Mass spectrometry
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Reproducibility of EI spectra
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Electron 1onization — “hard” 1onization




“Soft” Ionization techniques

» chemical ionization
» H,O - H;0* - protonation of the studied molecule




Selective detection

GC-MS El Cl: CH, Cl: Isobutane
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APCIl — Atmospheric pressure chemical
lonization
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Discharge ionizes solvent molecules (reaction gas)
Not suitable for thermo-labile samples



» MALDI
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Electrospray ionization

Atmospheric pressure ionization

lonization of large nonvolatile molecules gt
(proteins) without fragmentation g e .
P + g
e j ™ g .'- -
Solution infused by a capillary Wy
+
Coulombic explosions lead to generation of “1 '

isolated ions (positive or negative) {

Connection to HPLC

Taylor
cone

MNeedla tip

Newobjective_com

Gomez & Tang, Phys Fiuds, 1994 6:404—214



Characteristic ESI-MS spectrum

Multiply charged ions W e
8+ 12+
Multiple charge - small m/z - 11+
- advantageous for most of the | 10+
mass analyzers | '
- Isotope spacing — —
z can be determined from the =0.067 =1/15
spacing of the peaks N [
o B025 B03.0
8000 9000 10000 11000 12000
mJz

ESI-MS of Cytochrome C, ~12,360 Da
From Fig 13-18 Lambert



Matrix assisted laser desorption

lonization

b Y
Analyte/Matrix

@ Mixture e

» Analyte mixed with a crystalline matrix
(e.g., xXxx)

» Dry mixture irradiated by a short, intense laser
pulse at a wavelengths absorbed by the matrix
(usually UV)

» Fast matrix heat-up - sublimation and
expansion to the gas phase

» lonization — proton transfer
» Usually singly charged ions
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Figure 1.15

The MALDI spectra of a monoclonal antibody (top) and
polyimethyl methoacrylate) of average mass 7100 Da
{bottom) (Reproduced (modified) from Ref, 24 and from
Finnigan MAT documentation, with permission)



benvie See High-speed time-lapse
photographs

of IR-MALDI plumes with

100-ns pulse width Matrix:

glycerol; time

resolution 8 ns; spatial

resolution 4um.

Fig. 13 Hizh-speed photographs of UV image, 45 ns after laser exposure. Right
MALDI plumes generated with a frequency panel: 90° scattered light image, 311 ns after
quadrupled Nd:YAG laser of 266 nm exposure. The thin lowest line indicates the
wavelength and &ns pulse width, Matrix: top surface of the glyceral drop; the other
nitrobenzyl alcohol: time resolution 8ns; striations in the dark-feld im 1ge are artifacts

id spatial resolution 4pum. Left panel: dark-held of optical interference
B 2

lonized analytes

Hillenkamp, Franz, and Jasna Peter-Katalinic, eds. MALDI MS5. John Wiley & Sons, 2007.



New lonization Techniques: DESI

I 1
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Figure 2. Selected molecular ion [M—H] images of specific lipids from analysis

| ofa 1310 mm’ area of rat brain tissue section. a) Optical image of the coronal
section of the rat brain prior to analysis. cc =corpus callosum; CPu = striatum;
Chc=cerebral cortex; LV = lateral ventride; aca= anterior part of anterior
commissure. b—i) lon images of Pl (38:4; b), PS (40:6; ¢), 5T (24:1; d), 5T
------------------------------------------------------------------- h24:1; &), PS (36:1; f), oleate (18:1; g), arachidonate (20:4; h), and




Examples: Chemistry
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Biology
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Medicine

Screening of metabolic diseases of newborns
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Quality control
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Material science

Anai. Chem. 2000, 72, 45091 —4507

MALDI-TOF Mass Spectrometry of Insoluble Giant
Polycyclic Aromatic Hydrocarbons by a New
Method of Sample Preparation

Laurence Prr:l:illa. Johann-Diedrich Brand, Kimihiro ¥Yoshimura, Hans Joachim Rader,*! and
Klaus Millen

Mas-FPlarnch-instiuf for Pobrmedorschung, Ackermanmnweg 10 D-55128 Mame, Germany




Mass Analyzers

Magnetic and electrostatic sectors
Time-of-flight analyzer

Quadrupoles

lon traps

High resolution analyzers — ICR, Orbitrap



Magnetic field
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Electrostatic field

Tonization
source
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Double-focusing analyzers

» Electrostatic analyzer reduces E, distribution Siit
Eleciric

» Magnetic analyzer filters m/z

R_mv_ 2mE,

gB gB

High resolution




Time-of-flight (TOF) analyzers
MALDI-TOF

From

Hoffmann
Analyzer
Field-free region
I Positive ions I | Detector
Source I ----------------------------------------- )I | —20kV

