (a) dissolved silicon (DSi), (b) chlorophyll-a (Chl-a), (c) tot
from <10th and > 90th percentile.

5

ranged from 0.29 to 1.36, with a mean value of 0.71 ± 0.28. Moreover, a
previous study revealed DSi limitation relative to TP at a ratio of DSi:TP
< 16 (Carey et al., 2019). Based on this, only 5 % of the study area showed
DSi limitation relative to TP during the dry season, with amolar ratio of DSi
al nitrogen (TN), and (d) total phosphorus (TP). Upper * and lower * represent data



Table 2
Multi-linear regression models of Chl-a and the explanatory variables.

Model Unstandardized
coefficients

Standardized
coefficients

t p

B Std.
Error

Beta

Dry season 1 (Constant) −12.55 6.05 −2.08 0.058
DSi −1.27 1.14 −0.20 −1.11 0.287
TN:TP 0.28 0.10 0.46 2.80 0.015
DO −0.31 0.14 −0.41 −2.21 0.046
Temperature 5.659 2.53 0.40 2.24 0.044

Wet
season

2 (Constant) −18.98 6.51 −2.92 0.012
DSi 0.11 0.35 0.056 0.31 0.762
TN:TP −0.04 0.085 −0.082 −0.41 0.688
DO 1.05 0.47 0.417 2.25 0.043
Temperature 12.97 4.29 0.59 3.02 0.010
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and TP of<16 at only one sampling site. Meanwhile, during thewet season,
two sampling sites showed a molar ratio of DSi and TP of <16, and DSi lim-
itation relative to TP occurred in 11% of the study area. During the dry sea-
son, themolar ratio of DSi and TP varied from 14.51 to 183.85, with amean
value of 49.69±42.31, while during the wet season, the ratio ranged from
8.07 to 11.92, with a mean value of 34.07± 22.57. In contrast, there were
no significant differences in the seasonal variations in DSi:TN (t(34) =
−0.43, p > 0.05) and DSi:TP (t(34) = 1.46, p > 0.0.5).

Overall, the ternary plot indicated six sectors based on the combination
of TN:TP, DSi:TN, and DSi:TP. After normalizing the molar concentrations
using Eqs. (1) to (3), the results showed that in the dry season, most points
fell within sectors 1, 2, and 3, while in the wet season, they fell within sec-
tors 1, 2, 3, and 5. In addition, the average ratio of TN:TP:DSi was
69.3:1:33.1 (58 % TN, 14 % TP, and 28 % DSi) in the dry season and
39.4:1:24.7 (49 % TN, 20 % TP, and 31 % DSi) in the wet season, respec-
tively (Fig. 4).

3.4. Comparison of DSi stoichiometry with other lakes and rivers

The results of this study were also compared with those of other lakes
and rivers around the world. Accordingly, Riverine Lake of the Upper Mis-
sissippi River System (UMRS) (Carey et al., 2019); Hanfeng Lake in China
(Li et al., 2021); Lake Biwa in Japan (Goto et al., 2013); the San River in
Southeast Poland (Koszelnik and Tomaszek, 2008); the Licunhe, Daguhe,
Yanghe, Moshiuihe, and Bashahe rivers in China (Su et al., 2005); the
Daliaohe, Changijiang, Minjiang, and Zhujiang rivers in China (Zhang,
1996); and the Upmasjakka, Sarkajakka, Tarfalajakka, Ladtjojakka1,
Pitealven, Skelleftealven, and Umealven rivers in Sweden (Humborg
et al., 2004) were retrospectively examined using the literature (Fig. 5).
The results revealed DSi limitation relative to TN in most of the rivers in
China, with DSi limitation relative to TP also observed in some, but not
all of these rivers. These findings suggest that limitation of DSi relative to
TN is widespread and not limited to TSL. Overall, the values observed
here were lower in terms of DSi:TN compared with the global lake and
river values.

