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Abstract: Function-on-scalar regression models feature a function over some domain as the response
while the regressors are scalars. Collections of time series as well as 2D or 3D images can be considered
as functional responses. We provide a hands-on introduction for a flexible semiparametric approach for
function-on-scalar regression, using spatially referenced time series of ground velocity measurements
from large-scale simulated earthquake data as a running example. We discuss important practical
considerations and challenges in the modelling process and outline best practices. The outline of our
approach is complemented by comprehensive R code, freely available in the online appendix. This text
is aimed at analysts with a working knowledge of generalized regression models and penalized splines.
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1 Introduction

Regression models for functional responses try to model structures like time-depen-
dent processes or 2D or 3D images (Ramsay and Silverman, 2005). Functional data
are thereby defined as data that vary over a specific domain T, for example, time.
Observations typically consist of measurements at individual points over that domain.

One valid alternative to functional response regression for data structured
like this is longitudinal data analysis, modelling the separate measurements along
each function using scalar regression while explicitly specifying their temporal
correlation structure, for example, by including (random) time effects or by assuming
autocorrelated residuals over time. However, eliciting an appropriate correlation
structure is usually non-trivial. Using functional regression, correlation structures
over the functional domain can be modelled flexibly and implicitly.

A functional approach should be the method of choice if the shape of a response
over its functional domain is of main interest. Functional regression models enable
researchers to quantify how various parameters influence the expected level and shape
of the functional responses.
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If the response is of a functional nature and all predictor variables are constant over
the functional responses’ domain, the corresponding model is a function-on-scalar
regression model. This work gives an introduction to this model class aimed at
researchers looking for a pragmatic overview on how to apply this method without
having to dive deeper into the technical part of it. As such, our focus is on explaining
general concepts rather than providing detailed mathematical explanations of the
method. Furthermore, we list important practical considerations and give advice on
which methods are needed in which situation. Throughout the text, we show how to
apply the methods using real-world data.

Various approaches to model function-on-scalar data exist. Our main focus lies
on the flexible framework of Greven and Scheipl (2017a) which covers models of the
form

Yi(t)|Xi ∼ F(�it, �)

g(�it) = ˇ0(t) +
R∑

r=1

fr(Xri, t).
(1.1)

For all observational units i = 1, . . . , n, the functional response, evaluated at specific
points t of the functional domain, is assumed to come from some given distribution F
with conditional expectation �it = E(Yi(t)|Xi) and dispersion and shape parameters
�. The expectation is connected to an additive predictor with a functional intercept
ˇ0(t) and R potentially nonlinear covariate effects fr(·) by a pre-specified link function
g(·). The covariate effects fr(·) each depend on a subset Xr of the covariate set X and
can potentially vary over the functional domain T. More specifically, we refer to T
as the time domain, as this is the functional domain in our running example. All
methods, however, are also applicable for other functional domains.

Well-written introductions to the basic concepts and philosophy of functional
data analysis are given in Ramsay and Silverman (2005) and Ramsay et al. (2009).
Reviews of current research can be found in Morris (2015) and Wang et al.
(2015). Readers interested in an in-depth review of available implementations for
function-on-function and scalar-on-function regression models are pointed to Greven
and Scheipl (2017a). An alternative approach that is closely related to the approach
used here was developed by Reiss et al. (2010).

We perform our analyses in R (R Core Team, 2016, v. 3.3.2) using the function
pffr from the package refund (Goldsmith et al., 2016), which is based on the
gam function for scalar additive regression from the mgcv package (Wood, 2006,
v. 1.8-15). The refund package is a flexible and fully documented package for
functional data analysis. This article is accompanied by the open source R package
FoSIntro (Bauer, 2017), available on GitHub, which comprises several convenience
functions for the work with function-on-scalar models based on pffr. The GitHub
repository also contains code showing how to apply all methods shown in this article.

The article is structured as follows: Section 2 introduces the running example for
this work. Important statistical aspects of semiparametric regression are sketched
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in Section 3. Section 4 discusses concepts and challenges of function-on-scalar
regression. We finish with a discussion and outlook in Section 5.

If the main interest lies in predicting or analysing specific characteristics of the
functional response, alternative approaches are often more adequate. In particular, the
function-on-scalar regression approach presented here is not well suited for predicting
peak ground velocities as the penalized estimation of smooth structures tends to
systematically underestimate the maxima.