+20 000 V

MALDI produces cations that are accelerated towards the analyzer
- cations fly in a field-free region — time of flight depends on their m/z



lons accelerated by a known potential
Known flying distance
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TOF renaissance

» Reflectrons

» Series of electrodes creating a linear field with an
opposite sign to the initial accelerating field

» lons are decelerated and turned to the opposite
direction

» Constructed so that ions are focused to the plane of
the detector

- lons with different kinetic enerqgy, but the same m/z,
fly a different distance - In the end, they have the
same time of flight

» Delayed pulsed extraction
» Extraction of the ions is delayed by 200 — 500 ns

» During the delay, faster ions move closer to the
extraction electrode than the slower ones
- extraction pulse accelerates the faster ions
shorter time - final velocities are similar

- Initial distribution of velocities is corrected = the
same time of flight
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Using TOF analyzers

TOF is an ideal detector for pulse-ionization ®

methods such as MALDI

For continuous ionization sources
(El, ESI, etc.) most of the ions are lost

with TOF analysis
» Shorter time of flight -2

decreasing of the mass range

and resolution
» Orthogonal extraction

Laser Desorption: Static,
solid sample probed with a
pulsed laser
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Mass selection using guadrupole

ioh in resonance

ion out of resonance detector

Alternatin
Ton | And g
source | | Direct
Current




Quadrupoles

lons are at each moment accelerated
along one axis to the center
along the other axis out of the center

Fast polarity changes create
a stable potential well

Voltage on Rods

y From De Hoffmann
-~ _-mds Figure 2.8
UV, 0 0.5 1.0 A positive ion, represented within a dotted circle, is at the center of
' ' quadrupole rods, the potential signs of which are indicated. It goes down
Number of Cycles the potential ‘valley’ with respect to the negative rods and acquires some

kinetic energy in thar direction. However, the potentials quickly change
so that the kinetic energy is converted into potential energy and the ion
goes back to the center of the rods, as would happen for a ball on a horse
saddle thar is turned quickly. The name ‘saddle field" is an allusion to this
phenomenon



Quadrupole as mass analyzer

a/q = 2U/V, Triangle of stability
Scanning along the line > A B C—”
the ratio U/V, is kept constant X- Axis. el ot it N i :’.”ﬁ'."f.wgﬂ, |
Y-axis 1- 1r “/\ \/A A
Largest resolution:  m=202 m =197

» o« =0,237aqg=0,706
»  Scan with 2U/V, = 0,336 (0,237/0,706)

Maximum m/z — 4000
Resolution — 3000
» Usually used with unit resolution

0.6
q = 4deV/mr o’

Small, light, cheap
Coupling Wlth Ch romatog raphy From: Steel and Henchman, J. Chem. Ed., 75(8), 1049, 1998

Figure limited to singly charged ions (hence lack of z in expression)



Quadrupole as an ion guide

For U = 0, many ions have stable
trajectories

Quadrupoles in rf-mode are important as
ion guides (usually denoted as “q”)

S, e = i =<
0.2 0.4 0.6 [+X :] 1.0

Often higher-number poles used as ion q = 4eV/mr o’
guides (hexapoles, octopoles)




TOF vs. guadrupole

» TOF analyzers
» lons are in packets pulsed to the analyzer
» All ions (all m/z) from the packet are analyzed simultaneously
» m/z determined from dispersion of the ions in time
» Based on static, DC field

»  Quadrupoles
» Continuous inlet of the ions
» Only ions with specific m/z reach the detector
» m/z determined by sequential filtering of ions
» Based on time-dependent alternating field



lon traps

ION TRAPPING

e —1. .

Tonization .
source Tmnsfer ions

to the ftrap

lons have complicated pathways with frequency proportional to m/z
lons can be analyzed according to m/z

lons can be mass-selected > up to MS?2

Mass-selected ions can be collided with buffer gas and their
fragmentations can be studied



Quadrupole 1on traps

» Fundamental RF at the ring electrode

» Fixed frequency (1,1 MHz), Variable
amplitude (do 7 kV)

» AC: voltage with fixed frequency at the end-cap
electrodes

» Resonance excitation for ejection or
fragmentation

» Helium pressure —1 mTorr
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lons motion inside the trap
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Stability diagram

Stability of ion trajectories affected

) - al From de Hoffmann
by combination of AC and DC > ;; ) R
mostly DC is set to zero | B 05&5“-?1 A=0 -1
D; 020\ \ 9= 0.908
g = :
For zero DC, stability given by q,: o1 | %
B 8ezV 0.2 -
4z = 2 2 2
m(ry +2z5)(27v) 0.3 -
0.4 4
Stable trajectories up to q, = 0.908 .05 - \ 8= 1
0.6
0.7 T : T I r T T - r
02 0406 0.8 10 12 04 g, =
Figure 2.16