4. Discussion

Observations of seasonal variation in DSi and DSi stoichiometry relative
to TN and TP as well as the effects of seasonal hydrological variation on nu-
trient limitation can enhance our understanding of limnology. The findings
presented here provide an important reference for further studies on Si cy-
cling in relation to hydrological alternations and Si balance models. The re-
sults suggest that DSi varies significantly in TSL between the dry and wet
seasons, suggesting a significant seasonal effect in this shallow flood-pulse
lake. Blanchard (1988) previously reported that the solubility of siliceous
solids is affected by temperature and pH, while Koszelnik and Tomaszek
(2008) revealed that DSi dissolvesmore rapidly in the summer and autumn.
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Furthermore, Iler (1979) reported that solubility increases sharply in more
basic waters. Seasonal variation in water depth and flow are also thought to
affect the concentration of DSi, with a larger volume of water flowing from
the Mekong River and tributaries into TSL in the wet season (Kummu et al.,
2014; Kummu and Sarkkula, 2008). Based on a review of the literature,
the global average concentration of DSi was found to range from 8.90 to
9.70 mg/L depending on the approach (Beusen et al., 2009; Clarke, 1924;
Meybeck, 1993, 2003; Probst et al., 1994; Treguer et al., 1995). According
to Meybeck et al. (2011), the concentration of DSi was found to be 10,
5.6, 8, 9, 12.6, and 11.8 mg/L in Asia, Europe, North America, South
America, Africa, and Australasia, respectively. In addition, the general con-
centrations of DSi in lakes, rivers, and freshwater ecosystems around the
world were previously reported to be 13.1, 4.1, and 0.4–26 mg/L, respec-
tively (Falcone, 1982; Vymazal, 1995). Thus, the concentration of DSi
in our study was within the range of the freshwater concentration
(0.4–26 mg/L) in both the dry and wet seasons. However, if we compare
the concentration of DSi between our study and the average concentration
in Asia, the value observed here in the dry season was approximately two
times greater, while that during the wet season was within the reported
range (Fig. 3). Seasonal mean variation in Chl-a in TSL was less than the
eutrophication level reported in Li et al. (2021), who suggested that eutro-
phication occurs at a concentration of 10 μg/L Chl-a. In contrast, the aver-
age values of TN in both the dry and wet seasons exceeded the
eutrophication level (TN = 0.2 mg/L). Similarly, the mean concentration
of TP in both the dry and wet seasons also exceeded the eutrophication
level (TP = 0.02 mg/L) of freshwater ecosystems reported by Li et al.
(2015) .

This study also examined the relationship between DSi and Chl-a, re-
vealing the effect of DSi on the structure of phytoplankton species in TSL.
The significant negative correlation between DSi:TN and Chl-a during the
dry season suggests an increase in TNwith decreasing DSi, resulting in a po-
tential increase in the dominance of harmful algae. Moreover, the positive
relationship between TN:TP and Chl-a also suggests the potential for eutro-
phication during the dry season. Meanwhile, the negative correlation
between DSi and Chl-a suggests that depletion of DSi increases the concen-
tration of Chl-a by favoring the growth of non-siliceous, potentially toxic
algae during the dry season. In addition, the accelerated growth of phyto-
plankton (i.e., algal blooms) further depletes concentrations of DO due to
eutrophication, as supported by the negative relationship between Chl-a
and DO during the dry season. Bartoszek and Koszelnik (2016) further
reported that increases in the concentrations of TN and TP stimulate both
primary and secondary production, while a previous report in TSL sug-
gested that eutrophication occurs mainly during the dry season (Shivakoti
et al., 2020; Nakatani et al., 2022; Samal et al., 2022). Studies also suggest
that cyanobacteria in TSL are dominated by species such as Synechococcus,
Anabaena, and Microcystis during the dry season (Ann et al., 2022; Samal
et al., 2022; Ung et al., 2019). Thus, the relationship between DSi and
Chl-a in the dry season clearly suggests that depletion of DSi resulted
from the high input of TN. Diatom growth is subsequently limited by DSi
depletion, while growth of harmful algae is enhanced, leading to algal
blooms and eutrophication. The results of DSi limitation relative to TN
and TP further support these findings in terms of diatom growth. During
the dry season, the average molar ratio of DSi and TN was <1, while the
average ratio of DSi and TP was >16. A previous study by Campbell et al.
(2006) reported 37 species of Bacillariophyta (diatoms), 34 of Chlorophyta
(green algae), 34 of Cyanobacteria (blue-green algae), 15 of Euglenophyta,
and a small number of several other groups in TSL. However, Ohtaka et al.
(2010) suggested that green-blue algae and diatoms dominate. During the
dry season, blue-green algae such as Anabaena, Oscillaatoria, Lyngbia, and
Microscystis as well as diatoms such as Aulacoseria granula were previously
recorded, and of these, Microscystis was abundant throughout, with algal
scum observed on the lake surface (Ann et al., 2022; Mizuno and Mori,
1970; Nakatani et al., 2022; Ohtaka et al., 2010; Samal et al., 2022).
Thus, during the dry season, harmful algae such asMicroscystis are thought
to dominate phytoplankton communities, with diatom growth limited by
the depletion of DSi relative to TN.



