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1. Introduction

1.1. Background and motivations

The field of many particle physics and the fundamental laws of nature hidden behind it
are fascinating. In condensed matter particles come together and form a solid leading to
emergent phenomena the single particles themselves did not exhibit. These include collec-
tive behaviours and elemantary excitations, e.g., of the electron density, which describes
the ensemble of all electrons in the system of atoms under consideration. Quantised fluc-
tuation of the electron density are called plasmon, while collective excitations of nuclei
lattice vibrations are called phonons and both can be found in a wide range of materials.
They influence the physical properties of materials and accommodate a lot of potential
for technological applications. [1]
A convincing way of investigating these many-particle effects is the examination of the

spectral function A(k, ω). The spectral function specifies the probability distribution
with which particles, here electrons, are in a state with the specific energy ω and a
certain momentum k. It can be obtained both experimentally and theoretically by angle-
resolved photoemission spectroscopy (ARPES) [2] and modern ab-initio calculations [3–
5], respectively. ARPES enables the direct measurement of the populated states of the
electronic band structure incorporating many-particle interactions. In this technique
electrons are photoemitted from a sample by the interaction with light pluses and are
measured angle- and energy-resolved. Since the electrons interact with the many-particle
system of the solid in the photoemission process, they take the information about the
system with them.
To quantify and understand the origin of the spectral function features obtained by

the experiment, theoretical descriptions of the photoemission process and the interaction
strength between the electrons and the different collective exciation’s are required. The
theoretical description and the actual computation of A(k, ω) for real materials has been
the topic of recent publications. [6–8] Findings include electron-plasmon and electron-
phonon coupling in TiO2 [9], EuO [10] and MoS2 [11], which can alter carrier lifetimes,
mobilities and the optical gap and could lead to custom-made optical and electronic
properties desired for electronic devices like nanoelectronics [12] and photovoltaics [13,
14].
A critical parameter in the exploration and exploitation of many-particle effects is the

level of the doping applied to the material. It determines which the scattering mechanism
responsible for hot-carrier relaxation is dominant in the doped material and could be
tuned to favor a certain type of interaction [4]. Though it brings forth a whole wealth
of many-particle phenomena, the effect of doping is hardly explored for all materials
interesting for technological applications. To enlighten this darkness a little bit, in this
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1. Introduction

thesis the material hafnium disulfide (HfS2) is studied rigorously.
HfS2 is a semiconductor that has favorable basic electronic properties for technological

application in electronic devises like transistors [15]. Furthermore it exhibits many-
body phenomena including the emergence of excitons [16] and plasmons [17]. Its polar
composition of Hf and S make it easy to dope and thereby possible to tune its physical
properties [18]. The motivation for the investigation of this specific material came with
the ARPES measurements conducted by the Rossnagel group of the Kiel University. In
the spectral function of the doped HfS2 measured by them, there is clear evidence for
many-particle interactions. Understanding origin of the spectral function features and
identifying the dominant type of the electron-boson coupling in this material is the aim
of this thesis. Thereby, the experimental data, which encodes the physical properties of
the material, is supposed to be reproduced as close as possible by ab-initio calculations.

1.2. Overview of the thesis

The thesis is organised as follows: in chapter 2, fundamental theories describing ground
state and excited state systems and their approximations enabling the computation of the
electronic, vibrational and emergent properties from first-principles are presented. These
include the Kohn-Sham density-functional theory (DFT) for ground state calculations
and its practical implementation using plane-wave pseudopotential methods. Further-
more, the basis of the linear response theory to account for collective charge density
excitations and their coupling to electrons in the framework of the random phase ap-
proximation (RPA) dielectric function is reviewed. Thereafter, the powerful and popular
ARPES technique for studying real quantum materials is reviewed and a short descrip-
tion of the measured ARPES photocurrent using Fermi’s golden rule and the momentum
conservation rules is provided. Lastly, the description of the spectral function using the
single-particle Green’s function and the cumulant expansion is outlined.
In chapter 3, the theory is applied to the calculation of pristine and doped bulk prop-

erties of HfS2 and the results are compared with the experimental findings in detail.
First, the class of transition-metal dichalcogenides (TMDs), the crystal structure of HfS2

and the basic procedure for every electron structure calculation are introduced. Then the
band structure and the influence of the van der Waals gap, the spin–orbit coupling (SOC)
and the band dispersion on the electronic and vibrational properties of HfS2 are inves-
tigated. The study of the n-type doped HfS2 follows thereafter. These begin with the
evaluation of the measurement data to determine the free electron density caused by the
doping and the calculation of the Fermi energy for this charge carrier concentration. The
electron-plasmon self energy and electronic smearing parameter η are illustrated com-
prehensively and finally the spectral function is examined. In that process, a simplistic
model for the interface dielectric function is formulated and its effect on the spectral
function features is quantitatively validated. In chapter 4, the findings are summarized
and an outlook is given concluding the thesis.
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2. Theory and Methods: First
principle description of
many-body systems

In the first-principles description, the physical properties of materials are determined
without the use of experimentally obtained external data. This description requires a
solid theoretical basis, with approximations only being made if they are justifiable and
do not misrepresent the true underlying properties of the material in question.
In this chapter, the theory and methods needed to understand and perform solid-

state calculation are discussed. Firstly, the basic electronic structure theory for the
calculations of the electronic properties of ground-state systems and concepts for its
numerical implementation are presented. With the information about the ground-state
system as a foundation, the interacting system and excited states can be described by
linear response theory. It enables the characterization of the dielectric function, the
formation of plasmons and the coupling between electrons and these excited states. The
emergence of plasmons and other types of bosonic excitations, like phonons, can be
verified by photoemission spectroscopy. Ultimately, the theoretical description of the
spectral function in the Fan-Migdal approximation of the electron self-energy and its
improvement in the description of satellite structures in photoemission spectra by the
cumulant expansion are outlined.

2.1. Electronic structure of solids

The greatest success for first-principles description was the formulation of the DFT [19].
It is the foundation of modern ab-initio calculations and, since the necessary computing
capacities have been available, it has become one of the most widely employed theoretical
approaches for the description of quantum materials. [20]

2.1.1. Density-functional theory

The starting point of DFT is the time-independent Schrödinger equation:[21]

ĤΨ(r, R) = EΨ(r, R), (2.1)

where Ĥ is the many-body Hamiltonian, Ψ the many-body wave function, E the
eigenenergy of the many-body state Ψ and r and R are collective coordinates which
encode the coordinates of all electrons and nuclei, respectively. In this general form the
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2. Theory and Methods: First principle description of many-body systems

Schrödinger equation has 3(NI+Nel) degrees of freedom withNI andNel being the number
of nuclei and electrons, respectively. Since it is not exactly solvable, the first major
approximation introduced is the adiabatic Born–Oppenheimer approximation (BOA). It
separates the electronic and nuclei degrees of freedom by stating that the many-body
wave function Ψ(r, R) is a superposition of the many-electron wave function ψν(r;R)
and many-nuclei wave function χν(R), expressed by:[22]

Ψ(r, R) =
∑
ν

ψν(r;R)χν(R). (2.2)

Here, ν is the state of the electronic sub-system. In the approximation it is assumed
that the electrons follow the motion of the nuclei adiabatically in absence of any type of
energy exchange by scattering processes. That seems to be a rather crude approximation
at first glance, but for the investigation of the ground-state (GS) of the system in the
zero temperature limit, it is appropriate to reduce the complexity of the problem to
3Nel degrees of freedom. By plugging the Ansatz of Eq. 2.2 into Eq. 2.1, the Schrödinger
equation of the many-electron system is obtained:

Ĥelψν(r;R) = Eνψν(r;R), (2.3)

with the electronic Hamiltonian given by:

Ĥel = T̂e + V̂ee + V̂en, (2.4)

where T̂e and V̂ee are the kinetic energy and the electron-electron interaction, respec-
tively. V̂en is the external potential acting on the electrons created by the nuclei. The
dependence of the many-electron wave function ψν(r;R) on R is parametric. The most
troubling term in this equation is the Coulomb (potential) interaction between the elec-
trons V̂ee, since it is accompanied by a double sum over all electrons and dependent on
two-particle coordinates:

V̂ee =

Nel∑
i,j=1
i 6=j

1

|r̂i − r̂j|
. (2.5)

For practical reasons, all formulas in this chapter are given in Hartree atomic units
(a.u.), in which the reduced Planck’s constant h̄, the electronic mass m, the elementary
charge squared e2 as well as Coulomb constant ke = 1

4πε0
are equal to one (h̄ = m = e2 =

ke = 1). In spite if the simplifications, the computational costs of the many-electron
Schrödinger equation 2.3 still increases exponentially with the number of electrons Nel

and quickly becomes too large to compute for any real system. In the 1960s, Hohenberg,
Kohn and Sham [19, 23] developed a method that reduced the computational effort to
a linear factor scaling with the number of electrons. This was achieved by establishing
a one-to-one correspondence between the ground-state wave function of the many-body
system ψGS and the electron density n. The density operator of a Nel-electron system is
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2.1. Electronic structure of solids

defined by:[24]

n̂(r) =

Nel∑
i=1

δ(r− r̂i), (2.6)

representing the electron density by delta functions, with r̂i being the particle position
operators. Using this definition the external potential created by the nuclei can be written
as:

〈ψ|V̂en|ψ〉 =

∫
ven(r;R)n(r)dr. (2.7)

Since V̂en is the only term depend on the nuclear coordinates R, it encodes the quantum
mechanical properties of the system, resulting in a one-to-one correspondence with the
electronic Hamiltonian Ĥel and the ground-state wave function ψGS.

That V̂en is a unique functional of the ground-state electron density nGS(r) is the
insight of the first Hohenberg-Kohn theorem. In other words, for each V̂en there is only
one corresponding electron density n(r). The consequence of the theorem is that any
quantity expressed by a functional of the ground-state electron wave function may also
be expressed as a functional of the electron density. The ground-state energy of the
system for instance can be written as:[23]

E[n] = F [n] +

∫
ven(r;R)n(r)dr, (2.8)

where F [n] is the density functional given by:

F [n] = 〈ψ|T̂e + V̂ee|ψ〉. (2.9)

Since T̂e and V̂ee only depend on the number of electrons (but not on the nuclear coor-
dinates) F [n] is a universal functional of the density n. Applying the variational principle
to eq. 2.8 (under the condition of the minimization of the density n(r)) Hohenberg and
Kohn proved that the total energy E[n] is minimized at the (N -electron) ground-state
density nGS(r), which came to be known as the second Hohenberg-Kohn theorem.

