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’[...]Maybe I’m mistaken expecting you to fight
Or maybe I’m just crazy, I don’t know wrong from right

But while I am still living, I’ve just got this to say
It’s always up to you if you want to be that

Want to see that want to see that way
You’re coming along’

- Lyrics of the song ’School’ by Supertramp (1974) -



Zusammenfassung

In dieser Arbeit geht es um ab-initio Berechnungen der Bandstruktur von trigonalem
Tellur. Dazu wurde das open-source Programm Quantum ESPRESSO verwendet.
Das methodische Vorgehen bestand darin, die Bandstruktur mit zwei verschiede-
nen Austausch-Korrelationsfunktionalen zu bestimmen und anschließend miteinan-
der zu vergleichen. Zum einen kam das standard Funktional von Perdew-Burke-
Enzerhof, als Vertreter für die Generalized-Gradient-Approximation, zum Einsatz.
Zum anderen kam das Gaussian-Perdew-Burke-Enzerhof Funktional, als Vertreter
der Hybrid-Funktionale, zum Einsatz. Wie in vielen anderen Arbeiten vorher auch
schon gezeigt wurde, versagt ersteres bei der vorhersage der Bandlücke um den H-
Punkt. Zweiteres führt zweifelsfrei zu Bandstrukturen und Bandlücken, die mit exper-
imentellen Ergebnissen vereinbar sind und sollte für weitere Berechnungen verwendet
werden. Wie in Experimenten, oder Berechnungen mit der "many-body pertubation
theory" (GW Approximation) gezeigt wurde, konnte auch hier nachgewiesen werden,
dass Tellur ein Halbleiter mit einer kleinen Bandlücke ist.

Abstract

In this thesis, ab-initio calculations of the band structure of trigonal tellurium are
concerned. The open-source program Quantum ESPRESSO was used for this pur-
pose. The methodological procedure consisted of determining the band structure with
two different exchange-correlation functionals and then comparing them with each
other. On the one hand, the standard functional of Perdew-Burke-Enzerhof was used
as a representative of the generalised gradient approximation. On the other hand,
the Gaussian-Perdew-Burke-Enzerhof functional was used as a representative of the
hybrid functionals. As has been shown in many other works before, the former fails
to predict the band gap around the H point. The latter undoubtedly leads to band
structures and band gaps that are consistent with experimental results and should
be used for further calculations. As shown in experiments or calculations with the
many-body pertubation theory (GW approximation), it could also be proven here that
tellurium is a semiconductor with a small band gap.
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1 Introduction

In recent decades, great progress has been made within laser technology. Meanwhile,
ultra-short laser pulses with a duration of a few femtoseconds can be generated,
which carry a large amount of energy alongside them [1]. This has led to new fields
of research and experiments.
Usually, the ions of a material are in an equilibrium position. By using an ultrashort
laser pulse, the ions can be shifted from their equilibrium position to a new equi-
librium position and then perform oscillations around their position there. At the
same time, the laser pulse is accompanied by a time-dependent phonon excitation.
This process is also called displacive excitation of coherent phonons in metals and
semi-metals. Experimental evidence is obtained by measuring the oscillations of the
optical reflectivity of the material using a pump pulse and a delayed probe pulse.
There is an urgent need to theoretically describe such interactions of ultrashort laser
pulses and matter and to make predictions about such types of interaction by means
of suitable methods [2].
Due to the fact that tellurium (Te) exhibits the same laser pulse induced excitation
of coherent phonons, it is used here as a representative case of study. In addition to
this property, however, tellurium has a number of other characteristics that makes
it attractive as a candidate for study. For example, it exhibits highly efficient ther-
moelectricity [3] or a pressure-dependent transition from the semiconducting phase
to a metallic phase [4]. As a subject of investigation, it is therefore located primar-
ily in experimental and computational solid-state physics, as well as in the material
sciences.
The aim of the work is to improve the prediction of the band structure of tellurium
by using a hybrid density functional theory (DFT) and to form a basis for further
theoretical description of the above-mentioned interactions. Hybrid approximations
to DFT are a mixture of the Hartree-Fock (HF) theory for the description of exact
exchange and the DFT. For comparison, the band structure is also calculated with
the conventional DFT, e.g. with the Perdew-Burke-Enzerhof (PBE) functional.
The thesis begins with a general introduction to the theoretical foundations of the
DFT and its components. In the following third section, the research methods are
discussed, as well as the details to be observed in the computer-based calculation
on the basis of the DFT. Results are presented and evaluated in the fourth section.
Finally, a short summary and a conclusion follow in the fifth section.
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2 Theoretical Background