Ty pical stability diagram [ur a quadrupole ion rap. The
value at g, = 1 along the g. axis is g, = 0.908. At the
upper apex, 4, = 0.149998 and g, = 0.780909. (Data
trom Ref.12)



Ejection of ions

0.2 0.4 0.6 0.8 0.1 g,

Figure 2.20

At a fixed value of the RF potential V applied to the ring electrode, heavier
ions will have lower g, values and thus lower secular frequencies. If V is
increased, f. values increase for all the ions, as do the secular frequencies.
In the example given, the lightest ion now has a #. value larger than unity
and is thus expelled from the trap. The highest mass that can be analyzed
depends on the limit V value that can be applied: around 7000-8000 V
from zero to peak. For a trap having #, = 1 ¢m and operating at a v
frequency of 1.1 MHz, the highest detectable mass-to-charge ratio is about
650 Th

B 8ezV
m(r, + 222 )(27v)?

Uz

With increasing V - larger and
larger m/z beyond g, = 0.908

Pressure determines the highest
V (discharges)



Many other ions traps with similar
properties

Linear quadrupole traps
Higher multipole traps






lon cyclotron resonance (ICR)

) F
y Receiver H’:ﬂ”:mm

plate

Figure 2.50

Diagram of an ion cyclotron resonance instrument. The magnetic field is
oriented along the z-axis. lons are injected in the trap along the z-axis. They
are trapped along this axis by a rrapping voltage, typically 1V, applied to
the front and back plates. In the x,y plane, they rotate around the z-axis due
to the cvclotronic motion and then go back along the z-axis between the
electrostatic trapping plates. The sense of rotation indicated is for positive
ions. Negative ions will orbit in the opposite direction



Time Domain Frequency Domain Eﬁm
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Figure 13-25 (a) Time domain signal (transient) recorded for a mix-
ture of LU™ and N, ions of nominal m/z 28 and (b) the correspond-
ing frequency (mass) domain signal. (Courtesy of A.G. Marshall.)

http://www.youtube.com/watch?v=a5alLIm9g-Xc&feature=related



http://www.youtube.com/watch?v=a5aLlm9q-Xc&feature=related

Instruments with highest resolution

From
Watson

35 C i+ SEC! -

wv"H w \""_‘”“‘"‘V’H-"n,mﬁx«*

FIG. 4.22. Segment of mass spectrum in region of nominal mass 35 showing a resolution
greater than 1,000,000 (FWHM definition) when using FT-MS. The peaks represent the positive
and negative ions of 3Cl that have a difference in mass equivalent to the mass of two electrons.
The spectrum was obtained using a FT-ICR mass spectrometer with a superconducting magnet
(4.7 tesla); the instrument was switched from the positive-ion-detection mode to the negative-
ion-detection mode during the scan between the two peaks (Courtesy of Spectrospin AG.)



Orbitrap

lons introduced
perpendicular to the z-axis
(red arrow)

Distance of the entrance
point to z = O determines
potential energy along z-axis

' Perspective: The Orbitrap: a new mass spectrometer. Q. Hu, BT
Moll. H. Li. A. Makarov, M. Hardman, F.. Graham Cooks. J Mass

Spec., 40(4): 430 — 443, 2005.



Orbitrap

» High precission (1 — 2
(-Trap Exit Lens C-Trap Entrance Lens
HCD Collision Cell C-Trap Split Lens  Quad Exit Lens (Quadrupole TK Lens Bent Flatapole ppm)
» High mass resolutions

| I
(IH|@H"_H (up to 200 000)
I | ||_|'| » High dynamic range
L = = Inter-Flatapole Lens {j— e (~ 5000)
" — Injction Flatapole i
: S-Lens Exit Lens H
_~~L e
N -4

NanoSpray Source

Orbitrap Mass Analyzer

> http://planetorbitrap.com/g-exactive



http://planetorbitrap.com/q-exactive
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What Is the origin of the large success
of MS?

New ionization methods (ESI, direct ESI, MALDI, atd.)

MS plays an important role in elemental analysis and it will probably grow
further

High resolution analyzers will be standard
Instruments are getting smaller, user friendlier, and more robust

Combination of mass spectrometry with ion mobility will be more and more
important

Development in informatics will simplify data evaluation in all fields of MS
application

Combination of different MS techniques with other methods will be developed
and could contribute to new applications (optical methods, biochemical
methods, EPS)
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