At this point, however, F [n] remains unknown due to missing information about the
ground-state wave function in kinetic energy Te and the density in the external potential
Ven. In 1965 Kohn and Sham proposed a method to reformulate the problem. The ap-
proach recasts the many-body Schrödinger equation into a set of single-particle equations
subject to a single-particle potential vKS called Kohn-Sham (KS) potential:[25]

vKS(r, [n]) = ven(r) + vH(r) + vxc(r, [n]), (2.10)

where vxc(r, [n]) is the single-particle exchange-correlation potential related to the
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2. Theory and Methods: First principle description of many-body systems

exchange-correlation energy by the variational principle:

vxc(r, [n]) =
δEXC[n]

δn
(2.11)

and vH(r) is the Hartree potential given by the integration of the electron density n(r′)
divided by the distance |r− r′| over real space:

vH(r) =

∫
dr′

n(r′)

|r− r′|
. (2.12)

The Hartree potential resembles the direct interaction between the electrons mediated
by the Coulomb force. To account for the full interaction between the electrons without
scattering events an additional indirect term is needed, which is incorporated in the
exchange part of vxc(r, [n]). Now Kohn and Sham showed that the ground-state electron
density nGS(r) of a real interacting system coincides with the electron density of an
auxiliary single-particle non-interacting system in the local external potential vKS(r, [n]).
A physical intuition that supports this claim without providing a mathematical proof is
the unique relation between the external potential V̂en and the electron Hamiltonian Ĥel.
The reduction of the Hamiltonian operator ĤKS to a simple sum of single-particle

operators hKS
i makes the key difference in this approach. The single-particle Schrödinger

equation, known as the KS equation, obtained by this considerations, is given by:[19][
−∇

2

2
+ vKS(r, [n])

]
ϕKS
i (r) = εKS

i ϕKS
i (r), (2.13)

where ϕKS
i (r) and εKS

i are the KS orbitals and energies, respectively. Eq. 2.13 must be
solved iteratively with the expression for the ground-state electron density given by:

nGS(r) =
N∑
i=1

|ϕKS
i (r)|2. (2.14)

Together the equations 2.10; 2.13 and 2.14 form a set of self-consistent equations yield-
ing the exact electron density of the true ground-state system. But since the exchange-
correlation potential vxc(r, [n]) is unknown analytically, it needs to be approximated, for
example by quantum Monte Carlo simulations. The iterative solving procedure is de-
picted in Fig. 2.1. First, an educated initial guess of the electron density ñ(r) is made.
With that density the KS potential and equation are solved, obtaining the KS single
particle orbitals ϕKS

i (r). These are then used to calculate a new electron density n(r). If
this density n(r) is equal to ñ(r) the self-consistent loop is closed and the density is put
out. If they are unequal the density is updated and the loop repeated until the densities
are self-consistent.

However, the approximate nature of the exchange-correlation potential is not yet taken
into account and influences the accuracy of the calculated electron density. The most
well-known approximations are the local density approximation (LDA) [26] and the
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2.1. Electronic structure of solids

KS potential: vKS(r, [ñ])Guess: ñ(r)

Solve KS eq.:[
−∇2

2
+ vKS(r, [ñ])

]
ϕKS
i (r) =

εKS
i ϕKS

i (r)

Calculate electron density:
n(r) =

∑N
i=1

∣∣ϕKS
i (r)

∣∣2

Self-
consistent

Update:
n(r) = ñ(r)

return: n(r)

Yes

back

No

Figure 2.1.: Flow diagram to solve the Kohn-Sham equation.

generalized gradient approximation (GGA) [27]. In the LDA the homogeneous elec-
tron gas (HEG) model is used to approximate the exchange-correlation energy. The
HEG model describes a system of interacting electrons with a homogeneous positively-
charge background (jellium) keeping the system neutral and will be discussed in greater
detail in section 2.2.1. When the model is applied, the exchange part of vxc(r, [n]) can be
formulated as an analytic expression of the exchange energy per particle as a functional
of the electron density given by:

εLDA
x [n] = −3

4

(
3

π

) 1
3

n(r)
1
3 . (2.15)

In that approximation, the correlation energy is obtained by quantum Monte Carlo
methods and the interpolation of the exact high- and low-density limits. The accuracy
of the LDA for metals and sp-bonded semiconductors is already quite impressive, but
for systems with highly-localised electronic states, such as d- and f -electron systems, it
is not accurate, since they tend to exhibit inhomogeneities in the density. Problems of
the LDA are inter alia no consideration of the van der Waals interactions. Overall it is
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2. Theory and Methods: First principle description of many-body systems

a good, but not a perfect approximation.
An appropriate step beyond the LDA is the gradient expansion of the density, already

suggested by Hohenberg and Kohn 1964. [23] In that model the electron density n(r)
is given by a uniform part n̄ and a weak and slowly varying density modulation δn(r)
in space (n(r) = n̄+ δn(r)). A concrete formulation of the GGA based on this gradient
approach was first achieved in 1980 by Perdew and Langreth [28] and was later optimized
by Perdew, Burke and Ernzerhof (PBE) [29]. In addition, a wide range of GGAs have
been formulated over the years [30]. The general form of the exchange-correlation energy
functional in these GGAs takes the following:

EGGA
xc [n↑, n↓] =

∫
drf(n↑(r), n↓(r),∇n↑(r),∇n↓(r)), (2.16)

with ↑ and ↓ indicating the spin of the electron density. The function f in this equation
takes several forms depending on the GGA. In the GGA a real space cutoff is employed to
assure the physicality of the approximation by reinstating the correct sum rules and the
right properties of the system. In the derivation by PBE, f is entirely expressed though
fundamental constants. The strength of the GGA lies in the description of molecules and
their dissociation energies and in some cases the overestimation of the binding energies
in the LDA is reduced by a factor of 5. A comparison between the dissociation energies
of selected number of molecules in the LDA and GGA is shown in Tab. 2.1.

Molecule ∆ELDA ∆EGGA ∆Eexp

H2 4.90 4.55 4.73

LiH 2.60 2.25 2.51

CH4 20.0 18.2 18.2

NH3 14.6 13.1 12.9

OH 5.38 4.77 4.64

H2O 11.6 10.15 10.06

N2 11.6 10.5 9.93

O2 7.59 6.24 5.25

F2 3.38 2.30 1.69

Table 2.1.: Energies for the dissociation of molecules in eV.[29]

2.1.2. Numerical methods

The focus of the discussion up to this point has been the isolated electronic system.
Since the systems under consideration are extended solids, the number of electrons and
nuclei approaches the Avogadro number. But their periodicity can be used to reduce

8



2.1. Electronic structure of solids

the problem to a single unit cell in most cases. This is achieved by exploiting the
translational symmetry within the crystalline solids, so that the periodic KS-potential is
the same upon shifts by the lattice vector R (vKS(r) = vKS(r+R)). According to Bloch’s
theorem [31] the eigenfunctions solving these single-particle Schrödinger equations, such
as the KS-equation 2.13, are given by Bloch wavefunction of the form:

ψn,k(r) =
1√
Np

un,k(r)eik·r, (2.17)

where n denotes the band index, k the momentum within the first Brillouin zone
(BZ), Np the number of the unit cell and un,k(r) a periodic function with the same
periodicity as the crystal lattice. Due to its periodicity, it is sufficient to study the
most compact primitive cell of the lattice, the first BZ, using Born-von-Karman (BvK)
boundary conditions. They allow the treatment of an extended periodic system by a
BvK supercell that is constructed out of multiple unit cells, with the reciprocal volume
of the system given by Ω = NpΩp. Since any periodic function can be expanded as a
Fourier series, the eigenfunction can be written as:

ψn,k(r) =
1√
NpΩp

∑
G

cn,k(G)ei(k+G)·r, (2.18)

with the reciprocal lattice vector G and the plane-wave coefficients cn,k(G). Note that
the eigenfunction described in Eq. 2.18 is taken for a specific band n and momentum k.
In computation, these states ψn,k(r) are calculated for a finite number of k-points given
a discrete set of eigenstates. Intrinsic properties of the crystal given in “per unit cell” are
averaged over the sum of k divided by the number of k-points. In the limit of infinitely
many k-points, the grid becomes a dense continuum and the eigenvalues εn,k become
continuous bands.
Using the plane-wave coefficients cn,k(G) the KS equation 2.13 in the plane wave

expansion can be expressed in reciprocal space:[30]∑
G′

[
|k + G|2

2
δG,G′ + vKS[n](G−G′)

]
cn,k(G′) = εn,kcn,k(G) (2.19)

Due to computational limitations, the number of G vectors considered in the calcula-
tion needs to be truncated using a kinetic energy cutoff:[32]

|k + G|2

2
≤ Ecut (2.20)

That way only G vectors evaluated for each k-point below a certain kinetic energy
cutoff are considered in the series. The higher Fourier components are neglected, mak-
ing a preliminary investigation of this parameter by convergence tests necessary (in any
plane wave code).

The plane wave method of the KS equation 2.19 enables a conveniently simple frame-
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2. Theory and Methods: First principle description of many-body systems

work to describe the eigenfunctions, while they are smooth (and slowly varying). How-
ever, to treat the core electrons near the atomic nuclei correctly, a large number of
Fourier components would be required, because the eigenfunctions exhibit nodes in that
region. Since the core electrons are bound to the atomic nuclei and therefore chem-
ically inert, they do not contribute much to the physical and chemical properties of
materials. It is reasonable to describe them together with the nuclei using a (so-called)
pseudopotential (PP), in which the core electrons are fixed and the bare nuclei potential
is replaced by a screened effective potential. Together with the plane wave formalism,
this concept made the calculation of material properties affordable and is the reason why
they are so popular today. [33] There has been much development in the construction
of PPs, from empirical screened PPs [34] to modern self-consistently screened ab-initio
ones [35].

An important feature of useful PPs is their transferability. An ideal pseudopotential
of an element would be able to describe a single atom, molecular arrangements, as well
as its solid state form in a compound (bulk crystals) [36]. But there are limits in their
description of the all-electron wavefunction (including the core electrons). Since the PP is
supposed to be smooth it should not have any nodes, which lead to wiggles in the pseudo-
wavefunction. In real space, the outermost node of the wave-function is therefore the
natural limit of approximation. To reach this limit as closely as possible an ionic cutoff
radius rc is introduced. Outside this cutoff, the pseudo-wavefunction and the all-electron
wavefunction should coincide, while inside the pseudo-wavefunction is smooth.

A class of widely used pseudopotentials are called norm-conserving potentials. Al-
though the wavefunctions inside the ionic cutoff radius are not the same, the charge they
enclose must be equal, leading to the condition that their norm must be conserved even
within the radius rc: [37]∫ rc

0

dr|uPP
nl (r; εPP

nl )|2=

∫ rc

0

dr|uAE
nl (r; εnl)|2. (2.21)

This condition is imposed for the radial wavefunctions leading to replacement of vec-
torial momentum k by the quantum number l of the angular momentum. PP and AE
indicate the association to the pseudopotential and all-electron, respectively. A last
(and obvious) requirement is that the valence AE and PP eigenvalues must be equal
(εPP
nl = εAE

nl ). The use of radial wavefunctions in the context of electron structure cal-
culations is the approximation and simplification that the screening (of the nuclei) is
spherical, which leads to the formulation of the radial KS equation:[19][

−1

2

d2

dr2
+
l(l + 1)

2r2
+ v(r, [ρ])− εnl

]
(runl(r)) = 0. (2.22)

Together with the equation for the one-electron potential:

v(r, [ρ]) = −NZ

r
+ vH(r, [ρ]) + vxc(r, [ρ]), (2.23)

10



2.2. Interacting systems and excited states

and the radial electron density:[5]

ρ(r) =
1

4π

∑
n∈occ

n−1∑
l=0

fnl

∣∣∣∣unl(r; εnl)r

∣∣∣∣2 . (2.24)

the radial KS equation 2.22 builds a set of self-consistently solvable equations. Here,
NZ is the number of elementary charges of the nucleus and fnl the probability of finding
an electron in the state n, l given by the Fermi-Dirac distribution. To obtain a smooth
transition at rcut the logarithmic derivatives and the first energy derivatives of the loga-
rithmic derivatives of the all-electron and pseudo wavefunctions must agree. Further work
dealing with muffin-tin spheres and linear augmented planewaves (LAPW) is detailed in
[30, 32, 33, 35].