Behind every great discovery is a theory. In order to understand the essential as-
pects of the methods used in this work, a certain basic theoretical knowledge is also
indispensable here. The crucial tool to describe interacting many-particle systems is
provided in the following.

2.1 Hartree-Fock Equations

This section is intended to give a brief introduction to the Hartree-Fock equations,
as they are generally essential for hybrid functionals.
The HF equations are an approximation to the solution of the many-body Schrödinger
equation (SGE). The approximation is necessary because the SGE, as a partial dif-
ferential equation, cannot be solved, except for the simplest systems. The main idea
is to assume that the electrons interact, but that this interaction is so small that a
solution in the form of the Slater determinant is possible [5]. Furthermore the usual
Born-Oppenheimer approximation and the mean-field approximation are assumed.
Relativistic effects are neglected.
V.Fock has shown in his article ’Näherungsmethode zur Lösung des quantenmech-
anischen Mehrkörperproblems’ (1930) that Hartree’s approximation method for de-
termining the solution of the many-body problem is not accurate enough. He has
established a system of equations for three-dimensional wave functions using the
variational principle, which gives more accurate solutions than the mean-field ap-
proximation [6].
Without going into the derivation of the HF equations in more detail here, this
one is about minimizing the energy E “ xΨ|Ĥ|Ψy, where Ψ is a quantum state
with the lowest energy, by varying the ϕiprq and thereby satisfying the conditions
(Orthogonality) [5]:

δE

δϕ˚
i

“ 0 (1)

ż

drϕ˚
i prqϕjprq “ δij (2)

Performing this calculus of variations then leads to the equations:
«

´
∇2

2
` Vnprq ` VHprq

ff

ϕiprq `

ż

dr1VXpr, r1qϕipr
1q “ ϵiϕiprq (3)

nprq “
ÿ

i

|ϕiprq|2 (4)

∇2VHprq “ ´4πnprq (5)

The exact form of the Fock exchange potential VX is given by the following expres-
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sion:

VXpr, r1q “ ´
ÿ

j

ϕ˚
j pr1qϕjprq

|r ´ r1|
(6)

The index j runs over the occupied single-particle states. This potential emerges
because of the Pauli Principle. However, this additional potential is accompanied
by an integration over the variable r1, which makes the practical solution of the HF
equations much more difficult [5].

2.2 Density Functional Theory

This section is now about the DFT. The basic concepts and ideas are presented and
explained below. It is the tool for various calculations in solid state physics, chemistry
or other areas in the natural sciences and is used in many programs nowadays.

2.2.1 Functionals

As the name ’Density Functional Theory’ suggests, this theory has something to
do with functionals. A short mathematical definition and its practical meaning is
given hereafter.

Definition (compare [7])
Let K “ tR,Cu, V P K be a vector space and f P V a function. A functional Φ is a
mapping from V into K:

Φ : f ÞÑ Φrf s P K

In simple terms, this means that a functional takes as argument a function and
returns a single value of that function. A simple example is the functional:

Φrf s “

ż 1

´1
fpxqdx with fpxq “ x2 ` 1

which leads to Φrf s “ 8
3 , which is a single value [8].

2.2.2 The Hohenberg-Kohn Theorem

An arbitrary system of interacting particles is considered, which is in an external
potential Vnprq. Fixed nuclei are assumed. From the given hamiltonian follow the
two underlying theorems for the DFT.

Theorem I
For the system described above, the potential Vnprq results from the ground state
density n0prq and is uniquely determined except for one constant.

Corollary I
All characteristics of a system follow from the ground state density. This can be
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concluded from the complete determinability (except for an energy shift) of the
Hamiltonian and the wave functions.