Fig. 3. Average dissolved silicon (DSi) concentrations in Tonlé Sap Lake (TSL) during the wet and dry seasons compared with other areas around the world.
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In contrast, a positive correlation was found between DSi and Chl-a
concentrations during the wet season, as supported by Blanchard (1988).
The negative relationship between TN and TP suggests that a reduction in
the ratio of TN:TP causes an increase in the concentration of Chl-a, as
previously reported in Li et al. (2021). Moreover, DO was found to be
positively correlated with Chl-a during the wet season, probably due to
the increase in water depth, which is conducive to phytoplankton growth
causing an increase in DO (Li et al., 2021). Thus, changes in the phytoplank-
ton species dominating phytoplankton assemblages also occur during the
wet season. Meanwhile, the average molar ratios of DSi and TN remained
<1 during thewet season, while those of DSi and TP remained>16. Accord-
ing to Ohtaka et al. (2010), green algae, dinoflagellates, Dinobryon sp.
(Chrysophycease), blue-green algae such as Anabaena and Microscystis,
and diatoms such as Aulacoseria graulata dominate TSL during the wet
season, with A. granulata thought to dominate overall (Blache, 1951;
Ohtaka et al., 2010). Meanwhile, the occurrence of cyanobacteria has also
been reported during the wet season (Samal et al., 2022; Ung et al.,
2019), suggesting that even though A. granulate dominates at this time,
cyanobacteria still occur and DSi continues to be limited by TN. These
findings therefore suggest the existence of growth-limiting deficiencies
for diatom growth in both the dry and wet seasons. Despite this, Samal
et al. (2022) reported that the abundance of cyanobacteria was higher in
the dry season than the wet season. Furthermore, according to Officer
and Ryther (1980), when the molar ratio of DSi and TN is <1, phytoplank-
ton communities are dominated by flagellated algae, notably dinoflagel-
lates and noxious bloom-forming communities, thereby impacting the
entire foodweb structure of the river or lake.Moreover, studies also suggest
that phytoplankton community composition and production can be
controlled by reducing the abundance of diatoms relative to other algae
(Dugdale and Wilkerson, 1998; Egge and Aksnes, 1992; Egge and
Jacobsen, 1997; Rabalais et al., 1996). The results of this study therefore
highlight the impact of anthropogenic activities on N concentrations
in TSL in both the dry and wet seasons. Furthermore, in both seasons,
DSi limitations exist relative to both N and P, even though the mean
Chl-a concentration was below the eutrophication level in all sampling
sites except one.

In both the dry and wet seasons, there was a positive correlation
between temperature and Chl-a, as in a previous study by Fuentes and
Petrucio (2015). This suggests that the amount of variable solar radiation
is also a partial driving factor of phytoplankton growth. Therefore, in the
regression models, four variables were included (DSi, TN:TP, DO, and tem-
perature) as predictors of Chl-a in both the dry andwet seasons. However, it
7

should be noted that the concentration of Chl-a is also dependent on other
variables, including local factors such as the ionic water composition, light,
and water velocity, and large-scale factors such as the drainage area and
land use within the watershed (Urrea-Clos et al., 2014).