2 Application to seismic ground motion data

Bauer (2016) used function-on-scalar regression to quantify how frictional failure
across an earthquake fault affects ground velocities at different distances from
the earthquake’s hypocentre over time. Figure 1’s left panel shows three typical
observations of the functional response ground velocity over the functional domain
time. All covariates in the study were constant over time.
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Figure 1 Left: Typical observations of absolute ground velocity over time. Peak ground velocity is delayed
and decreases as the hypocentral distance increases. Middle: Overall functional mean of the ground
velocities based on model (3.1) which only contains the intercept. Right: Estimated mean ground velocities
by categorized hypocentral distance, based on model (3.2)

The aim of statistical modelling is to gain a better understanding of the associations
between initial seismic conditions like fault stress and fault strength prior to
earthquakes as well as local topography and geology with the temporal and spatial
distribution of ground movement caused by an earthquake. The data is derived from
large-scale in silico earthquake scenario simulations with the open source software
SeisSol (Breuer et al., 2014; Pelties et al., 2014 www.seissol.org), based on a real
seismic event that took place in Northridge (California) in 1994. Multiple simulations
with varying initial conditions are analysed.

Shaking velocity and ground movement was recorded in high temporal resolution
at a dense network of virtual seismometers distributed across Southern California.
In the notation of (1.1), each response function Yi(t) represents the first 15s of the
absolute ground velocity measurements from one of 75 such simulations for a given
virtual seismometer i in a resolution of 2Hz. A subset of 260 seismometers was
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used for the analysis. Leading zeros were discarded up to the first relevant ground
movement (Yi(t) ≥ 0.01) in order to remove irrelevant phase variation as described on
p. 21. In keeping with the introductory level of this text, we only look at a submodel
of Bauer (2016) and omit most seismological details.

The analysis is focused on the effects of five physical parameters on ground
velocity: three frictional resistance variables, the direction of the regional tectonic
background stress and the soil material of the simulated area: either rock or sediment.
These parameters were pre-set in each seismic simulation. As seen in Figure 1, distance
from the fault has an important effect on both the shape and the level as well.

3 Basic concepts of semiparametric modelling

The regression framework introduced by Greven and Scheipl (2017a) is based on
additive or semiparametric regression models. Such models are one approach for
estimating nonlinear effects of variables. In the following, we will introduce the basic
modelling concepts of semiparametric functional regression by practically motivating
differently complex models, each followed by a brief summary of the most important
methodological basics.

3.1 Semiparametric models with one-dimensional smooth effects

In the simplest setting, we estimate the overall functional mean of ground velocities
using a model only containing a functional intercept and no covariates:

g(E(Yi(t))) = ˇ0(t). (3.1)

As the response in our application is strictly positive, we assume a Gamma distribution
with a log link function g(·) in all examples throughout this article. Figure 1’s middle
panel shows this overall estimated functional mean for Equation (3.1). It can be seen
that the overall mean is increasing over the first few seconds until it reaches a constant
level.

As a next step, we want to assess a possible association of ground velocities with
hypocentral distance, that is, we also want to quantify just how different curves
at different hypocentral distances are on average. This can be done by extending
Equation (3.1) with a dummy-coded categorical covariate x for grouped hypocentral
distance

g(E(Yi(t)|xi)) = ˇ0(t) + ˇ1(t)Imedium(xi) + ˇ2(t)Ilarge(xi), (3.2)

where Imedium(xi) is 1 if the hypocentral distance xi of the station where observation
Yi(t) was recorded is intermediate, and 0 otherwise. Interpretation of categorical
effects is equivalent to scalar regression, meaning that each effect ˇ1(t) and ˇ2(t)
quantifies a deviation from the reference category ‘small distance’. As can be seen in
Figure 1’s right panel, the estimated effects in Equation (3.2) show relevant differences
in their level and shape.
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3.2 Estimating one-dimensional smooth effects

Estimation of the functional intercept and the time-varying distance category effects
is performed using a spline-based approach, where the effect is represented as the
sum of scaled spline basis functions. Readers not familiar with this and other basic
concepts regarding penalized estimation for generalized additive models are pointed
to Fahrmeir et al. (2013) or Wood (2006). In a nutshell, penalization is a useful tool
in estimating smooth effects as it allows estimation of nonlinear effects simply by
defining the maximally possible wiggliness of each effect’s shape, which is limited
by the number of spline basis functions being used for that effect. Overfitting is
then prevented by using an estimation criterion that punishes complexity of the
effect estimates (i.e., wigglier shapes) while simultaneously rewarding goodness of
fit. Parameters that control the relative weights in this trade-off between a good fit of
the training data on one hand and a parsimonious model with simple effect shapes
that is more likely to generalize well for previously unseen test data on the other hand
are estimated from the data automatically.

Many different spline bases are available for one-dimensional smooth effects,
cf. the documentation for mgcv. P-splines (Eilers and Marx, 1996) with second
order difference penalties as well as thin plate regression splines (TPRS, see Wood
(2003), based on Duchon (1977)) correspond to a weak prior assumption of linear
effects. By default, pffr uses cubic P-splines with first order differences over the
functional responses’ domain. This yields smooth effects and corresponds to a weak
prior assumption of effects being constant over T. TPRS bases often perform slightly
better than P-splines (Wood, 2003), but also suffer from numerical problems in some
situations and are much more computationally expensive to set up.