Proof
Let V I,II

n prq be two different potentials from which the same ground state density
nprq follows. These potentials are accompanied by two different Hamiltonians ĤI,II

and two ground-state wave functions ψI,II which are assumed to should have the
same ground-state density n0prq. Furthermore, the Dirac notation for the expecta-
tion value is introduced as follows:

E “ xψ|Ĥ|ψy “

ż

dr1 ¨ ¨ ¨ drN ψ˚pr1, ¨ ¨ ¨ , rN qĤψpr1, ¨ ¨ ¨ , rN q (7)

It is obvious that ψI is not the ground state of ĤII and that ψII is not the ground
state of ĤI . Accordingly, it follows for the energies:

EI “ xψI |ĤI |ψIy ă xψII |ĤI |ψIIy (8)

EII “ xψII |ĤII |ψIIy ă xψI |ĤII |ψIy (9)

The right terms on both equations can be rewritten:

xψI |ĤII |ψIy “ xψI |ĤI |ψIy ` xψI |ĤII ´ ĤI |ψIy (10)

xψII |ĤI |ψIIy “ xψII |ĤII |ψIIy ` xψII |ĤI ´ ĤII |ψIIy (11)

The definitions of the energy and the hamiltonians leads to:

xψI |ĤII |ψIy “ EI `

ż

n0prq

„

V II
n prq ´ V I

n prq

ȷ

dr (12)

xψII |ĤI |ψIIy “ EII `

ż

n0prq

„

V I
n prq ´ V II

n prq

ȷ

dr (13)

Accordingly, this follows from equations (8) and (9):

EI ă EII `

ż

n0prq

„

V I
n prq ´ V II

n prq

ȷ

dr (14)

EII ă EI `

ż

n0prq

„

V II
n prq ´ V I

n prq

ȷ

dr (15)

Addition of these two equations leads to the opposite statement EI`EII ă EI`EII .
This means that there are no two potentials which differ in more than one constant
leading to the same non-degenerate ground state density. It is to be mentioned
that at the beginning of the proof with the strict inequality of (8) and (9) it was
assumed that the ground state is not degenerate. In the original proof of W. Kohn
[9] the same was assumed. An argument for the correctness of corrolary I is, that
the ground-state density uniquely determines the hamiltonian. Therefore all wave
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functions are determined by solving the SGE with this hamiltonian.

Theorem II
In addition, the energy is given as a density dependent functional Erns, valid for
each potential Vnprq, which reflects the ground state energy in the point of global
minimum. Moreover, the density nprq, which minimizes the energy functional, is the
exact ground state density n0prq of the system.

Corrollary II
The determination of the ground state density and the ground state energy follows
from the energy functional.

Proof
Hohenberg and Kohn have confined the proof of the second theorem to densities
nprq which are ground state densities of the electron hamilatonian with a potential
Vnprq. Due to the properties, these densities are also called V-representable. Within
these "space", the densities can be defined as functionals. Due to theorem I and
corrolary II, any quantity that enters the energy functional can be considered a
density functional. So, it follows:

EHKrns “ FHKrns ` EII `

ż

Vnprqnprqdr (16)

Here EII is the interaction energy of the nuclei and FHK is a functional which
includes internal, kinetic and potential energy of the electron system.
Let nIprq be the ground-state density with a potential V I

n prq and ψIprq the wave
function of the unique ground-state. It follows:

EI “ EHKrnIs “ xψI |HI |ψIy (17)

Now another density nIIprq and another wave function ψIIprq is given, which is
obviously not the ground state. Following from this, the energy EII must be greater
then EI :

EI “ xψI |HI |ψIy ă xψII |HI |ψIIy “ EII (18)

This means that if you calculate the energy functional for the ground state density it
is in any case smaller than for any other density functionals. Furthermore, the exact
ground-state density and the ground-state energy follow from the minimization of
the total energy by the variation of the density with known functional FHKrns. This
gives rise to corollary II.
Besides the theorems presented here, there are extensions, such as spin DFT or
time-dependent DFT. In the former, for example, a spin density sprq is introduced
in addition to the particle density, so that for the functional E “ EHKrn, ss is valid.
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Figure 1: Hohenberg-Kohn Theorem: The arrows, which are less transparent, are
intended to represent the conventional solutions of the SGE. The external potential
Vn determines the solutions of the system. Via the Hohenberg-Kohn theorem, the
ground state density n0 is linked to the external potential Vn.