2.2. Interacting systems and excited states

Interacting particle systems and excited states are quantum many-body problems and
need to be treated in a suited framework. They arise from many-particle interactions and
depending on the types of excitation different formalism’s and approximations are useful
to approach them. For the description of the polarization of a medium and collective
behaviour of electron gas, the dielectric function in the so-called RPA is quite convincing.
In this section a derivation of this quantity from the general response function is sketched.

2.2.1. RPA dielectric function and plasmons

The dielectric function is a complex object describing the dielectric response of a mate-
rial to perturbations, e.g., the interaction with light. It includes information about the
polarization of the medium due to external, but also internal excitations. Knowledge
of the full dielectric function enables the understanding of the electronic system and its
response to perturbations.

The coupling of a time-depended external potential, for example an electric field, to
the electron gas can be expressed in the following way:∫

Vext(r, t)n̂(r)dr, (2.25)

with n̂(r) being the electron density operator introduced in Eq. 2.6. This external
potential sets in after a initial time t0, and it is assumed that the system is in the ground
state beforehand. For small field strengths it is sufficient enough to evaluate the linear
response of the system leading to a polarization that is proportional to the field strength.
The unitary time-evolution operator corresponding to this linear response theory is given
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2. Theory and Methods: First principle description of many-body systems

by:[24]

Û1(t, t0) = e−iĤ(t,t0)

[
1̂− i

∫ t

t0

B̂(t′ − t0)F (t′)dt′
]
. (2.26)

Where Ĥ(t, t0) is the Hamiltonian of the system and B̂(t′−t0) corresponds to n̂(r) and
F (t′) to Vext(r, t) in first order. The repercussion of the perturbation can be described
by the retarded linear response function:

χAB(τ) = −iΘ(τ)〈[Â(τ), B̂]〉0. (2.27)

Here, Â and B̂ are time-depended operators under the influence of the after-effect of
the perturbation at times τ ≡ t− t′ > 0. [Â, B̂] is the commutator of the two operators
and 〈...〉0 the average of the equilibrium of the system. The Heaviside step function
Θ(τ) is zero for τ < 0 and τ > 1. χAB(τ) is called retarded or also causal since it
describes the after-effect of the perturbation ensured by Θ(τ). In the description of the
exact eigenstates |ψn〉 the Fourier transform, known as the Lehman representation, of
the response function takes to form:[24]

χAB(ω) =
∑
nm

Pm − Pn
ω − ωnm + iη

AmnBnm, (2.28)

with a positive infinitesimal η → 0+ and the population probability:

Pn =
e−βEn

Z
, (2.29)

where β = 1/(kBT ) is the inverse thermal energy and Z =
∑

n e
−βEn is the canonical

partition function. In the zero-temperature limit the population probability is equal to
one (Pn = 1) in the ground-state (at n = 0), while all the other states are zero (Pn = 0).
In the complex plain χAB(ω) is analytic in the upper part and exhibits simple poles in the
lower half of the equation. Further specifying Eq. 2.28 one can express the density-density
response function in a periodic potential by:

χnn(q, ω) =
1

V
χnqn−q(ω) =

1

V

∑
nm

Pm − Pn
ω − ωnm + iη

|(n̂q)nm|2. (2.30)

Where the density fluctuation operator at the wave vector q is given by:

n̂q =
∑
j

e−iqr̂j , (2.31)

and V being the volume of the system under consideration. In the non-interacting
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2.2. Interacting systems and excited states

electron picture this density-density response function can be written as:

χ0(q, ω) =
1

V

∑
k

nk−k+q

ω + εk − εk+q + iη
, (2.32)

In the denominator of the equation there is no sign of energy loss due to scattering
and excitation events since the electrons are independent, which is expressed by the zero
in the subscript of the χ and the spin orientation is neglected. Eq. 2.32 is also called
the Lindhard function, which becomes purely real in its static limit (w = 0) since the
denominator only vanishes simultaneously with the nominator the positive infinitesimal
η is not required any more.
On the basis of this independent electron model, the interacting electron liquid can

now be described. The linear response function of the interacting system enables the
understanding of various many-body phenomena like screening effects, collective (mode)
excitations and quasiparticle properties, e.g., effective masses.
A prominent property is the screening of an additional coulomb field Vind for example

created by an impurity of an external fast-moving electron. The screened scalar potential
W resulting from such a perturbation is given by the summation of the external field
Vext and the induced field Vind, which takes the form of a Hartree potential (see Eq. 2.12)
with the electron density being replaced by a time-dependent induced density nind(r, t) =
n(r, t)−n(r). The screened scalar potentialW can be expressed in terms of the dielectric
function ε as well. In the case of the HEG their relation is:

W (q, ω) =
Vext

ε(q, ω)
. (2.33)

In the case of Vext representing the bare Coulomb interaction vq, W (q, ω) would there-
fore be the screened Coulomb interaction. The dielectric function ε(q, ω) is closely related
to the density-density response function χnn(q, ω) and incorporates the induced field Vind.
Since the dielectric function is an observable (measurable by experiment), as the electron
density, there is a high interest in its exact theoretical description and the approxima-
tions enabling its calculations (from first-principle). A very successful approximation is
the RPA, since it properly describes the emergence and collective behaviour of plasmons.
The dynamic dielectric function in the RPA is given by:

εRPA(q, ω) = 1− vqχ0(q, ω). (2.34)

The most intuitive way of explaining the RPA is a diagram technique of the interactions
taking place in a medium. In Fig. 2.2(a) the so-called Feynman diagram of a single-
fermion closed loop is presented. The wiggly lines represent the Coulomb interaction
while the vertex with the arrows is a polarization bubble. The point at which the left
wiggly line meets the bubble depicts a scattering event in which an electron-hole pair is
created. The upper part of the bubble features the propagation of the electron, while the
lower part features the propagation of the hole, respectively. The point at which the right
wiggly line starts at the bubble depicts the annihilation of the electron-hole pair. The
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2. Theory and Methods: First principle description of many-body systems

(a) (b) (c) (d) (e)

Figure 2.2.: Feynman diagrams of single- and double-fermion closed loops. The wiggly lines
represent the Coulomb interaction while the vertex with the arrows are polarization bubbles.[6]

vertex is called polarization bubble since it describes the polarization of the medium by
the electron-hole pair. Many more excitation processes in the medium could be imagined
such as those shown in Fig. 5.10. The interaction diagrams depicted in that figure describe
multi scattering events. Fig. 2.2(b) is similar to Fig. 2.2(a) with the difference that an
interaction is taking place between the electron and the hole. Fig. 2.2(c+d) are exchange
energy diagrams that are related to the self-energy of the (virtual) particles created during
the polarization. The last Fig 2.2(e) is a continuation of the single polarization bubble
of Fig 2.2(a) with two bubbles and the Coulomb interaction line between them. Hence
it is a repetition of the single bubble polarization diagram. The RPA is the summation
of all single bubble polarization diagrams, neglecting the other multi scattering events
(like the ones presented in Fig. 2.2(b-e)) and leads to Eq. 2.34, which includes electron-
hole interaction. As already mentioned, the most distinctive property of RPA is the
description of charge-density fluctuations by collective bosonic excitations. The plasmons
thus arise from the interacting electron liquid. Their dispersion and the electron-hole
excitation in the HEG case can be illustrated using the loss function:[38]

L(q, ω) = Im ε−1
RPA(q, ω) (2.35)

The HEG model provides a convenient way to phenomenologically understand the
satellite features appearing in the spectral function of the photoemission measurements .
It denotes a system of electrons interacting with a homogeneous positively background,
that maintains charge neutrality. The electronic correlation between electrons and plas-
mons is treated via an independent boson model, which can be precisely determined for
a localized electron interacting with a plasmon bath. [39]

The loss function arising from this model is presented in Fig. 2.3. Here the energy and
momentum are given in units of the plasmon energy ωpl and the Fermi momentum kF.
The loss function describes the possible energy transfer of the electrons through band
transitions. The parabolic nature of the model is recognisable because the momentum
transfer of ∼ 2kF takes this form towards higher energies. It represents electron-hole
excitations within the band. The interesting feature of the plot is the small band at
the plasmon energy, which describes an energy transfer of ωpl without momentum being
transferred corresponding to a vertical interband transition of an electron in the band
model. This energy transfer leads to the formation of a plasmonic polaron band red-
shifted by the plasmon energy. The condition for its emergence follows from the dielectric
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2.2. Interacting systems and excited states

Figure 2.3.: Loss function of the homogeneous electron gas calculated for a Wigner-Seitz radius
of rs =22 a u corresponding to a free electron density of n = 1.475 · 1020 cm−3. The energy
(momentum) is given in units of the plasmon energy ωpl (Fermi momentum kF), respectively.

function being equal to zero (ε [q, ωpl(q)] = 0). For momenta (q = 0) in this condition,
the plasmon frequency can be obtained. In the HEG model it is given by:

ωHEG
pl =

√
4πn

m
, (2.36)

with the electron density n and the electron mass m.
Since the electrons in the conduction band of n-typed doped semiconductors can be

considered as nearly free particles with a modified effective mass and a screened Coulomb
interaction, due to the presents of further charge carriers, the consideration of the HEG
is useful as a basis for the treatment of conduction band electrons.

2.2.2. Computation of the electron-boson coupling

The Hamiltonian describing electron-boson interaction is given by:[6]

Ĥe−b =
∑
nmν

∑
k,q

ge−b
nmν(k,q)ĉ†mk+qĉnk(b̂qν + b̂†−qν), (2.37)

with the band indices n and m, the bosonic modes ν and the electron k and boson
q momenta. ge−b

nmν(k,q) denotes the electron-boson coupling matrix elements, ĉ†mk+q

and ĉnk the electronic (fermionic) and b̂†−qν and b̂qν the bosonic creation and annihilation
operators. In the notation of the second quantisation, they allow a simpler formulation of
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2. Theory and Methods: First principle description of many-body systems

Figure 2.4.: Diagrammatic representation of the electron-plasmon scattering process.[4]

the Hamiltonian and stand for the creation or annihilation of a particle in a specific state
and with a certain momentum. Using many-body perturbation theory the electron-boson
self-energy can be calculated. In the so-called Fan-Migdal approximation the electron-
boson self-energy takes the form:[3]

Σe−b
nk =

∫
dq

ΩBZ

∑
mν

|ge−b
mnν(k,q)|2

[
nqν + fmk+q

εnk − εmk+q + ωb
qν + iη

+
nqν + 1− fmk+q

εnk − εmk+q − ωb
qν + iη

]
, (2.38)

where ΩBZ is the BZ volume in reciprocal space, m and n are band indicies, k and q
are Bloch wave vectors, n denote the Bose-Einstein and f the Fermi-Dirac distribution,
ε are the KS eigenstates, ωb

qν is the boson frequency and η is a positive infinitesimal.
The integral runs over the BZ volume. The first term represents the photoexcitation
of an electron via absorption of a boson +ωb

qν , while the second term includes photo-
holes and the emission of a boson −ωb

qν . The poles of the self-energy, found where
the denominator (of the fraction) vanishes, lead to the emergence of additional satellite
structures in the spectral function due to bosonic excitations. In the case of electron-
plasmon coupling, the ν is dropped since a single plasmon mode is considered which
boson frequency corresponds to the plasmon energy ωpl

q . At this point, the focus of
this theory section is put on electron-plasmon coupling, since this type of interaction is
typically dominant for high free electron density.[39]
The expression for the electron-plasmon scattering matrix elements in the framework

of the GW approximation is given by:[39]

ge−pl
mn (k,q) =

[
∂ε(q, ω)

∂ω

∣∣∣∣
ωpl
q

]− 1
2 (

4π

ΩBZ

) 1
2 1

|q|
〈ψmk+q|eiq·r|ψnk〉. (2.39)