Some more specialized spline bases are very useful in particular situations
and easily available in the software we use here, for example, cyclic splines for
periodic effects where boundary values must be equal or soap film smooths for fits
with constraints along complex domain boundaries like seashores. Morris (2017)
compares a Bayesian wavelet-based approach well suited for spiky data on regular
grids to the method described here.

Using the spline-based approach, both the estimation of time-varying effects and
of effects that vary nonlinearly over the variable domain itself is possible. An example
for the latter is given in Figure 2’s left panel, which shows the estimated effect of the
variable slip weakening, that is, the distance over which initial friction diminishes to
its minimum. Higher values in this parameter correspond to bigger overall friction
and thus to ground velocity curves that have a lower level overall. Note that this type
of time-constant effect does not affect the shape of the functional responses, only
their overall level.

Putting all currently described effect shapes together, we are now capable of
specifying models of the form

g(E(Yi(t)|Xi)) = ˇ0(t) +
J∑

j=1

ˇj(t)xji +
K∑

k=1

fk(xki), (3.3)
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which include J time-varying linear effects ˇj(t) as well as K smooth effects fk(·) which
are time-constant, but vary over the respective variables xk.

3.3 Semiparametric models with multidimensional smooth effects

As a final step, we now include multidimensional smooth effects into the model. Such
effects can vary nonlinearly both over the domain of the functional response and
the domain of the covariate (or multiple covariate domains in the case of interaction
effects). As an example, the three rightmost panels of Figure 2 visualize the estimated
nonlinear time-varying effect of the hypocentral distance. To facilitate interpretation
of the effect, it is shown using both a heatmap (panel 3) as well as a 3D surface (panel
4). In addition, a comparison of the predictions for specific values is a valuable tool
as well (panel 2). One can see (a) that smaller hypocentral distances correspond to
higher ground velocities (note the large negative slope of the estimated surface along
the distance axis), (b) that the initial peak of ground velocity sets in later the farther
away from the earthquake centre the virtual seismometers are located (note that the
peak for a given distance is located higher up the time axis as distance increases), (c)
that the peak becomes somewhat less pronounced for larger distances and (d) that
the effect is almost linear over hypocentral distance.
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Figure 2 Panel 1: Estimated time-constant effect of slip weakening fslip(xslip), which implies a (nonlinear)
shift in the average level of Yi (t ) as xslip changes. 2: Predictions for specific values of hypocentral distance
with remaining covariates set to realistic values. 3, 4: Effect of hypocentral distance visualized using a
heatmap and a 3D surface. Note that values in panels 1, 3 and 4 are on the scale of the additive predictor
(i.e., loge([m/s])), while panel 2 is on log10-scale

3.4 Estimating multidimensional smooth effects

Incorporation of multidimensional smooths into Equation (3.3) is easily done by
generalizing it to

g(E(Yi(t)|Xi)) = ˇ0(t) +
R∑

r=1

fr(Xri, t). (3.4)
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In addition to the functional intercept we now have R covariate effects fr(Xri, t)
which potentially vary over both covariate domains and the functional domain T.
We write Xri instead of xri to emphasize that each smooth potentially depends on
multiple covariates, thereby covering linear interactions terms and multidimensional
smooths. Note that fr(·) can obviously also be a time-constant, linear effect.

We briefly sketch two possibilities for setting up a multidimensional spline basis
for representing effects fr(Xri, t). Tensor product spline bases are created by setting
up an adequate marginal one-dimensional basis for each dimension of the effect (e.g.,
hypocentral distance and the time domain) and then taking the Kronecker product of
the marginal bases (i.e., multiplying each basis function of each marginal dimension
with all basis functions of all other marginal dimensions). This results in a multivariate
spline basis defined on the joint domain of all involved covariates (and time). A
major advantage of this method is its large flexibility as the appropriate marginal
bases and penalties can be chosen freely to suit the problem. Since penalization of
such tensor product spline terms is done separately for each dimension, this also
allows for different roughnesses of the various marginal dimensions (e.g., an effect
f (xr, t) that is very smooth over some covariate xr but still wiggly over time t). A
disadvantage of tensor product splines is that tensor basis functions are defined on a
regular grid over the joint domain and some basis functions may lie in regions where
there are not many or no data points at all, leading to computational inefficiencies
and badly conditioned model fits. An alternative to tensor product spline bases are
multidimensional TPRS, a direct generalization of the one-dimensional TPRS basis.
The most important difference is that TPRS basis functions imply identical roughness
in all directions. In practice, this only makes sense if marginal variables are on
comparable scales, for example, in a 2D spatial effect with longitude and latitude
as the marginal covariates.