2.2.3 The Kohn-Sham Theorem

This section from the theory part is devoted to the Kohn-Sham theorem. It is one
of the most basic concept for the calculation of electronic structures nowadays. In
summary, it is about ’to replace the original many-body problem by an auxiliary
independet-particle problem.’ ([10],p.145). This replaced system is more easy to han-
dle. More precisely, the theorem makes the assumption that the ground state density
of the system under consideration is equal to the ground state density for a chosen
non-interacting system. For this system, equations arise which can be solved numer-
ically and whose nontrivial many-body terms are unified in an exchange-correlation
(xc) functional of the density. Thus, the solutions of these equations lead to the
ground state density and the energy of the original system, where the precision is
determined by the xc functional [10].
Besides the first assumption that the ground state density can be represented by that
of an auxiliary system (noninteracting-V-representability), it is further assumed that
the Hamiltonian for this system is in the form of single-particles. Here, however, a
local potential V σ

eff prq is introduced, which acts on an electron with spin σ at the
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point r. The Hamiltonian is then given by:

Ĥσ
aux “ ´

1

2
∇2 ` V σprq (19)

In total, there are Nσ “ NÒ `NÓ independent electrons in the system, one of which
has spin-up and the other spin-down. In the lowest-energy state, i.e. in the ground
state, the Hamiltonian has eigenfunctions ψσ

i prq and the eigenvalues ϵσi . Therefore
the density is given by:

nprq “
ÿ

σ

npr, σq “
ÿ

σ

Nσ
ÿ

i“1

|ψσ
i prq|2 (20)

The kinetic energy Ts of the independent particles is given by:

Ts “ ´
1

2

ÿ

σ

Nσ
ÿ

i“1

xψσ
i |∇2|ψσ

i y “
1

2

ÿ

σ

Nσ
ÿ

i“1

ż

|∇ψσ
i prq|2 dr (21)

At last the Hartree energy is given by following expression (represents the coulomb
interaction of the density with itself):

EHrns “
1

2

ż

nprqnpr1q

|r ´ r1|
drdr1 (22)

Rewriting the Hohenberg-Kohn theorem leads to the Kohn-Sham equation for the
energy:

EKS “ Tsrns `

ż

Vnprqnprq dr ` EHrns ` EII ` Excrns (23)

As may be seen, the first three terms in this equation are equivalent to the terms of
the independent electron approximation. In addition, there is the energy term for
the interaction of the nuclei and the xc functional. Comparing the second theorem
of Hohenberg-Kohn with the expression of the Kohn-Sham equation, an expression
for the xc functional can be given:

Excrns “ FHKrns ´ pTsrns ` EHrnsq (24)

It’s obvious that Exc has to be a functional, because all the terms on the right side
are functionals. Furthermore npσ, rq is spin- and position dependent [10].

2.2.4 Solution of the Kohn-Sham Auxiliary System

To solve the auxiliary system, and ultimately to find a solution for the original
system, the variational principle and the method of lagrange multipliers are used. It
is therefore a minimization problem.
The expression for EKS from equation (23) is the starting point. When deriving to
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ψσ˚
i , the chain rule is applied, which then leads to the following expression:

δEKS

δψσ˚
i prq

“
δTs

δψσ˚
i prq

`

„

En

δnpr, σq
`
EHartree

δnpr, σq
`

Exc

δnpr, σq

ȷ

δnpr, σq

δψσ˚
i prq

“ 0 (25)

Note that En is corresponding to the term
ş

Vnprqnprqdr of equation (23). Besides,
the orthonormalization condition xψσ

i |ψσ1

j y “ δi,jδσ,σ1 must be fulfilled. Thus, the
problem at hand can be viewed equivalently as the derivation of the SGE from
Rayleigh-Ritz’s principle (ΩRR “ xΨ|Ĥ ´ E|Ψy). Now it makes sense to use the
respective definitions from above for Ts and nσprq and derive them and use the
lagrange multipliers to handle the constraints:

δTs
δψσ˚

i prq
“ ´

1

2
∇2ψσ

i prq (26)

δnσprq

δψσ˚
i prq

“ ψσ
i prq (27)

This then leads to an expression which resembles the SGE:

Hσ
KSψ

σ
i prq “ ϵσi ψ

σ
i (28)

Here is:

Hσ
KSprq “ ´

1

2
∇2 ` V σ

KSprq (29)

V σ
KSprq “ Vnprq `

δEH

δnpr, σq
`

δExc

δnpr, σq
“ Vnprq ` VHprq ` V σ

xcprq (30)

The last three equations are the well-known expressions of the Kohn-Sham theorem.
The equations correspond to those of independent particles . The potential which
results from the resulting density must be found self-consistently (see next section).
However, in order to find the exact ground state density, an expression for the xc
functional must be given, which turns out to be not too easy. Exact solutions do not
exist for this functional, but there are good approximations which lead to general
valid results (see next but one section).

2.2.5 Self-Consistent Solution

The exact way to achieve a self-cosistent solution of the Kohn-sham states is shown in
Fig. 2. Essentially, it is a matter of calculating the Kohn-Sham equations under the
condition of consistency of potential and density. Thus, to achieve self-consistency,
the potential and the density are successively changed. It is an iterative solution
process, which can be represented as follows:

Vi Ñ ni Ñ Vi`1 Ñ ni`1 Ñ ¨ ¨ ¨
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Figure 2: Self-Consistent Solution of the Kohn-Sham Equations
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It should be noted that the potential unique to the ground state density is at a
minimum that of the Kohn-Sham potential V σ

eff prq|min “ V σ
KSprq (Hohenberg-Kohn

Theorem). Therefore the symbol V σ
eff in Fig. 2. Further it would be more exact,

but also clearly more complicated, if the xc functional is defined as a functional of
the spin density matrix. Thus the Kohn-Sham Hamiltonian would be a 2x2 matrix
and harder to solve. Due to this fact, the expression for the electron density in
Fig. 2. Finally, for spin-polarized systems, two calculations have to be performed
simultaneously, each for one of the two spin directions.

2.2.6 Exchange-Correlation Functionals

As mentioned before, xc functionals play a major role in the computation of elec-
tronic structures by means of the Kohn-Sham theorem. In the meantime, a large
number of such functionals exist. Two of the most frequently used functionals are the
Local Density Approximation (LDA) and the Generalized-Gradient Approximations
(GGA), which are also discussed in this chapter.

LDA
The LDA is a comparatively simple approximation for the xc functional. As the
name suggests, it is a local functional whose xc energy density is the same as for a
homogeneous electron gas and depends only on the position r. The expression for
the functional is as follows:

ELSDA
xc rnÒ, nÓs “

ż

nprqϵhomxc pnÒprq, nÓprqqdr (31)

“

ż

nprq

„

ϵhomx pnÒprq, nÓprqq ` ϵhomc pnÒprq, nÓprqq

ȷ

dr

An analytical expression exists for the exchange energy of the homogeneous electron
gas. The correlation energy could be calculated by Monte Carlo methods. Due to
the simplicity of this type of functional, the computational cost is still relatively low.

GGA’s
For many molecules and solids, GGA’s are the first choice to get good results. Com-
pared to the previously mentioned LDA, GGA’s are semilocal. This is because the
xc energy density now also depends on the gradient of the electron density. In simple
words, this means that not only the exact location r is crucial, but also a small region
around this location. The mathematical expression then looks as follows:

EGGA
XC rnÒ, nÓs “

ż

nprqϵXCpnÒ, nÓ, |∇nÒ|, |∇nÓ|, ...qdr (32)

“

ż

nprqϵhomx pnq FXCpnÒ, nÓ, |∇nÒ|, |∇nÓ|, ...qdr

ϵhomx corresponds to the exchange energy of an unpolarized electron gas and Fxc is

10



dimensionless, but depends on the density and the density gradient. Many types of
such GGA’s exist, differing essentially in the expression Fxc.