Here, ΩBZ is the BZ volume in reciprocal space, ε is the dielectric function in de-
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2.3. Photoemission signatures of plasmonic polarons

pendence on the Bloch wave vector q and the frequency ω and 〈ψmk+q|eiq·r|ψnk〉 gives
the transition probability for a scattering process from an initial state nk to a final
state mk + q. The singularity in electron-plasmon matrix element 1

|q| indicates that the
long-wavelength plasmons are dominant in the coupling process.
In Fig. 2.4 the electron-plasmon scattering process characterized by the electron-plasmon

scattering matix element is presented in a diagrammatic way. An electron with the ini-
tial momentum k is scattered into a final state k − q while exciting a plasmon with
momentum q in the process.
The tricky part in the computation of Eq. 2.39 is the assessment of the dielectric func-

tion, since it requires a rather fine k-point sampling of the BZ when treating doped ma-
terials. To find an approximate description for the matrix coupling elements a parabolic
band model for the bottom of the conduction band is introduced. Since the Fermi en-
ergy in doped systems is usually located less than 0.1 eV above the conduction band
minimum (CBM), this approach is appropriate and allows the total dielectric function
of doped systems εD to be written like:

εD(q, ω) = 1− v(q)[χI(q, ω) + χHEG(q, ω)]. (2.40)

Here χI is the electron response function of the intrinsic (undoped) system in the
framework of the RPA and χHEG the polarizability of the HEG, which matches the free
electron density and effective electron mass of the material in question.
For small (crystal) momenta q → 0 the derivative term in Eq. 2.39 can be rewritten

to achieve better numerical stability, the transition probability 〈ψmk+q|eiq·r|ψnk〉 can be
approximated by a delta function δnm and the intrinsic dielectric constant approximately
equals the high-frequency dielectric function εI(q, 0) ' ε∞. These approximations come
at the cost of treating the various bosonic excitations possible in the medium separately,
disabling for example the consideration of plasmon-phonon and plasmon-phonon polari-
ton coupling effects. If one wants to look at relaxation processes in a time-resolved
manner, this limitation would be more important, but for this work it is sufficient. Using
this approximation the electron-plasmon matrix elements can be reformulated by: [9]

|ge−pl
mn (k,q)|2= δnm

v(q)ωpl(q)

2ΩBZ

[
1

ε∞ − εHEG(q) + 1
− 1

ε∞

]
,

with the dielectric function of the HEG in the static Lindhard model [40] is εHEG(q) =
1− v(q)χHEG(q, 0). This way the matrix elements can be calculated from first-principle
using quantities available from previous computations of the pristine system. To make
qualitative comparisons with experiment, the free electron density used in the simulation
must reflect the one of the real sample.

2.3. Photoemission signatures of plasmonic polarons

In the theoretical description of photoemission spectra the quasiparticle picture is com-
monly used, since is refers to effective single-particle states. In this concept a particle,
like an electron, is described together with its interaction with the many-body system and
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2. Theory and Methods: First principle description of many-body systems

therefore exhibits modified physical properties like a different effective mass or charge.
The description of collective excitations, like plasmons and phonons, as quasiparticle can
also simplify the computational cost of the many-body problem. The lifetime of these
exications and the quasiparticle behaviour is contained in the imaginary part self-energy,
presented in Sec. 2.2.2 for the case of electron-boson coupling. The real part of the self-
energy, on the other hand, represents a contribution to the particle’s energy due to its
interaction with the many-body system.
The quasiparticle concept can be embedded into a Green’s function formalism in-

troduced in the later part of this section. The single-particle Green’s function can be
connected to single-particle excitation spectra obtained by ARPES measurements via
the spectral function. First of, the ARPES technique and processing of measured data
is discussed, to get a physical intuition for the emission process and the quasiparticle
properties the photoemitted electrons exhibit.

2.3.1. Angle-resolved photoemission spectroscopy (technique)

Figure 2.5.: Classical setup of a angle-resolved photoemission spectroscopy experiment including
a synchrotron light-source (here an undulator), an assembly of mirror and plane gratings and a
hemispherical analyzer.[2]

The classical setup of the ARPES is depicted in Fig 2.5. The highly brilliant, tuneable,
polarized and pulsed radiation needed for the measurements is created in a synchrotron
light source, for example, an undulator or a free electron laser. In the later, the electrons
are forced on a wiggle path leading to a self-induced mircobunching of the electrons.
Due to the synchronization all electron emit photons of the same energy that entail the
positive properties of the light used in the experiment. For the light to end on the
sample an assembly of mirrors and lenses is calibrated. The important modification in
this step is the monochromatisation of the light by diffraction gratings and the focusing
of the beam in size and onto the sample by lenses and slits. The electrons emitted
from the sample by the photoelectric effect are focused by an electrostatic lens and
enter the hemispherical analyzer by a slit. The analyzer sorts the electrons by their
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2.3. Photoemission signatures of plasmonic polarons

energy and angular momentum, respectively. After passing the analyser, the electrons
end up on a detector, for example a charge-coupled device (CCD) screen. The ARPES
measurement technique enables one to directly measure the quasiparticle band structure
under the assumption of the sudden approximation, in which the electrons are emitted
from the sample instantaneously and encode the information about the excited many-
body system. In advanced setups the analyzer along with the detector can be rotated
around the sample, or else the sample itself can be rotated. There are also experimental
setups with higher data rates that can perform time-of-flight measurements [41].
The photocurrent triggered by the electrons on the detector can be described by the

following equation:[42]

Iphot(kf , E) ∝
∑
i

|M̃fi|2

[Re kf⊥ − ki⊥]2 + [Im kf⊥]2
δ(kf‖ − ki‖)Ai(kf , E)f(E). (2.41)

Here, i and f are the initial and final states, f(E) is the Fermi-Dirac distribution,
Ai(kf , E) is the spectral function and M̃fi are the optical transition dipole matrix ele-
ments that are not accounted for by the momentum conservation. The k‖ components
of the photoelectron momenta are conserved by translation symmetry. But since the
perpendicular component ki⊥ is not preserved due to a lack of translation symmetry, a
quasi-preservation is introduced resulting in an imaginary part in this momentum com-
ponent. This can be viewed like the imaginary part of the self energy from equation 2.38
in section 2.2.2. The quasi-preservation is achieved via the reformulation of the transition
probability for the initial state i to the final state f in the dipol approximation given
by |〈f |Aeff · ∇Veff |i〉|2 ∝ |1/(1− exp i(kf⊥ − ki⊥)a⊥|2 ∝ 1/

(
[Re kf⊥ − ki⊥]2 + [Im kf⊥]2

)
,

where Aeff is an effective vector potential that contains many-body screening effects and
Veff is the effective crystal potential.
Equation 2.41 underlies the fundamental conservation laws of physics for energy and

momentum. The basis for the description of photoelectrons and their quantum nature
was laid by Einstein in 1905 with the equation for the photoelectric effect given by:[43]

Ekin = hν − φ− |EB|, (2.42)

with Ekin being the kinetic energy of the electron after the emission process, φ denotes
the material work function and EB the binding energy. The incident photon energies hν
used in ARPES experiments are relatively low and lie within the ultraviolet spectrum in
the range of 20 − 100 eV. In this energy range, a better energy and pulse resolution is
achieved, which comes at the price of a short mean free path length of a few angstroms.
[44] That is important to keep in mind for the subtraction of a secondary electron back-
ground from the experimental data and to account for the experimental broadening. In
subsection 2.3.1 equations to deal with these issues will be introduced.
The momentum conservation of the parallel component k‖ can be expressed more

specifically by:

ki‖ = kf‖ =

√
2m

h̄2 Ekin sinϑ

(
cosϕ
sinϕ

)
, (2.43)
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with ϑ and ϕ being the polar and the azimuth angles of the sample not to be confused
with the Θ and Φ the angles of the spectroscope system. The relation between them is
of geometric nature and is given by cosϑ = cos Θ cos Φ and tanϕ = sin Φ/tan Θ. The
geometry of the photoemission spectroscopy is schematically shown in Fig. 2.6(a).
The spectral function Ai(k, ω) can also be expressed in terms of Fermis golden rule:[2]

Ai(k, ω = hν − Ekin) =
∑
m

∣∣〈ψN−1
m |ck|ψNi 〉

∣∣2 δ(ω + EN−1
m − EN

i ). (2.44)

Since the photoelectron is removed from the sample the initial N -particle system is
left in an excited (N − 1)-particle state m. Thus ψNi is the N -body wave function of
the initial state i, ck is the annihilation operator for the momentum k and ψN−1

f the
wave function of (N − 1)-body system. Their absolute value squared is the probability
for this excitation process (the removal of an electron from the state i and leaving the
(N − 1)-particle system in the excited state m).

Figure 2.6.: Schematic sketch of the photoemission geometry (a). Spectral function of a non-
interacting electron system in the in vicinity of the Fermi energy EF (b). Spectral function of a
Fermi-liquid (c)left and photoemission spectrum of gasoues (solid line) and solid (dashed line)
hydrogen H2 (c)right.[2, 45]

In the non-interacting electron picture the electron would be emitted without the
system being effected and therefore not being excited. In that picture all of the transition
probabilities

∣∣〈ψN−1
m |ck|ψNi 〉

∣∣2 will be zero except for the one corresponding to eigenstate
m0 of the N -particle Hamiltonian leading to a collapse of the spectral function to a Dirac
delta function of the form A(k, ω) = δ(ω+EN−1

m0
−EN

m0
). The resulting spectral function

A(k, ω) for different momenta k is depicted in Fig. 2.6(b). The occupation of the states
in that context is given by the Fermi-Dirac distribution in the zero temperature limit.
That is, all states until the Fermi energy EF are filled completely in agreement with the
Pauli exclusion principle and all states above that energy are empty.
In the real interacting system, however, multiple transition probabilities

∣∣〈ψN−1
m |ck|ψNi 〉

∣∣2
will be different from zero leading to excited states, as shown in Fig. 2.6(c). In the quasi-
particle picture it is reasonable as well, since the photoelectron was screened and part of
a larger quasiparticle. Upon its removal various higher states corresponding to bosonic
excitations like phonons, plasmons and magnons (spin states) can be stimulated de-
pending on their coupling strength to the electron, as discussed in section 2.2.2. These
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excitations are reflected by multiple satellite peaks in the spectral function correspond-
ing to the number of excited states m induced during the photoemission process. In the
lower right of Fig. 2.6(c) a schematic photoelectron spectrum of molecular hydrogen H2

is shown. The solid line shows the spectrum of the gaseous phase with a quasiparticle
peak at 6.8 eV and several satellite peaks that can be assigned to different vibrational
states of the molecule and the dashed line represents the spectrum of solid hydrogen.
Due to its more limited rotational and vibrational degrees of freedom, the satellite peaks
merge into a continuum. The shift of the quasiparticle peak due to the phase transition
can be attributed to a change in the quasiparticle properties, namely its mass.

Secondary electrons and finite-resolution effects

Due to the short mean free path length of the photoelectrons in the crystal there is a
probability for inelastic electron scattering that should not be neglected. In these scatter-
ing events no collective boson modes are excited, but other electrons in the bands. The
scattered electrons have lower energies and are called secondary electrons. They occur in-
advertently in photoemission experiment and must be taken into account when analysing
the data. A convenient way of doing so for satellites in photoemission spectroscopy is the
construction and subtraction of a so-called Shirley background from the measurement
data.[46] It is achieved by integrating the measured intrinsic spectral function Ã(ω′) up
to the chemical potential µ: [47]

B(ω) =

∫ µ

ω

dω′Ã(ω′),

whit B(ω) is the background of the secondary electrons and subtracting it from the
spectral function:

A(ω) = Ã(ω)− βB(ω).