3.5 Some practical considerations

Since the number of basis functions limits the maximal complexity of the shape
of any effect fr(Xri, t), it needs to be sufficiently large. Which number to choose
initially depends greatly on the data situation and it is very difficult to provide
general advice. For most applications, 20-30 basis functions for a one-dimensional
effect will typically be sufficient, but this is feasible only if enough observations are
available for estimation. In situations with fewer data points or simple effect shapes,
however, it can also be appropriate to use only 5 or 10 basis functions initially.
After estimating the model, the effective degrees of freedom (edf; see Wood, 2006,
Ch. 4.4) of each term give an indication of whether the amount of flexibility was
sufficient or not. If the edf are near their maximum, the model should be re-estimated
using a larger number of basis functions. In this case, a larger basis that is expressive
enough for the effect’s true complexity can improve the estimate. An automated
approach for checking adequacy of the chosen basis dimension was introduced
by Pya and Wood (2016) and is implemented in the gam.check function of R
package mgcv.
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In some situations, the placement of the basis functions over the effect’s domain
can be of great importance. If no further information is available an equidistant
placement is a valid approach. In contrast, a user-specified placement can make sense
if the data are spread very unequally across the domain and the researcher supposes
that the effect will vary more strongly in regions where more data points lie or when
a few data points lie far beyond the main data cloud. In such cases, it can be more
efficient to place more knots in regions with more data, especially in situations with
small to moderate sample size.

4 Inference and model checking

This section focuses on setting up and evaluating a function-on-scalar model. As
motivated in the last section, the general model of Greven and Scheipl (2017a) can
be written as

g(E(Yi(t)|Xi, Ei(t))) = ˇ0(t) +
R∑

r=1

fr(Xri, t) + Ei(t), (4.1)

where the conditional expectation of the response Yi(t) is modelled by R potentially
nonlinear effects (as defined on p. 10) and a functional intercept ˇ0(t). The
newly introduced term Ei(t) specifies functional error terms. Those smooth errors
are estimated as curve-specific functional random intercepts and can be used to
incorporate possible autocorrelation and variance heterogeneity along the functional
domain (Scheipl et al., 2015) as motivated in the next paragraph. The additive
predictor is mapped to the domain of the functional responses by a given link
function g(·), which for the Gamma-model in our application example is simply
the natural logarithm. Note that the interpretation of effects in models including
(functional) random effects like Ei(t) is generally conditional, not marginal, similar
to conditional GLMMs (Diggle et al., 2002): the estimates quantify the expected
change in individual conditionally expected values, not in population averages. This
distinction is meaningless if the link function g(·) is the identity, that is, for Gaussian
models.

In many practical applications, the assumption of independence along t
conditional on the additive predictor for each functional response is not borne out
and observed residuals are correlated (and frequently heteroscedastic) along t. This
can easily be diagnosed by computing the empirical covariance and correlation of
the residuals (see panel 4 of Figure 4, p. 24). If residual intra-curve correlations
are non-negligible, confidence intervals (CIs) and tests will be overly optimistic. If
computationally feasible, models should then include functional smooth residuals
Ei(t) to account for such autocorrelation and variance heterogeneity.

Generally speaking, all response distributions from scalar regression are also
available for use in models with a functional response. Whether effects are constant or
varying over the functional domain should be investigated for all variables (metric and
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categorical). How appropriate effect types can be determined as part of the modelling
process is outlined in Section 4.4.

4.1 Uncertainty quantification

CIs for smooth effects can either be constructed globally (or simultaneously),
pointwise or intervalwise, the interpretation being that the CI overlaps the true
effect globally, at a specific point or in a specific interval with a given probability,
respectively. This is an area of active research; see, for example, Krivobokova et al.
(2010) or Marra and Wood (2012). As a generally applicable method, bootstrapping
can be used to construct all different types of CIs. However, it can be computationally
expensive—often prohibitively so for high-dimensional data or complex models.

Several bootstrap strategies exist that can be used in this context. The most
established approach in the context of regression modelling is the conditional or
parametric bootstrap (Efron and Tibshirani, 1994), which consists of the following
steps for constructing a pointwise CI for the linear coefficient ˇ1 based on a sample
of size n, but is also easily generalizable to compute intervalwise or global intervals:

1. Create B bootstrap samples from the data. In each of the B samples a new
response value yb

i is generated for each observation i by drawing a random value
from the conditional response distribution specified by the regression model. In
the Gaussian case, new response values yb

i can be drawn from the distribution

Yi|X i∼N(ŷi, �̂2
� ),

where ŷi is the model-based prediction for observation i and �̂2
� is the estimated

error variance.
2. Calculate the model on each of the B samples and save ˇ1 as ˇb

1, b = 1, . . . , B.
3. Define the CI using empirical quantiles, for example, the 2.5% and 97.5%

quantiles to obtain a 95% CI.