Figure 3: Comparison of different types of GGA’s ([10],p.181)

In Fig. 3, for example, the exchange factor Fx is plotted against the density gradient
s. Without going into more detail, this can be defined for the m-th order as follows:

sm “
|∇m n|

p2kF qm n
(33)

Where kF is the Fermi-momentum. s basically indicates how fast the density changes
in units of the Fermi momentum. What is interesting about this Figure is that it
can be seen that the different functionals in the small range s ă 3 all have a similar
appearance and thus give similar physical results in this range (for many standardized
systems). In the larger gradient range the functionals then do differ considerably,
but this range alone is not so strongly relevant for the physical evaluation. The
improvement of GGA’s is, the fact that Fx ě 1 and therefore leads to a smaller
exchange energy and a correction of the overestimated LDA overbinding. It is also
possible to specify an expression for Fc. Typically, however, the correlation term is
smaller than the exchange term. Due to an additional dependence of the xc energy
density, the calculations with GGA’s are more complex.
In this work, the PBE functional, which can also be seen in Fig. 3, is used for
some calculations. Without going into the exact appearance of Fx and Fc [11], this
functional provides good resulsts in many applications [12], even if the functional is
non-empirical.
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Hybrid Functionals
Finally, something about hybrid functionals. As the name ’hybrid’ suggests, they are
a combination of the DFT and HF. This can be illustrated by an example: While LDA
and GGA’s mostly underestimate the band gap, the HF theory mostly overestimates
it. In order to find a consensus, one could conclude that a combination of both
is useful to get a result which agrees with the experiment. For the representation
of the ratios a factor α is introduced and additionally there is the HF term in the
representation for the xc functional:

Ehyb
xc “ αEHF

x ` p1 ´ αqEGGA
x ` EGGA

c (34)

This means that for α “ 0 the ’normal’ xc functional is present, whereas for the
other extremal case α “ 1 only the HF exchange is taken into account.
The PBE0 functional can be cited as an example. Here, the mixing parameter
α “ 0.25. Thus, it follows:

EPBE0
xc “

1

4
EHF

x ` p1 ´
1

4
qEPBE

x ` EPBE
c “ EPBE

xc `
1

4
pEHF

x ´ EPBE
x q (35)

In this work, in addition to the PBE-GGA functional, the Gau-PBE functional is
also used, which belongs to the hybrid functionals. ’Gau’ is an abbreviation for
Gaussian. In the following it is briefly explained how the Gau-PBE is composed and
what its advantages are. An idea that is also used in the Heyd-Scuseria-Ernzerhof
(HSE) functional, for example, is the range subdivision. The HF exchange energy
is divided into short and long range contributions to the Coulomb interaction. In
other words, the electron repulsion operator 1

r is split into an HF term and a DFT
term and looks like this:

1

r
“

ˆ

1

r
´O

˙

DFT

`O (36)

Where O is an expression for the modified HF exchange term. The Gau-PBE now
uses a gaussian function for the modified HF term:

O “ βe´rαr2 (37)

The parameters are determined as follows: β “ 0.24, rα “ 0.15. This hybrid Scheme
is used in conjunction with the PBE-GGA Functional [13]. The accuracy of the
functional is comparable to longer established functionals, such as HSE, but the
advantage is in the computation time. As song and hirao have shown in their paper,
the computation time for the first SCF cycle is at least twice as fast as that of the
hybrid functional HSE [13]. Nevertheless, it is still about two and a half times as
long as that of the PBE-GGA functional.
In summary, the functionals are shown in Fig. 4. With increasing height, the com-
plexity of the calculations increases, but also the accuracy of the calculations. One
should always keep in mind the system to be calculated, then the choice of the xc
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functional stands and falls with it. The groups of xc functionals, which are used in
this paper are marked with a circle.