Here β is a parameter to renormalize the background intensity. This method makes
the satellite features more visible and the calculations match the measurements (much)
better.
The other issue to be tackled is the finite energy- and momentum-resolution of the ex-

perimental setup. It is individual to each ARPES setup and work is ongoing to minimise
this error constantly. A possible way to account for this finite-resolution effects is by
appyling a gaussian-convolution to the calculation in the post-proccessing of the data.
This could, for instance, be achieved using the following equation for the photocurrent
I(k, ω):[2]∫

dω̃M0(k̃, ν,Aeff)f(ω̃)A(k̃, ω̃)R(ω − ω̃)Q(k− k̃) + βB, (2.45)

with M0(k̃, ν,Aeff) denoting all the optical transition matrix elements including the
ones with the momentum conservation. Further R(ω− ω̃) is the Gaussian for the energy
resolution and Q(k− k̃) the distribution function assumed for the momentum solution,
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respectively. Since Q(k− k̃) is usually more complex than a Gaussian distribution, the
finite momentum-resolution is not applied to the calculated data in this thesis.

2.3.2. Spectral function and cumulant expansion

As stated in the beginning of the section, ARPES provides the possibility to gain direct
access to the single-particle Green’s function of the (N -particle) system. That is why
the Green’s-function formalism [48] is a powerful approach in the description of photoe-
mission spectra. In the Lehmann representation the retarded Green’s-function is given
by: [6]

G(k, ω) =
∑
m

∣∣〈ψN−1
m |ck|ψNi 〉

∣∣2
ω + EN−1

m − EN
i + iη

(2.46)

The imaginary part of the Green’s function is the spectral functionA(k, ω) = −(1/π) ImG(k, ω),
which directly relates to the photoelectron current measured in ARPES. The addition
of an electron could also be included in Eq. 2.46 by adding a similar fraction with the
following denominator ω − [EN+1

m − EN
i ] − iη to the equation corresponding to the in-

verse photoemission process. In the inverse case, the infinitesimal η is subtracted to
resemble an empty band attributed to the advanced Green’s function. But since stan-
dard photoemission is discussed in this thesis the focus is put on the retarded Green’s
function.
The Green’s function is closely related to self-energy Σ(k, ω) introduced in section 2.2.2.

The relation can be expressed in the form of a Dyson’s equation:[49]

G(k, ω) = G0(k, ω) +G0(k, ω)Σ(k, ω)G(k, ω), (2.47)

whereG0(k, ω) denotes the non-interaction retarded Green’s function given byG0(k, ω) =
1/(ω − εk + iη). In real space G0(k, ω) corresponds to the propagation of an electron
through the solid without a scattering event taking place. Without this interaction pro-
cess no energy is dissipated and no other quasiparticles or states are excited. The solution
of the Dyson equation yields the exact solution for the Green’s function of the interact-
ing system if the self-energy is known exactly, but because of the interdependence of G
and Σ, Eq. 2.47 needs to be solved iteratively and self-consistently with the self-energy
Σ(k, ω) in a set of equations introduced by Hedin in 1965 [50].
Due to the relation between Green’s function and spectral function, in the diagonal

approximation the latter can also be expressed in terms of Fan-Migdal self-energy:[9]

Ank(ω) = − 1

π

Im Σnk(ω)

[ω − εnk − Re Σnk(ω)]2 + [Im Σnk(ω)]2
, (2.48)

At the points where the denominator of the fraction becomes zero or has a minimum,
a peak occurs in the spectral function. While the real part of the electron self-energy
Re Σnk(ω) renormalises the KS eigenenergies εnk leading to a shift of the quasiparticle
peak, the imaginary part Im Σnk(ω) is responsible for a Lorentzian broadening of the
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2.3. Photoemission signatures of plasmonic polarons

peaks due the lifetime effects between the interacting electrons. These lifetime effects
are of quasiparticle nature and are given by the rate electrons scatter with thermal
plasmons:[3]

Γnk = τ−1
nk =

2

h̄
Im Σ(Enk). (2.49)

Here, τnk is the scattering time and Enk the quasiparticle energy.
For the description of satellite structures and to correctly represent spectral features

of electron-boson interactions, however, the Fan-Migdal approximation has its limits.
Firstly, the satellite energy are estimated by 50 % compared to the experimental ones
and secondly, the intensity of the plasmonic (polaron) satellite features is too high. [39]
The framework of the cumulant expansion fixes these issues. It is an extension of the pre-
viously established formula for the spectral function originating from an alternative for-
mulation of the single-particle Green’s function. To the time-dependent non-interacting
Green’s function a so called cumulant factor eCnk(t) is introduced:[51]

G0
n(k, t) = ieiεnkt+Cnk(t) (2.50)

which proceeds into the spectral function:[52, 53]

A(k, ω) =
1

2π

∑
n

Re

∫ +∞

−∞
dtei(ω−εnk)t+Cnk(t) (2.51)

The practical notation of the cumulant expansion suited for numerical simulations was
reported by [7, 8, 54] and can be expressed as:

A(k, ω) =
∑
n

[
1 + AS1

nk(ω) ∗+AS1
nk(ω) ∗ AS1

nk(ω) ∗+...
]
AQP
nk (ω). (2.52)

Here ∗ is a convolution product and AQP
nk (ω) is the quasiparticle spectral function of

Eq. 2.48 evaluated in the “on the energy shell” approximation, in which the frequency
dependence of the self-energy Σnk(ω) is replaced by the KS energy ω = εnk [51, 55]. The
satellite spectral function is further given by: [9]

AS1
nk(ω) = −βnk(ω)− βnk(εnk)− (ω − εnk)β′nk(εnk)

(ω − εnk)2
, (2.53)

with β = π−1 Im Σnk(εnk − ω)Θ(ω) and β′ denoting its first derivative. The first term
in Eq. 2.52 corresponds to the quasiparticle peak of the photoemission spectrum, while
he series of the following terms accounts for the simultaneous excitation of any number
of plasmons. But the intensity of the satellite peaks for the excitation of three plasmons
is already quite low, which is due to the low probability of the scattering process. That
is why in present ab-initio calculations Eq. 2.52 is truncated to the second order term. [52]

An example for the good agreement between experiment and theory is shown for the
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2. Theory and Methods: First principle description of many-body systems

Figure 2.7.: Figures (a)-(e) show the theoretical (a)-(c) and experimental (d) ARPES spectra
obtained for a doping level of 5 × 1018 cm−3 and (f)-(j) are for a free electron density of 3 ×
1019 cm−3. (e) and (j) show the ab-initio spectral functions A(w) in the cumulant expansion for
these densities evaluated at the Γ high symmetry point due to the excitations of plasmons (pl),
phonons (ph) and both of them together (pl-ph). The experimental ARPES spectra 2.7(d) and
2.7(i) were measured by Moser et al. [56]. [9]

polar material TiO2 anatase in Fig. 2.7. Figures (a)-(e) show the theoretical (a)-(c) and
experimental (d) ARPES spectra obtained for a doping level of 5× 1018 cm−3 and (f)-(j)
are for a free electron density of 3 × 1019 cm−3. Figs. 2.7(e) and 2.7(j) show the ab-
initio spectral functions A(w) in the cumulant expansion for these densities evaluated at
the Γ high symmetry point (HP) due to the excitations of plasmons (pl), phonons (ph)
and both of them together (pl-ph). The calculations nicely reproduce the experimental
ARPES spectra 2.7(d) and 2.7(i) measured by Moser et al.[56]. In TiO2 electron-phonon
and electron-plasmon coupling is equally important to reach a complete picture of the
scattering and excitation processes taking place. For HfS2 both coupling effects will be
taken into consideration and their importance will be explored.
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3. Electron-boson interaction in
hafnium disulfide

In this chapter, the results of this thesis are presented and can be roughly divided into
three parts. In the first part (Sec. 3.1-3.4), the foundation is laid by the introduction
of the material. Furthermore, experimental and computational conditions are described
and preliminary analyses are performed. The second part (Sec. 3.5) is dedicated to the
electronic and vibrational ground-state properties of HfS2. For this purpose, the mea-
sured and calculated data were investigated and compared. That last part (Sec. 3.6 and
3.7) deals with many-body effects in the material brought forth by n-type doping. The
examination of the spectral function leads to new insights and a simplistic model for the
surface high-frequency dielectric function is proposed.

3.1. Transition-metal dichalcogenides

TMDs encompass a wide range of materials consisting of one transition metal atom M
and two chalcogenide atoms X resulting in the chemical formula MX2. They are layered
van der Waals materials and thus part of the large class of so-called two-dimensional (2D)
materials. The covalent bonding between the atoms is strong within a layer, while the
van der Waals bonding between the layers is weak. The binding strength is also reflected
in the lattice vectors, with typical values of 3− 4Å for a and 6Å for c. In the formation
of these layered structures the asymmetric coordination of the anions is balanced by the
polarization energy, stressing the polarizablity of the ions of such compounds [57]. The
force constants of the Raman active intralayer vibrational modes (E2

2g), of e.g. MoS2, are
much higher the the interlayer ones A1g. The different vibrational modes are presented
in Fig. 3.1(a). The anisotropy of these materials due to the van der Waals gap continues
to their optical and transport properties and offers possibilities for further modification
of their properties through intercalation. [58]
With regard to their band structure, TMDs appear in the form of metals, semimetals

or semiconductors, but they can also exhibit more exotic states as topological insulators
or superconductors [60]. Due to their orbital occupation group V compounds are metals
with a partially filled dz2 band, while group IV and VI tend to be semiconductors. The
group IV materials exhibit band gaps in the order of 1-2 eV with filled s- and p-orbitals
of the chalcogenide atoms and empty d-orbitals of the transition metal atoms. They
usually occur in a 1T-structure, while the group VI materials exhibit 2H-structures. The
dz2 band of the later group is filled since they of two electrons “per formula unit” and
thereby lower the band energy enough to overcome the Madelung energy. The difference
between the 1T- and the 2H-structure is presented in Fig. 3.1(b). [61, 62]
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3. Electron-boson interaction in hafnium disulfide

(a) (b)

Figure 3.1.: (a) Interlayer A1g and intralyer E2
2g vibrational modes of the MoS2. (b) Crystal

structures found in transition-metal dichalcogenides (TMDs) with one layer per unit cell of
trigonal symmetry cell (1T) and two layers per unit cell of hexagonal symmetry (2H). The filled
and hollow spheres represent transition metal and chalcogenide atoms, respectively. [59]

In the context of miniaturization of transistors and other electrical components, reduc-
ing the TMDs to a single 2D monolayer is of great interest and reveal further promising
physical properties of the materials. Since the interlayer bonding is weak the two dimen-
sionality can be achieved by exfoliation of the layers. That way TMDs exhibit a broad
variety of enhanced electronic properties, such as Mott transitions, the quantum spin
Hall effect and superconductivity. [63–66]
A physical quantity key to understand this features is the dielectric response of the

materials, which determines the electrostatic properties and the scattering processes due
to electron-phonon and electron-plasmon coupling. These influence inter alia optical and
transport properties. [67]

3.1.1. Crystal structure Hafnium disulfide

HfS2 belongs to the class of TMDs and consists of one hafnium atom from the group 4 el-
ements (transition-metal) and two sulfur atoms from the group 16 elements (chalcogens).
It forms 1T-structured monolayers corresponding to a hexagonal Hf lattice sandwiched
between two layers of hexagonally packed S atoms. In this arrangement, the Hf atom
is octahedrally coordinated by the chalcogens, as shown schematically in Fig. 3.2 (a).
The space group of 1T-structures is the P 3̄m1 and the lattice parameters of HfS2 are
a = b = 3.64Å, c = 5.84Å with α = β = 90°, γ = 120° [68]. The hexagonal unit cell
of HfS2 leads to a hexagonal BZ with its characteristic high-symmetry points shown in
Fig. 3.2 (b).
The monolayers are linked by van der Waals interactions and can be separated using

different exfoliation methods. If not stated differently, the results presented in this thesis
are obtained for bulk HfS2.