The ternary plots shown in Fig. 4 show that most points fell within sec-
tor 1 in both the dry and wet seasons, suggesting that phytoplankton
growth is primarily controlled by P and secondarily by DSi. Meanwhile,
when the ratios were compared with the Redfield ratio (TN16:TP1:DSi16;
33.33 % TN, 33.33 % TP, and 33.33 % DSi), the ratio in the wet season
was found to be closer to the point of nutrient balance than that in the
dry season, suggesting better conditions for phytoplankton growth in the
wet season. Furthermore, average nutrient ratio points for both the dry
and wet seasons fell within sector 2, representing TN:TP > 16:1, DSi:TP >
16:1, and DSi:TN < 1. These results further suggest that both TP and DSi
limitations occur in both the dry and wet seasons in the Chhnok Tru region
of TSL. The results of our study also suggest high concentrations of TN
compared with other rivers and lakes around the world, thus resulting in
depletion of TP and DSi (Fig. 5).

5. Conclusions

This study investigated the role of DSi in TSL in Cambodia, which is
characterized by seasonal flood pulse conditions. The results of this study
confirm that seasonal changes in the chemical and physical properties of
the lake affect water quality. The low molar ratio of DSi and TN is thought
to increase concentrations of Chl-a as shown by the negative correlation be-
tween DSi:TN and Chl-a in the dry season. Coincidently, the highest con-
centration of Chl-a (approximately 14.4 μg/L) was recorded in the dry
season, which was greater than the eutrophication level in the study area.
Consequently, the model of Chl-a included DSi plus three other variables
(TN:TP, DO, temperature) in both the dry and wet seasons, suggesting
that DSi is an important factor in terms of phytoplankton dynamics in the
area. In addition, the average molar ratios of DSi:TN < 1 and DSi:TP >
16:1 suggest that diatom growth was limited because of DSi depletion re-
sulting from an excess amount of TN in both seasons. Accordingly, TP is
thought to be the primary limiting nutrient of phytoplankton growth,
while DSi is an important secondary factor. Moreover, although the molar
ratios of DSi:TN and DSi:TP were not significant, the findings were affected
by hydrological variation, with DSi limited throughout much of the year.
Overall, these findings confirm seasonal nutrient limitations in this flood-
pulse ecosystem. Further studies are now needed to determine the effect
of temperature and land slope on hydrology, and that of climate on



Fig. 4.Ternary plot showing the seasonal variations in TN:TP:DSi. Sector 1: TN:TP> 16:1, DSi:TP> 16:1 and DSi:TN> 1 (algal growth primarily controlled by P and secondly
by N). Sector 2: TN:TP > 16:1, DSi:TP > 16:1 and DSi:TN < 1 (algal growth primarily controlled by P and secondly by Si. Sector 3: TN:TP > 16:1, DSi:TP < 16:1 and DSi:TN
< 1 (algal growth primarily controlled by Si and secondly by P). Sector 4: TN:TP < 16:1, DSi:TP < 16:1 and DSi:TN < 1 (algal growth primary controlled by Si and secondly
by N), Sector 5: TN:TP < 16:1, DSi:TP < 16:1 and DSi:TN > 1 (algal growth primarily controlled by N and secondly by Si). Sector 6: TN:TP < 16:1, DSi:TP > 16:1 and DSi:TN
> 1 (algal growth primarily controlled by N and secondly by P).

Fig. 5. Comparison of DSi stoichiometry in Tonlé Sap Lake with lakes and rivers around the world.
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concentrations of DSi in order to elucidate the process of DSi cycling in
ecosystems exposed to hydrological variation.
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Appendix A

Table A1
Seasonal water depth variations in each sampling site.
Sampling sites
 Water depths (m)
Dry season
water quality, Chl-a concentration, TN and TP.
Wet season
1
 0.1
 11.34

2
 1.10
 4.64

3
 0.1
 5.40

4
 2.40
 6.70

5
 4.30
 8.65

6
 2.00
 6.93

7
 2.90
 7.80

8
 0.50
 4.87

9
 4.50
 7.90

10
 2.83
 5.95

11
 4.30
 8.09

12
 4.00
 8.27

13
 3.30
 6.84

14
 1.70
 6.88

15
 3.20
 8.50

16
 1.40
 6.30

17
 1.40
 6.32

18
 0.50
 3.92
JS



Fig. A2. Correlation coefficients of Chl-a with water quality.
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