Figure 4: Visualization of the different xc Functionals

2.3 Spin-Orbit Coupling

The last section in this chapter is about the Spin-Orbit coupling (SOC). As we will
see later it can have an decisive influence on the band structure.
The phenomenon of SOC is relatively easy to describe using the Bohr model of the
atom: An electron has a magnetic moment due to the intrinsic angular momentum
(spin). This electron orbits around the positively charged atomic nucleus which
is accompanied by an angular momentum. In the rest system of the electron, the
nucleus slowly orbits around the electron and due to the charge, this motion generates
a circular current, which according to the law of Biot-Savart generates a magnetic
field, parallel to the angular momentum vector. This magnetic field now interacts
with the spin induced magnetic momentum of the electron.
Considering a solid, the spin-orbit coupling just described can cause a cancellation of
the degeneracy of the ψkpr, Òq and ψkpr, Óq states. It should be noted, however, that
Kramer’s degeneracy must be preserved between the ψkpr, Òq and ψ˚

kpr, Óq states.
This is, as already described above, a consequence of the fundamental time reversal
invariance. The state ψ˚

kpr, Óq is the conjugate complex wave function where both
the spin and the wave vector of the electron are reversed. For spinless particles just
the relation results Enpkq “ Enp´kq [14].
If inversion symmetry is present in a crystal, SOC does not cause separation of non-
degenerate states with opposite spin. This is because the state ψkprq is energetically
equivalent to the state ψkp´rq due to the symmetry. Thus, Kramer’s degeneracy
holds.
It may be that degenerate states exist at certain points in the Brillouin Zone (BZ)
and SOC can play out its effects there. As an example, a point with cubic symmetry
is assumed, which sits in the center of the BZ. The p-bands are considered, which
are built up from the states px,y,z of the atom. Without SOC, there is a 6-fold
degeneracy at k “ 0, since each p state can accept 2 electrons with opposite spin

13



(compare Figure 5a). If the SOC now acts, a splitting into a fourfold and a twofold
degenerate level at k “ 0 results if inversion symmetry is present (Figure 5b). If
there is no inversion symmetry, the Kramers degeneracy is cancelled Figure 5c) [14].

Figure 5: Influence of the SOC on the band structure([14],p.344)
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3 Research Method

In practice, calculations based on the DFT are performed with a computer. Based
on the theory introduced in section two, the calculations are performed using the
program Quantum ESPRESSO (QE). In the following, a small overview of the basics
of this program and the practical use of the DFT is given.

3.1 Pseudopotentials

Pseudopotentials are an approximation for the actual potential present. In principle,
they emulate the real potential. The main idea of this method is to categorize the
electrons of an atom into two classes: the core electrons and the valence electrons.
On the one hand, the core electrons are so strongly bound and so strongly localized
in the inner closed shells that they remain essentially unchanged. Basically, it does
not matter for the core electrons whether the atom is a part of a solid or whether
it is free. On the other hand, the valence electrons, which are present in the outer
filled or unfilled shells, are responsible for bonding, ionization or other activities. To
reduce the computational effort, the frozen core approximation now assumes that
the charge of the core is reduced by the amount of the core electrons. The status
quo is now a new nucleus with reduced charge, which has a smaller influence on the
valence electrons (compare Fig. 6) [15].

Figure 6: Simplified illustration of the frozen core approximation

An example which is a bit more impressive is platinum. This element has a total of
78 electrons, 10 of which are valence electrons. The application of the frozen nucleus
approximation would already bring a considerable advantage in the calculation, since
the computational load would be reduced by more than one third (compared to Fig.
6) [15].
Usually, wavefunctions oscillates when they are near highly localized core regions.
This is based on the fact that they want to be orthogonal to the core states (orthogo-
nality ensures that each wave function is independent and unique and thus obeys the
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Pauli principle). The problem with this type of wave function is that it is difficult to
describe, let alone compute. The advantage of the frozen core approximation is that
when creating pseudopotentials, the wavefunction itself, as well as the pseudopoten-
tial in the core region, can be softened [15]. The situation is shown schematically
in Fig. 7. The all-electron wave function ΨAE wiggles near the core region whereas
the pseudized wave function ΨPP is softened. The same yields for the all-electron
potential UAE and the pseudopotential UPP .