Note that parametric bootstrapping heavily relies on the underlying model being
specified correctly. In case of violation of the model assumptions, this approach can
lead to overly optimistic intervals and instead nonparametric bootstrapping should
be used, where resampling is based on the raw data (Efron, 1979). Because of the
exemplaric character of our running example we use nonparametric bootstrapping
to estimate CIs.

As an alternative to bootstrapping, the empirical Bayesian CIs developed by
Marra and Wood (2012), which are an extension of Nychka’s (1988) CIs, are
computationally efficient and implemented in mgcv. However, Marra and Wood
show that these intervals do not perfectly fulfil the property of pointwise CIs.
Figure 3 shows a comparison of the CIs of Marra and Wood and real pointwise,
bootstrap-based CIs, with the latter being ever so slightly wider throughout in this
case. Considering, however, that differences between these two are usually small as
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Right: Pointwise, nonparametric bootstrap-based CIs (95%) and point estimate for the time-varying smooth
effect of hypocentral distance using 1000 Bootstrap samples

long as the model is not severely misspecified, the Marra and Wood CIs are a useful
tool to compute uncertainty of smooth estimates efficiently.

In contrast to one-dimensional effects, visualization of uncertainty for
multidimensional smooth effects is more complex as a 3D surface plot cannot be used
to show both the point estimate and CIs. Instead, the best approach is to use separate
heatmaps for the point estimate, the lower CI boundary and the upper CI boundary
using identical colour legends, as shown in Figure 3. Looking at the estimates, it can
be seen that the uncertainty about the effect of hypocentral distance is rather small.

Regarding predictions, both pointwise CIs for the predicted mean values and
pointwise prediction intervals can be obtained based on Wood (2006,Ch. 1.3.6). For
intervalwise or global versions of both interval types again bootstrap-based methods
have to be used, but our practical experience suggests that the differences to pointwise
CIs are usually negligible for practical purposes.

4.2 Hypothesis testing

Most of the relevant hypotheses in function-on-scalar regression can be tested using
the five test approaches listed in Table 1. All tests apart from the bootstrap are
Wald-like tests which are based on the approximate normal distribution of the
estimated regression coefficients. For details, see Wood (2013) and Marra and Wood
(2012). The appropriate test distribution mostly depends on the question whether
the scale or dispersion parameter � has to be estimated or not (Wood, 2006). For a
normal response � = �2 is generally unknown, whereas the use of Poisson or Binomial
responses implies a known value of � = 1.

Hypotheses for scalar coefficients of the form ˇj = 0 can be tested using a t-test.
For testing multiple ˇ’s being zero at the same time an F-test can be used (Wood, 2006,
Ch. 4.8.5). A different F-test based on the test statistic introduced in Wood (2013) is
available to test whether a nonlinear effect is significantly different from zero. Note
that this is a test only for the global hypothesis. For a pointwise or intervalwise
evaluation, a bootstrap-based approach has to be used. As in the previous section,
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Table 1 Overview on relevant tests, based on whether the scale or dispersion parameter � has to be
estimated or not. (1) test based on Wood (2006, 4.8.5); (2) test based on Wood (2013)

Test Testable alternative hypotheses

� unknown � known
t-test z-test Is a linear effect different from zero?
F-test(1) �2-test(1) Is at least one of multiple parameters different from zero?
F-test(2) �2-test(2) Is a smooth effect different from zero?

LR-test Is model M1 better than model M2?
Bootstrap-based test All hypotheses

a bootstrap is hereby used to create an appropriate CI and as a second step the
null hypothesis is rejected if zero is not (or at no point for an intervalwise test)
inside of the CI. Finally, specific hypotheses can also be tested by comparing models
using likelihood ratio (LR)-tests (Wood, 2006, Ch. 4.10.1). Be aware that an LR-test
can only be used for model comparison if the two models are nested. Some more
information on model comparison is given in Section 4.4.

Note that all the tests given earlier are conditional on the estimated penalty
parameters that control the effective degrees of freedom of each term. However,
neglecting smoothing parameter uncertainty does not seem to have a large negative
impact on the validity of p-values and the performance of CIs unless penalty
parameters are poorly identified (Marra and Wood, 2012). An approach to account
for smoothing parameter uncertainty in p-value calculation is outlined in Wood et al.
(2016b) and implemented in mgcv as well (see Vc in ?gamObject).