26



3.2. Experimental conditions

(a)

(b)

(c)

Figure 3.2.: (a) Top and (b) side view of the crystal structure of HfS2 visualised with the
VESTA (Visualization for Electronic and STructural Analysis) software package [69]. The blue
colored atoms resemble hafnium and the yellow colored ones sulfur. (c) hexagonal BZ [cite:
commonwiki].

3.2. Experimental conditions

The ARPES experiments were conducted by Sanjoy Mahatha from the Rossnagel group
at German electron-synchrotron radiation source (DESY)/Kiel University. HfS2 single
crystals were grown by chemical vapor transport at the in-house facilities. The measure-
ments were performed at beamline P04 of PETRA III at DESY using the ASPHERE
photoelectron spectroscopy endstation. The sample temperature was 10 K. In situ dop-
ing of the HfS2 samples was achieved by depositing potassium atoms from an alkali metal
dispenser (SAES Getters) on the surface. The dopant atoms adsorbed on the surface but
likely did not intercalate into the van der Waals gaps of the layered structure. The area
probed by the synchrotron beam had a size of approximately 15µm×15µm, the photon
energies used and the corresponding energy resolution of the ARPES measurements were
within a range of 260 eV- 450 eV and 50 meV- 80 meV, respectively. The Fermi map of
the doped HfS2 sample in Fig. 3.15 was more specifically collected at the photon energy
of 432 eV.

3.3. Computational details

DFT calculations were performed based on the plane-wave pseudopotential method
as implemented in Quantum ESPRESSO materials simulation suite version v.6.6 [70].
WANNIER90 [71] and the Electron-Phonon-Wannier (EPW) codes [72] were used for
Wannier-function interpolation and electron-plasmon coupling simulations. The gener-
alised gradient approximation to DFT of Perdew, Burke and Ernzerhof (PBE) for the
exchange-correlation functional [29] and optimised norm-conserving Vanderbilt (ONCV)
pseudopotentials [73] were used, with a plane wave kinetic energy cutoff of 120 Ry and
a 12× 12× 6 k -point mesh to sample the hexagonal BZ. The maximally localised Wan-
nier functions were constructed starting from a 6× 6× 3 q-grid. The effect of n-type
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3. Electron-boson interaction in hafnium disulfide

doping was included in the virtual crystal approximation through a rigid shift of the
Fermi energy. The first-principles spectral functions due to electron-plasmon interac-
tion were obtained from the cumulant expansion method [52] using the electron-plasmon
self-energy as implemented in EPW.

3.4. Preliminary analyses

To ensure the physicality of the first-principles calculations and the stability of the nu-
merical results against changes of the computational parameters, preliminary analyses
need to be made at the beginning of every calculation of a material. The following section
focuses on establishing the optimal computational parameters for the subsequent inves-
tigation of the electronic properties of HfS2. The aim of the analyses is the minimisation
of the total energy, stress and forces of the compound to obtain the converged ground
state of the system.

3.4.1. Convergence studies

The first parameter examined for convergence is the kinetic energy cutoff introduced in
sec. 2.1.2. It corresponds to the number of G-vectors used for expanding the Kohn-Sham
orbitals and density in a basis. The computational cost of the calculations is deter-
mined by the energy cutoff and therefore this parameter requires careful consideration.
Fig. 3.3(a) shows the dependence of the total energy on the kinetic energy cutoff and in-
dicates a good convergence towards cutoffs higher than 100 Ry. An kinetic energy cutoff
of 120 Ry was thus used for all further calculations.
Equally important is the choice of the k-point grid. It determines the number of points

in the first BZ of the reciprocal space over which the integration is performed. The k-
points should be evenly distributed to reliably map the entire BZ. This is accomplished
in Quantum ESPRESSO by defining homogeneous grids in reciprocal space according to
the Monkhorst-Pack algorithm [74]. In Fig. 3.3(b), the total energy was plotted against
the number of k-points. The curve shows a well-behaved convergence trend. The dif-
ference in the total energy between the different number of k-points is smaller than
3 · 10−6% when increasing the grid density from 726 to 1350 reducible k -points. For that
reason, a 12× 12× 6 k -point mesh was chosen for the calculation of the band structure,
corresponding to 864 reducible (100 irreducible) k -points.
Finally, a structural relaxation was carried out to ensure that the computed crystal

structure is dynamically stable, indicated by vanishing atomic forces and stress tensor.
The first-principles atomic positions and the crystal-lattice vectors spanning the unit
cell are given in Table 3.1. The unit cell volume associated with these vectors is Vuc =
457.5 a u 3. A summary of all computational parameters is given in in Table 3.2.
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3.5. Electronic and vibrational properties

(a) (b)

Figure 3.3.: Total energy of HfS2 as a function of the cut-off energy (a) and the number of
k-points (b). The energy axis of the plot (b) is offset by 612.71Ry due to the minimal change
in the total energy.

Atomic positions (crystal) Lattice vectors (angstrom)
Hf 0.00 0.00 0.00 DFT Experiment [68]
S 0.6̄ 0.3̄ 0.76 a = 3.63 a = 3.64
S 0.3̄ 0.6̄ 0.24 c = 5.95 c = 5.84

Table 3.1.: Ab-initio crystal structure parameters of HfS2. The atomic positions are given in
units of the crystal lattice vectors.

3.5. Electronic and vibrational properties

The band structure of HfS2 evaluated along the MKΓMLHAL-high-symmetry-path is
shown in Fig. 3.4 (a). The in-plane path was chosen to match the measurements and allow
a comparison of the MKΓM- and the LHAL-planes of the 3D BZ. In good agreement
with literature values from theory and experiment, the direct fundamental gap at Γ is
around 1.9 eV and the indirect bandgap between Γ and the CBM at L is around 1.1 eV.
[75–77] In Fig. 3.4 (b) the ARPES measurements along the MKΓM-high-symmetry-path
are shown as an intensity plot ranging from dark brown (maximum intensity) to white
(minimum intensity). The first-principles calculations colored in blue agree quite well
with them. A small deviation occurs at the K-point: In the measurements the highest
valance band appears to dip towards the lower bands, in contrast to the calculated one.
This deviation might be attributed to surface effects in the measurements.

Ecut 120 Ry
reducible k -point mesh 12× 12× 6
Pseudo potential ONCV pseudopotentials [73]
XC-functional PBE [29]

Table 3.2.: Summary of computational parameters employed in the ab-initio calculation of the
HfS2 band structure.
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(a) (b)

Figure 3.4.: (a) first-principles electronic band structure of HfS2. (b) Comparison with angle-
resolved photoemission spectroscopy ARPES measurements. The red dashed line in the plot
(a) marks the Fermi energy of the doped compound.

Dimensionality and bandgap

The following calculations have been performed to study the effect of dimensionality
on the layered van der Waals material HfS2 and the dependence of the electronic band
structure on the interlayer distance is examined, since the interlayer distance between the
monolayer is overestimated by 0.11Å as compared to the experimental measurements
[68]. Furthermore, the dimensionality influences the position at which the n-dopants
contribute their electrons to the conduction band of the doped HfS2. The CBM of the
2D HfS2 is located in the L-M plane because its BZ is a projection of the three-dimensional
(3D) BZ. In that case, the high-symmetry points L and M coincide, while the CBM of
the 3D compound is at the L point. The interlayer distance is defined by the value of the
lattice vector c, which specifies the distance between the Hf monolayers. In Fig. 3.5(a)
the energy difference of the lowest conduction band at the high-symmetry points L and
M is visualised as a function of the interlayer distance. In the equilibrium position
with an interlayer distance of around 6Å the energy difference between the two points
is greatest and amounts to 152meV. For larger c lattice vectors the difference decreases
because the interaction between the layers becomes weaker and approaches the 2D limit,
in which L and M coincide. For interlayer distances smaller than 6Å the entire band
structure is distorted owing to the overestimation of the interlayer coupling, resulting in
a band-gap collapse and metal-like bands for an interlayer distance smaller than 4.5Å.
The compression is equivalent to a strain along the z-axes of the material. Fig. 3.5(a)
illustrates this behaviour and displays the indirect band gap between the valence band
maximum (VBM) and the CBM located at the high-symmetry points Gamma(Γ) and L.
The indirect band gap rapidly diminishes for interlayer distances smaller than 6Å. The
band gap of the 2D limit is slightly larger and compares well with experimental values
around 1.2 eV [15]. The band gap increase can be related to charge confinement within
the material.
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3.5. Electronic and vibrational properties

(a) (b)

Figure 3.5.: (a) Energy difference between the high-symmetry points L and M of the lowest
conduction band as a function of the interlayer distance of HfS2. (b) Energy of the indirect
band gap as a function of the interlayer distance of HfS2.

3.5.1. Spin–orbit coupling

SOC is a relativistic effect describing the interaction of the spin of electrons with their
orbital motions. As heavy elements with unfilled 5d orbitals such as Hf tend to exhibit
strong spin-orbit coupling and increased hybridization, it is important to consider this
interaction in the calculation. [78]
In Fig. 3.6 the band structure of HfS2 with (black, continuous) and without (red,

dashed) SOC is depicted, emphasising its importance and effect on the band structure.
SOC leads to an avoidance of band crossings in the valance as well as the conduction
bands and lifts the degeneracy of upper valance bands at the Γ point. This findings are
in good agreement with literature calculations based on the same level of theory [16].
The VBM rises slightly in energy, while the CBM is lowered causing a small energy
renormalization of the band gap in the meV range. The largest band splitting occurs
at the Γ point between the second and third highest valance band is about 182 meV.
The most interesting effect is the shift of the VBM to the Γ point leading to a flat band
dispersion. The flat bands coincide with "massless" properties of particles populating
these bands. This linear dispersion provides a good basis for the study of excitations and
p-type (hole) doping could lead to emergent electronic applications.

3.5.2. Effective mass calculation

To treat the interaction of the electrons at the CBM properly, their effective mass at
that point needs to be determined. Applying a parabolic band model to the dispersion,
the effective mass can be determined using the following equation given in SI-units:

En(k) = En,0 +
h̄2k2

2m∗
⇒ m∗ = h̄2

(
d2E(k)

dk2

)−1

(3.1)

Here En(k) is the energy of the band n at the momentum vector k, h̄ is Planck’s
constant reduced by 2π and m∗ is the effective mass. A second order polynomial fit of
the form (ax2 + bx + c) in the vicinity of the CBM is performed including 5 k-points
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(a) (b)

Figure 3.6.: Effect of spin–orbit coupling (SOC) on the electronic band structure of HfS2. The
black (red dashed) line represent the band structure with (without) SOC beginning accounted
for in the calculation.

towards each direction of the other high-symmetry points M, A and H. The effective mass
of the electrons is thus obtained from a. This parabolic band model is a reasonable local
approximation due to the parabolic dispersion relation of electrons in the vicinity of the
band edges. Because of the anisotropy of the band dispersion towards the other high-
symmetry points (M-L, A-L, L-H) in the BZ, the effective mass needs to be calculated
along each path individually and averaged afterwards. To consider the total carrier
density the following equation is used for the calculation:[79]

m∗DOS = 3
√
g2m1m2m3 (3.2)

The abbreviation DOS stands for density of states, the indices 1,2,3 indicate the dif-
ferent directions in the BZ and g is a degeneracy factor. The important high-symmetry
points for the considered band are visualised in Fig. 3.7 and the masses obtained by the
parabolic fits are given in table 3.3 and compare well with literature values [80]. The
resulting average effective mass is m∗DOS = 1.44 ·me.
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3.5. Electronic and vibrational properties

Figure 3.7.: Conduction band minimum of HfS2

along the different high symmetry paths of the
first Brillouin zone.