An overview on the most important hypotheses in function-on-scalar regression is
given in Table 2, which lists possible research questions together with the appropriate
tests. As a special note, testing whether two scalar effects (or two smooth effects) of
xk and xj are different from one another only arises in situations where, for example,
two treatments xk and xj (with time-varying effects) should be compared. Thus, this
can be translated into another hypotheses by using one treatment as the reference
category and then testing the hypothesis ‘Is the linear (or smooth) effect estimating
the difference between treatments different from zero?’

Apart from the penalized likelihood-based (or empirical Bayesian) framework
introduced here, fully Bayesian inference like, for example, the framework of Morris
(2017), see Section 4.6, often allows for easier handling of complex or non-standard
inferential problems. When relying on the software implementation of the Greven
and Scheipl (2017a) framework in the R package refund, Bayesian estimation of all
exponential family models is available using the automatic translation of the model
specification and model data into JAGS (Plummer, 2016) code using mgcv’s jagam
function (Wood, 2016) for automated, tuning-free, fully Bayesian inference based on
Markov Chain Monte Carlo sampling.

Working with generally high-dimensional functional data, researchers should be
aware that, all else being equal, large sample sizes lead to smaller p-values in the case
of H0 not being true. In such cases, importance should not be attached primarily
to p-values of point hypotheses of ‘no effect’. Instead, best practice in interpreting
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Table 2 Overview on possible hypotheses with corresponding tests. (0) tests are only reported for the case
of unknown scale parameter �. If � is known we refer to Table 1; (1) F-test based on Wood (2006, 4.8.5); (2)

F-test based on Wood (2013)

Research question (alternative hypothesis) Test(0)

Is the linear effect of xj different from zero?
↪→ Case 1: xj is metric or binary t-test
↪→ Case 2: xj is categorical with > 2 categories LR-test
Is the smooth effect of xj different from zero?
↪→ Globally F-test(2)

↪→ At a specific point Bootstrap
↪→ In a specific interval Bootstrap
Is at least one of multiple parameters different from zero? LR-test

Are the linear effects of xj and xk different from one another? see text
Are the smooth effects of xj and xk different from one another? see text

Is the linear effect of xj different depending on the value of xk ?
↪→ Case 1: both xj and xk are metric or binary

↪→ Case 1a: xk is binary or the effect is varying linearly over the metric xk t-test
↪→ Case 1b: the effect is varying nonlinearly over the metric xk LR-test

↪→ Case 2: xj and/or xk are categorical with > 2 categories LR-test
Is the smooth effect of xj different depending on the value of xk ?
↪→ Case 1: xk is binary F-test(2)

↪→ Case 2: xk is metric or categorical with > 2 categories LR-test

Is model M1 better than M2? LR-test

regression results is based on well-founded discussion of the relevance of the estimated
effect strength and its associated uncertainty while considering whether the sample is
appropriate for drawing general conclusions from it. Having quite high-dimensional
data ourselves, we do not report specific test results for our running example.

4.3 Some specific challenges

We now list some further challenges that are specific to dealing with functional data.
A first comparison of different modelling approaches regarding those problems is
given and is complemented by the main discussion in Section 4.6.

If the functional responses have hierarchical, longitudinal or spatio-temporal
structure, there may be non-negligible inter-curve correlation that the model has
to account for. In the case of grouped data, that is, longitudinal or hierarchical
data, functional random intercepts and slopes varying over the functional domain
of the response can be incorporated into the model (Greven and Scheipl, 2017a).
Spatio-temporal correlation with a pre-specified structure between functional
responses can be included explicitly by including smooth effects over space or time.
Scheipl et al. (2015, Online Appendix C) contains a worked example and code for
spatially correlated curves.

Another common problem when dealing with time-varying functional data is
misalignment or phase variation of functional observations. This means that certain
salient features of the functional responses like peaks or plateaus do not occur at the
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exact same time points. Few functional data analysis frameworks are currently able
to incorporate both phase and amplitude variation (cf. fdasrvf, Tucker, 2016)
and we are not aware of any implementation of functional response regression able
to do so. Ignoring misalignment typically results in blurred estimates. Therefore, an
appropriate pre-processing of the data is necessary, for example, to align all peaks at
the same time points. An overview on methods tackling phase variation in functional
data analysis is given by Marron et al. (2015). In our application, ground velocity
curves are heavily misaligned since the seismic shock waves take longer to reach
seismometers further away from the hypocentre and the corresponding curves thus
remain at (close to) zero for longer times. We pragmatically solve this problem by
removing leading zeros before model estimation.

Functional data are frequently high-dimensional and estimation of complex
models can be very expensive, both in terms of computation time and memory
requirements. Pragmatically speaking, analysts facing such a problem should
consider downsizing the data, for example, by reducing the resolution of functional
measurements over the functional domain or by using only a subset of the data
for estimation and the remainder for model validation. Highly efficient estimation
algorithms are available for some approaches. For the class of spline-based models
we focus on here, one can use the algorithm of Wood et al. (2016a), which is imple-
mented in the function bam in R package mgcv (Wood, 2006), also accessible
via pffr. The fully Bayesian wavelet-based approach of Morris (2017) and
collaborators, implemented in the WFMM software (Herrick, 2015) has excellent
scaling behaviour for time and memory both in terms of data set size and model
complexity.

Finally, users should be aware that some methods for functional data are only
applicable if the functional observations contain no missing measurements and were
observed on a regular grid, that is, all functional observations are evaluated at the
same points of the functional domain. A comparison of the applicability of various
function-on-scalar regression frameworks is given in Section 4.6.

4.4 Model selection

Generally speaking, model selection in functional regression models underlies the
same principles as in scalar regression (see, e.g., Marra and Wood, 2011; Fahrmeir
et al., 2013, Ch. 3.4.3). Using model selection in function-on-scalar regression can
be useful for various issues, for example, for deciding which response distribution
and link function is optimally suited to the data or whether an effect should be
incorporated linearly or as a smooth curve. Additionally, very high-dimensional data
often reduces the effectiveness of penalization methods as the information in the
observed data overwhelms the penalization prior (Gelman et al., 2014). In such
situations it can be necessary to use model selection to optimize the number of basis
functions for each smooth effect.

Leeb and Pötscher (2005) propose a test set based approach to prevent overfitting
and preserve valid p-values when performing model selection. For smaller datasets,

Statistical Modelling 2018; 18(3–4): 346–364



An introduction to semiparametric function-on-scalar regression 359

k-fold cross validation is a valid alternative (Hastie et al., 2009). Using one of those
two approaches, the best model can, for example, be found by using the prediction
error as the optimization measure. When model selection is based on training set
performance, other criteria like AIC or LR tests should be used (Fahrmeir et al., 2013).
Note that if using the semiparametric approach smoothing parameter uncertainty
should be accounted for in AIC computation (see Wood et al., 2016b).

For our data, we use a test set based model selection approach with mean square
prediction error (MSE) as the criterion for two purposes. First, penalization did not
work very well in this setting, probably due to the massive amount of data available.
Therefore, we use a pragmatic model selection procedure to select the number of basis
functions for each smooth effect and to decide whether individual effects should be
incorporated as a smooth effect or linearly. Second, we use model selection to choose
between different response distributions and link functions.

4.5 Model evaluation

Model assumptions for functional response regression are mostly the same as in
respective scalar models, that is, observations are independent conditional on the
additive predictor. Model evaluation is mainly done by visualizing the residual
structure.

A selection of useful residual plots is shown in Figure 4. The structure of the
residuals plotted against the fitted values (panel 1) is acceptable. Most measurements
are predicted approximately correct. The odd structure of negative residuals is based
on the ground velocities being non-negative, which results in highly negative residuals
not being possible. Plotting the mean residuals over space (panel 2) shows that a
substantial spatial struture is remaining in the residuals. Nearly all regions where
ground velocities were substantially underestimated are west of the earthquake centre,
while seismometer readings in regions to the east and to the south of the epicentre
were overestimated. Across time, however, we again observe an acceptable amount of
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Figure 4 From left to right: Residuals versus fitted values, residuals versus space, residuals versus the
functional domain, autocovariance of residuals over the functional domain. The black dot in the second
plot marks the epicentre
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residual structure—the hexbin plot (panel 3) does not show any systematic deviations
from a constant trend at zero, with some extreme peak ground velocities observed
at around five seconds. As functional data often are very high-dimensional standard
scatterplots of the residuals, having the problem of overplotting should generally be
avoided in favour of alternative plots like density plots or hexagonal binning (Carr
et al., 2016), as was done in the left and middle plots of Figure 4. The empirical
autocovariance of the residuals (panel 4) corresponds well enough to the model
assumptions: it is fairly constant along the diagonal (i.e., the variance of the residuals
is fairly homogeneous over functional domain t) and drops off quickly towards zero
away from it (i.e., the autocorrelation of the residuals along t is rather small and very
short-range), slightly less so for t > 10.
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Figure 5 Comparison of model predictions and raw observations for typical observations with different
hypocentral distances

For an evaluation of the prediction power of the model, measures like MSE of the
predictions can be calculated. We also recommend graphical evaluation of predictions
for single functional observations as was done in Figure 5 to get an overview on model
performance.

4.6 Alternative approaches and software implementations

As alternative approaches to semiparametric regression we only cover the most
versatile frameworks for performing function-on-scalar regression. The capabilities
of the respective software implementations are also outlined, a comprehensive
comparison of available software implementations is given in Table 3 of Greven
and Scheipl (2017b). Many specialized function-on-scalar regression methods have
been proposed in the literature, oftentimes with corresponding small software
implementations, which we do not cover here. See Morris (2015) for an in-depth
review of this field.