Path m∗i [me]
A-L 0.25
L-H 1.65
L-M 0.20

Table 3.3.: Effective masses of the electrons at
the conduction band minimum along different
high symmetry paths of the first Brillouin zone.

3.5.3. Iso-energy cuts and Wannier interpolation

In Fig. 3.8 iso-energy cuts -1.3 eV and -2.2 eV below the Fermi energy are illustrated for
the crystal momenta spanning the kx-ky-plane. The measured intensity map ranges from
dark brown (maximum intensity) to white (minimum intensity). The black dots are
calculated k-points that match the energy of the experiment. The values for one unit cell
where computed, while the remaining points where obtained by shifting that unit cell
using the translation invariance. The blue lines in panel (a) mark the boundaries of the
BZ with the Γ point centred in the middle, the M point in the middle of the face sides
and the K point at the intersection of the face sides. Both ab-initio calculations match
the experimental data very well within the first BZ. The neighbouring cells show minor
deviations, which we attribute to a grid distortion of the experimental images originating
from the geometry of the hemispherical analyser. To minimize this effect the first BZ
was centred in the middle of the detector screen.

The k-point-grids required to enable these calculations are very dense. To minimize
these computational costs, the data in Fig. 3.8 have been obtained via Wannier function
interpolation. The Wannier function interpolation is a Fourier transform of the wave
functions from reciprocal space to real space under the condition of maximal locality
of the wave function orbitals in real space and a reverse transformation onto a denser
grid.[71] The denser grid is also important to precisely determine the Fermi energy cor-
rectly calculate the electron-plasmon coupling matrix elements.
To make sure that the interpolation was successful, the interpolated band structure is

plotted with the original one from the previous calculation. The agreement between them
is verified in Fig. 3.9. The black lines are the first-principles electronic band structure of
HfS2 calculated with Quantum ESPRESSO, while the red dashed lines are the electronic
band structure interpolation of WANNIER90. They are equivalent to each other.
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(a) (b)

Figure 3.8.: Iso-energy cut of the kx-ky-plane -1.3 eV (a) and -2.2 eV (b) below the Fermi energy.
The blue hexagons in (a) mark the area of the Brillouin zone with the Γ point centered in the
middle, the M point in the middle of face sides and the K point at the intersection of the face
sides. The calculated k-points are plotted in black.[Edit: try white color for Gamma]

Figure 3.9.: Electronic band structure of HfS2 calculated with Quantum ESPRESSO (black
solid lines) and interpolated electronic band structure from WANNIER90 (red dashed lines).
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3.5. Electronic and vibrational properties

3.5.4. Phonon dispersion

The phonon dispersion of HfS2 obtained from density functional perturbation theory is
shown in Fig. 3.10 and is consistent with literature calculations [81, 82]. The unit cell of
the crystal consists of three atoms, resulting in a total of nine phonon modes with three
acoustic and six optical modes, respectively. Four of the optical modes are transverse
(TO), while the remaining to two are longitudinal (LO). The second and third highest
energy phonon modes appear to jump at Γ point. At that point the path between
the high symmetry points is changed from the in-plane (kx − ky−direction) towards
to out-of-plane (kz−direction) direction. The effect causing this jump is the LO-TO-
splitting present in polar materials. It leads to the removal of degeneracy between the
longitudinal optical (LO) and transverse optical (TO) phonons at the BZ centre (k=0).
The polarisation in such materials is related to the crystal symmetry and thereby affects
the phonon dispersion. The highest phonon mode has a frequency of around 43meV.

Figure 3.10.: Phonon dispersion relation of HfS2 obtained from density functional perturbation
theory.
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3.6. Doping and electron-plasmon interaction

While the physical properties of pristine group-IV TMDs, like HfS2, are well studied
[75, 81, 82], their doped counterparts are rather unexplored. However, the doping of
semiconductors in general brings forth a bright spectrum of many-body phenomena to
be studied by spectroscopic methods and should thereby be used as a tool to reach a
deeper physical understanding of the processes occurring also in intrinsic semiconductors.
The focus of the chapter is on the electron-plasmon interaction, as it is assumed to be
the dominant interaction influencing the properties of the spectral function.

3.6.1. Doping concentration and Fermi energy

(a) (b)

Figure 3.11.: Iso-energy measurement of the kx-ky-plane near the Fermi energy. The blue
hexagons mark the area of the Brillouin zone. The white ellipse in (b) is used to estimate
the size of one Fermi pocket.

In Fig. 3.11(a) the iso-energy measurement in the kx-ky-plane of the CBMs is presented
and illustrates some salient features. Firstly, the electron pockets of the first BZ are
quite weak compared with the ones outside of it. This is due to electron selection rules
of the dipole-transition matrix elements. They allow transition with a certain probability
and thereby intensify or attenuate spectral features in the photocurrent of the ARPES
signal. The initial estimate of the doping concentration was calculated by inspection of
the electron pockets at the CBM in Fig. 3.11(b) and corresponds to the Fermi surface
of the doped material, since the Fermi energy is located in the lowest conduction band.
The area of the electron pocket in Fig. 3.11(b) is framed by a white ellipse, of which the
major and minor axis radii are a = 0.2Å−1 and b = 0.1Å−1, respectively. There are six
electron pockets and each pocket contributes half of the ellipse to a BZ. Therefore, the
number of electrons Nel per unit cell can be estimated by the formula:[83] (details see

36



3.6. Doping and electron-plasmon interaction

Appendix Fig.A.1)

Nel =
3ab

2π
× 1016cm2 = 0.01 (3.3)

The number of electrons per unit cell is directly linked to the free electron density by
unit cell volume Vuc:

n =
Nel

Vuc

, (3.4)

The calculated 3D unit cell volume of HfS2 is Vuc = 457.5 a u 3. Therefore the free
electron density of the material is n = 2.2 · 10−5 a u −3 = 1.5 · 1020 cm−3.
With this information as a basis, the doped system can be treated in ab-initio cal-

culations, by considering an excess number of electrons per unit cell volume with a
compensating homogeneous, positive background. Because the additional number of
electrons per unit cell is so small, a supercell treatment including actual dopant atoms
is numerically too expensive. Furthermore, in a supercell treatment the band structure
would be folded back into the BZ multiple times because of the connection between real
space and reciprocal space. To determine the Fermi energy precisely an EPW calculation
on a dense k-grid of 150× 150× 60 was performed. The Fermi energy was calculated for
multiple electron densities, which are listed in Table A.1 in the appendix. In the first
column the Fermi energy of the zero free electron density is chosen to coincide with the
CBM. In Fig. 3.12(a) the Fermi energy is plotted as a function of the additional number
of electrons per unit cell. The graph shows a square root behaviour corroborating the
parabolic band model used for the effective mass calculations and the HEG. The Fermi
energy corresponding to the free electron density of n = 1.5 · 1020 cm−3 is EF =9.735 eV.
In Fig. 3.12(b) the plasmon frequency is plotted as a function of the additional number

of electrons per unit cell. In comparison to Eq. 2.36 the formula for the frequency is
refers to the unit cell and the electron mass is replaced by the effective mass to meet the
dispersion of the CBM and is given in SI-units:

ωpl =

√
4πNele2

Vucm∗ε∞
. (3.5)

Here ε∞ is the high-frequency dielectric constant. It describes the behaviour of the
medium in the limit of high frequencies at which the nuclei are too slow to react to
perturbations, hence on that time scale phonons can’t be excited.

3.6.2. Electron-plasmon coupling

In Fig. 3.13 the calculated real and imaginary part of the electron self-energy Σ due to
electron-plasmon interaction at a doping concentration of n = 1.5 · 1020 cm−3 is illus-
trated. The imaginary part of the self-energy is close zero for values smaller than -0.4 eV
and exhibits a characteristic peak at the pole of the real part (Re Σ = 0) around the en-
ergy εk − h̄ωpl. This feature originates from the plasmon peak in the dielectric function
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(a) (b)

Figure 3.12.: Dependence of the Fermi energy (a) and plasmon frequency (b) on the free electron
density.

Figure 3.13.: Real (Re) and imaginary (Im) part of the electron self-energy Σ due to electron-
plasmon interaction for HfS2 at a doping concentration of n = 1.5 · 1020 cm−3. Gaussian smear-
ing 10meV
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within the GW framework and the RPA. The poles in the real part yield the feasible
energy spectrum for the collective density fluctuations. The curves of both parts show
smooth behaviour and their interdependency is clearly visible.
When calculating the self-energy there is a strong dependence between the k-point

sampling and the k-point broadening introduced by a Gaussian smearing parameter η
occurring in equation 2.39. To compute coupling effects correctly, the broadening applied
to the k-points must be large enough to ensure an overlap of the points. The smooth
functions where achieved by a k-point grid of 60× 60× 30 and a gaussian smearing of
10meV.
The effect of the broadening on the spectral function of the CBM in the Fan-Midgal

approximation for the free electron density 1.5 · 1020 cm−3 and a high-frequency constant
of 7.6 is demonstrated in Fig. 3.14. The plasmonic polaron satellite is located at the pole
of the electron self-energy. For the smallest Gaussian smearing of η = 20 meV the
quasiparticle peak and the plasmonic polaron satellite are sharp and clearly separated
from each other. The large the broadening becomes the stronger these features are
smudged, leading to a broad and lower quasiparticle peak with a long tail but no clear
satellite visible. In this calculation step, before the post-processing and accounting for
the experimental resolution, it was important to use a small smearing to calculate the
coupling strength correctly and make out the satellite features as clear as possible.

Figure 3.14.: Spectral function A(ω) in the Midgal-approximation for the conduction band
minimum for an density of 1.5 · 1020 cm−3 and a high-frequency constant of 7.6. The intensity
of A(ω) for different electron smearings η is plotted as a function of the energy relative to the
Fermi energy.
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3.7. Spectral features

(a) (b)

Figure 3.15.: ARPES measurements of the doped HfS2 sample. (a) Band structure showing the
Γ point at ky = 0Å−1 and the CBM around |ky|= 1.8Å−1. (b) Spectral function of the right
CBM taken at the blue line.