The semiparametric approach of Greven and Scheipl (2017a) was already outlined
extensively. The methodology is ready-to-use in the refund package in R (Goldsmith
et al., 2016), the most versatile function therein being pffr.
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One class of alternative approaches includes a pre-smoothing step prior to model
estimation, meaning that each functional observation is smoothed and the resulting
smooth curve is then treated as the functional observation (see, e.g., Ramsay and
Silverman, 2005). The disadvantage is that the measurement error removed by the
smoothing step is not taken into account in subsequent inference. On the plus side, this
can allow for more efficient estimation as the smooth curve can then be represented
compactly by the vector of spline coefficients yielding the smoothed curve. The R
package fda is publicly available (Ramsay et al., 2014) and implements simple linear
models for functional responses.

An overview of nonparametric methods and their applications is provided in
Ferraty and Vieu (2006). Their regression approaches are usually based on kernel
methods and are able to model highly nonlinear associations. However, the methods
mostly cover only univariate models with a single covariate. Febrero-Bande et al.
(2012) introduce the R package fda.usc which implements a subset of these methods
and related extensions.

The componentwise gradient boosting framework of Brockhaus et al. (2016b) is
spline based and extremely versatile. With boosting being a popular, very efficient yet
very powerful estimation technique, it represents a neat alternative to the standard
regression approach. The advantages are most noticeable when working with very
high-dimensional data requiring an efficient estimation technique or when dealing
with data situations with more parameters than observations, as such settings remain
computationally feasible using a boosting approach. Also, the boosting approach
automatically performs variable selection. However, uncertainty quantification for
boosting is currently only possible using computationally expensive resampling
techniques like bootstrapping (Hastie et al., 2009). The method is implemented in
the R package FDboost (Brockhaus, 2016). Recently, this approach has also been
extended to model the variance of functional responses conditional on covariates
(Brockhaus et al., 2016a), using techniques developed in the literature on generalized
additive models for location, scale and shape (GAMLSS; Mayr et al., 2012). More
general details on boosting and GAMLSS can be found in the tutorials by Mayr and
Hofner (2018) and Stasinopoulos et al. (2018), respectively, which are also part of
this special issue.

As another alternative, fully Bayesian functional regression can be used. The
most comprehensive framework we are aware of is the one of Morris (2017) and
collaborators, who also provide a comprehensive comparison to the approach of
Greven and Scheipl (2017a). Generally speaking, fully Bayesian approaches have the
advantage that diverse between- and within-function correlation structures can be
incorporated into the model in a very flexible way. Also, handling inference is much
easier as approximate posterior distributions of all parameters are available in the
form of MCMC samples. Readers interested in a general introduction to Bayesian
distributional regression are pointed to the tutorial paper by Umlauf and Kneib
(2018). Unfortunately, the Morris (2017) framework lacks a comprehensive and
well-documented publicly available software implementation at the time of writing.
A C++ and Matlab implementation called WFMM (Herrick, 2015) for conditionally
Gaussian functional responses with a limited feature set is publicly available.
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5 Discussion and outlook

This work provides an introduction into the general concepts of function-on-scalar
regression. Important practical considerations and best practices are outlined
for the most important modelling tasks. We hope that researchers can use this
work as a starting point for applying functional regression models to their
own data. Comprehensive R code for our running example is available in the
online supplement.

We concentrated on the semiparametric approach of Greven and Scheipl (2017a)
as this framework is rather flexible in terms of incorporating different types of
covariate effects, is applicable for both regular and irregular data with possible
missing values, and is accompanied by a flexible implementation of function-on-scalar
regression in the refund package. However, important differences regarding
practical aspects of the application of the existing function-on-scalar regression
frameworks are also outlined. Furthermore, current limitations like the
problem of accounting for phase variation and intra-functional correlation are
made clear.

As this work is mainly aimed at introducing the approach to those not familiar
with functional response regression and to offer advice on the correct application
of such methods, it should be clear that not all methodological aspects of functional
regression are covered. One crucial point we have not discussed is the use of functional
principal components (fPCs) as a popular alternative to using spline basis functions.
fPCs often lead to a very compact basis and nicely interpretable results. An overview
on fPC-based approaches is given in Wang et al. (2016). Note that functional residuals
and other functional random effects can be represented using fPCs as well in the
approach described here (cf. Greven and Scheipl, 2017a).

Finally, we look forward to the ongoing development of ready-to-use and robust
methodology for functional regression. Being both an important method for working
with complex data structures and a field where research is still needed for some
important aspects, functional regression stays one of the currently most exciting fields
of modern statistics.
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