The band structure of the doped material obtained by ARPES measurements is given
in Fig. 3.15(a). The intensity of the measurement is reflected in the colour of the plot,
ranging from dark brown (highest intensity) to white (minimum intensity). The Fermi
pockets of the CBM are located around |ky|= 1.8Å−1. The intrinsic spectral function
Ã(ω′) of the CBM was extracted at the blue line. To reduce the noise in the spectral
function the measured photocurrent of two k-points at the immediate vicinity of the CBM
with a distance of ∆k = 0.03Å−1 were added up allowing a more qualitative analysis of
the data.
The Shirley background accounting for the secondary electrons was calculated with

Eq. 2.3.1 by integrating Ã(ω′) up to the chemical potential µ. The subtraction of the
background is shown in the appendix FigA.2. The resulting spectral function A(ω)
shown in Fig. 3.15(b) is characterized by a broad quasiparticle peak exhibiting a shoulder
around 200meV away from the quasiparticle peak, ending in a long tail towards lower
energies of up to -1 eV. Within the shoulder of the spectral function a dip occurs that
could indicate the separation of the quasiparticle peak and the satellite peak. Since the
highest energy of a phonon mode is around 43meV such expanded features can not be
attributed to electron-phonon interaction. Furthermore, for such high levels of electron
doping (n ∼ 1020 cm−3) , materials typically enter a Fermi liquid regime in which the
electron-plasmon coupling also exceeds the electron-phonon coupling in strength [4, 52].
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Figure 3.16.: Experimental data obtained from ARPES measurements (red crosses), calculated
spectral function within the cumulant expansion (blue line) and convoluted spectral function
performed with a Gaussian distribution (yellow line). The standard deviation for the Gaussian
convolution is σ = 70meV. The vertical black line is introduced at the satellite peak for visual
guidance. The high frequency dielectric constant of 6.2 used for the calculation represents the
bulk.

In Fig. 3.16 the spectral function of the CBM computed for the bulk material is plotted
in blue. To account for the experimental resolution of 50 -80meV, impurities and other
broadening factors a convolution with a Gaussian function was performed (yellow line).
(Its width) the standard deviation of σ = 70meV for the Gaussian distribution was chosen
to match the right-hand slope of the measurements and lies in the range of experimental
resolution. The intensity of the convoluted spectral function was adjusted to the height
of the quasiparticle peak. Since the intensity of the measured photocurrent is given by
the number of electrons per area of the detector screen, the absolute intensity of the
measurement is also relative, which justifies the alignment of the peaks. The Fermi
energy of the doped HfS2 was computed accurately on a fine grid and was chosen to be
the reference point of the calculated as well as the experimental data. The high-frequency
dielectric constant used in Fig. 3.16 corresponds to the bulk volume value reported by
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Lucovsky et. al and others [84, 85]. The spectral function computed with that value
exhibits a small shoulder around 0.2 eV below the Fermi energy where the satellite peak
is located. For visual guidance a vertical black line was positioned at the top of the
satellite peak. The line highlights that the satellite peak of the bulk spectral function is
located before the dip in the measured spectral function. The shoulder that occur in the
calculated spectral function supports the assumption that electron-plasmon interaction
plays a dominant role in the emergence of these features, but the calculated coupling
is weaker than the measurements suggest. To exhibit a more pronounced shoulder in
the spectral function the strength of the coupling should be stronger. At the interface
between sample and vacuum such a stronger coupling is present. It is rooted in the a
lower high-frequency dielectric constant obtained by the following model:

εS = 1 +
χbulk + χvac

2
= 1 +

ε∞ − 1

2
=
ε∞ + 1

2
, (3.6)

where χbulk and χvac are the electric susceptibility of the bulk and the vacuum. As bulk
and vacuum make up have of the space of the interface both susceptibilities contribute
equally to the high-frequency dielectric constant. In this model, the assumption is made
that the dominant plasmons involved in the interaction are located at the surface of the
Van-der-Waals material, i.e. the electrons contributed by the n-dopants are present on
the surface of the sample. Since the doping was achieved by depositing the potassium
atoms on the surface of the samples by a dispenser, the atoms probably did not penetrate
into deeper layers. Therefore, it can be assumed that the increase of the free electron
density is also localised near the surface, physically supporting this simplistic model.

In Fig. 3.17 the interface spectral function computed with a high-frequency dielectric
constant of 3.6 is plotted in blue. The effect of the change of the high-frequency dielectric
constant is immense. The coupling is intensified and the plasmon frequency rises to a
value of ωpl = 210 meV. The ratio of the peaks is renormalised leading to the emergence
of a pronounced shoulder in the spectral function. To make qualitative comparisons
with Fig. 3.16 the same multiplication factor for the intensity of the calculated spectral
function was used. Compared to the bulk spectral function the satellite peak of the
interface spectral function is shifted towards lower energies and is thereby located behind
the dip in the shoulder of the experimental spectral function, which is illustrated by
the black line. Tough the intensity of the satellite peak is even a bit too high, due
to an overestimation of the electron-plasmon coupling, the distance between the peaks
determined by the plasmon frequency ωpl matches quite well. In Fig.A.3 of the Appendix
the calculated spectral function within the cumulant expansion formalism is presented
again with a higher multiplication factor for the intensity, emphasising the alignment
of the ARPES measurement and the ab-initio calculation using QuantumEspresso and
EPW. The interface model presented in the thesis supports the idea that surface effects
have an influence on the measured spectral function.

The extension of the calculated shoulder ends around -0.5 eV, but the long tail of the
measurements up to -1.0 eV could not be reproduced. The tail is due to higher order
effects and inelastic scattering events that are not account for in the simulation. Because
it (the tail) exhibits no clear characteristics, a more precise description of the processes
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Figure 3.17.: Experimental data obtained from ARPES measurements (red crosses), calculated
spectral function within the cumulant expansion (blue line) and convoluted spectral function
performed with a Gaussian distribution (yellow line). The standard deviation for the Gaussian
convolution is σ = 70meV. The vertical black line is introduced at the satellite peak for visual
guidance. The high frequency dielectric constant of 3.6 used for the calculation represents the
interface of the material.

that lead to its appearance is difficult. Nevertheless, the level of agreement reached
between theory and experiment is quite remarkable. It underpins that the origin of
the spectral function features are of plasmonic nature and that surface effects further
influence the spectral function features.
The results demonstrate that enhanced electron-plasmon coupling occurs in heavily

doped HfS2 and encourages to search for electron plasmon coupling in other TMDs.
The coupling leads to satellite peaks in the spectral function, which lie in the range
of hundreds of meV and are determined by the plasma frequency of the density of free
electrons in the conduction band. Significantly, we demonstrated that the correlation
between electrons and plasmon is increased near the surface and may be amenable to
tuning by applying suitable doping methods.
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In this thesis, a first-principles approach describing plasmonic polaron satellite structures
in the spectral function of angle-resolved photoemission spectroscopy (ARPES) measure-
ments was presented and applied to the transition-metal dichalcogenide (TMD) HfS2. A
simplistic model for the interface dielectric function was developed by comparing the
measured and calculated data to account for surface effects. It was found that the satel-
lite structures in the spectral function of the doped HfS2 originate from electron-plasmon
coupling and intensifies at the interface of the material.
First, the ground state properties of pristine HfS2 were calculated using density-

functional theory based on the plane-wave pseudopotential method as implemented in
Quantum ESPRESSO. The calculated electronic band structure obtained in this frame-
work matches the ARPES measurements quite well. The iso-energy cuts obtained by
Wannier function interpolation further verify the agreement between theory and experi-
ment. It was confirmed that HfS2 exhibits strong spin–orbit coupling leading to a shift
of the valence band maximum to the Γ point, resulting in a flat band dispersion. The
largest band splitting occurs at the Γ point between the second and third highest valance
band is about 182 meV. The dimensionality effect was investigated and evaluated in the
two-dimensional limit. Bulk HfS2 exhibits a slightly smaller indirect band gap of 1.1 eV
compared to its 2D counterpart due to charge confinement within the material. Using a
parabolic band model, the effective mass of the electrons at the conduction band min-
imum was determined to be m∗DOS = 1.44 · me. The phonon dispersion was calculated
using density-functional perturbation theory and is consistent with literature calcula-
tions. LO-TO-splitting characteristic for polar materials was observed and the highest
phonon mode with an energy of 43 meV elaborate. The boson energies for the electron-
phonon coupling were insufficient to explain the broad satellite features of the spectral
function measured by ARPES.
The focus was then put on electron-plasmon coupling present in the doped semicon-

ductor. The free electron density of the highly doped HfS2 sample was determined by the
inspection of the Fermi pocket of ARPES iso-energy measurements. The corresponding
Fermi energy to the free electron density of n = 1.5 · 1020 cm−3 is EF =9.735 eV and was
computed on a dense k-grid of 150× 150× 60 using Wannier function interpolation as
implemented in the EPW software. With the information about the electron density,
the effective mass and the high-frequency dielectric constant, which was taken from lit-
erature, the real and imaginary part of the Fan-Migdal electron-plasmon self-energy in
the vicinity of the CBM was calculated and analysed. It exhibited a characteristic peak
at the pole of the real part (Re Σ = 0) around the energy εk − h̄ωpl, which originates
from the plasmon peak in the dielectric function. The effect of the electronic smearing of
the k-points in the self-energy calculation and its continuation to the spectral function
features was highlighted and concluded with the recognition that it should be as small
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as possible while still guaranteeing the overlap of the smeared k-points to compute the
true coupling strength.
The completion of the thesis was the rigorous assessment of the spectral function. The

intrinsic measured spectral function taken at the CBM was offset by a Shirley background
accounting for secondary electrons and exhibited spectral features until −1 eV below the
Fermi energy. The spectral function calculation was performed using the Fan-Migdal
approximation of the self-energy and further refined using the cumulant expansion. To
reach a more quantitative alignment with the experiment, a Gaussian convolution was
applied to account for the energy resolution of the measurements. The level of agreement
reached between experiment and theory was quite remarkable, yet the coupling strength
of the electron-plasmon interaction was underestimated a bit. It was proposed that
surface effects might influence the spectral function since the doping was carried out at
the surface of the material. A simplistic model derived for the interface high-frequency
dielectric constant revealed that the electron-plasmon coupling strength is intensified at
the interface of the material. Even though it then overestimated the electron-plasmon
coupling strength a bit, it reinforced the assumption that there could be an interface
component to the spectral function.
This direct comparison between the measured and calculated data allows tracking

these subtle differences and resolve them by introducing enhanced models. I think both
theorists and experimentalists profit from such close collaborations by looking at the
problem from new perspectives. In the case of HfS2 a detailed study of the pristine and
doped electronic and vibrational properties was performed and first-principles approaches
were used to understand the formation of satellites in the photoemission spectrum of the
material. These detailed studies of specific materials are needed to investigate the many-
particle phenomena brought forth by doping TMDs and other semiconductors.
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A. Appendix

Figure A.1.: Material to calculate the free electron density by Sanjoy. [83]
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A. Appendix

Figure A.2.: Resulting spectral function A(ω) after subtraction of the Shirley background B(ω)
form the intrinsic spectral function Ã(ω).

n (cm−3·1019) Nel EF (eV)
0.000 0.000 9.6823
1.475 0.001 9.6946
4.425 0.005 9.7162
14.750 0.010 9.7346
22.121 0.015 9.7494
29.501 0.020 9.7623
36.876 0.025 9.7740
44.251 0.030 9.7848
51.627 0.035 9.7946
59.002 0.040 9.8040
66.377 0.045 9.8125
73.752 0.050 9.8203

Table A.1.: Fermi energies EF corresponding to the free electron density n, with the number of
electrons per unit cell volume Nel.
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Figure A.3.: Experimental data obtained from ARPES measurements (red crosses) and cal-
culated spectral function within the cumulant expansion (blue line) The vertical black line is
introduced at the satellite peak for visual guidance. The high frequency dielectric constant of
3.6 used for the calculation represents the interface of the material. In comparison to Fig. 3.17
a higher multiplication factor is used for the intensity of the calculated spectral function under-
lining the alignment of the quasi-particle and satellite peak between simulation and experiment.
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