Figure 7: Pseudized 3s wave function as well as belonging potentials ([15],p.177)

The usage of Pseudopotentials leads to following advantages [15]:

1. less plane waves (see next section) needed, which leads to a faster calculation

2. a change of energy is more likely with pseudopotentials, because a large part
of the not changing energy is excluded by the frozen core approximation from
the beginning.

3. errors due to pseudopotentials relatively low

There are essentially three groups of pseudopotentials, all of which certainly have
their reason for being. On the one hand, there are Norm-Conseving Pseudopoten-
tials (NCPPs), on the other hand Ultrasoft Pseudopotentials (USPPs) and Projector
augemted waves (PAW). In this work, the former are used for the calculations. In
these, it is assumed that the norm of the pseudized wave function corresponds to
that of the all-electron wave function (up to a core-radius rc)[15]:

ż rc

0
|ΨAE |2 dr “

ż rc

0
|ΨPP |2 dr (38)
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More precisely, an SG15 Optimized Norm-Conserving Vanderbilt (ONCV) pseudopo-
tential was chosen for the calculation. This was created using the ONCVPSP code,
which is based on the work of D.R. Hamann [16]. The crucial parameters of the
pseudopotential were optimized in such a way that they correspond with high accu-
racy to the results of the calculations with all-electrons [17]. Furthermore, a fully
relativistic SG15 ONCV pseudopotential was chosen so that calculations with SOC
can be performed. These were generated by P. Scherpelz et al. [18].
It is worth mentioning that this pseudopotential was chosen because of repeated cal-
culation errors with pseudopotentials of class PAW and USPP, especially with respect
to hybrid functionals. Furthermore, at the moment there are no pseudopotentials
that are specific for hybrid functionals or non-local functionls [19].

3.2 Plane Waves

As mentioned above, QE uses a plane wave basis set to calculate the solution of
the Kohn-Sham states. Hence the name of the module PWscf (Plane-Wave Self-
Consistent-Field), which is used for most of the calculations here. To put it in
simple terms, the key concept in solving differential equations such as the SGE or
the Kohn-Sham equation lies in the representation of these equations in a plane wave
basis, respectively in the use of Fast-Fourier transform (FFT) [10].
A periodic wave function ψiprq can be represented in a complete set of Fourier com-
ponents:

ψiprq “
ÿ

q

ci,q
1

?
Ω
eiq¨r “

ÿ

q

ci,q |qy (39)

Here ci,q are the expansion coefficients and Ω is the volume of a solid. The plane
waves |qy obeying the orthonormalization condition, since:

xq1|qy “
1

Ω

ż

Ω
e´iq1¨reiq¨r dr “ δq,q1 (40)

The wave approach in Fourier components can now be used in an equation similar
to SGE:

ÿ

q

xq1|Ĥ|qy ci,q “ ϵi
ÿ

q

xq1|qy ci,q “ ϵici,q1 (41)

This is the representation of the SGE in the Fourier space. For a crystal whose
potential V is periodic, a representation in Fourier components can also be made.

V prq “
ÿ

m

V pGmqeiGm¨r (42)

Here V pGmq is defined as:

V pGq “
1

Ωcell

ż

Ωcell

V prqe´iG¨r dr (43)
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and Ωcell is the voume of the primitive cell. The matrix elements are therefore:

xq1|V |qy “
ÿ

m

V pGmqδq1´q,Gm (44)

They are not zero, if q and q1 differ by Gm. One can now define q “ k ` Gm and
q1 “ k ` Gm1 , which differ by Gm2 “ Gm ´ Gm1 . Thus, the SGE in fourier space is
given by:

ÿ

m1

Hm,m1pkqci,m1pkq “ ϵipkqci,mpkq (45)

Whereby the Hamiltonian is then also given in matrix representation:

Hm,m1pkq “ xk ` Gm|Ĥ|k ` Gm1y (46)

“
ℏ2

2me
|k ` Gm|2δm,m1 ` V pGm ´ Gm1q

Similarly, the derivation of the Kohn-Sham equations in the Fourier space works in
the same way. With this representation, computer-aided calculations can be per-
formed.
Two things are worth mentioning here: First, q can be constrained in equation (39)
such that q “ k ` Gm. Thus, it follows:

ψi,kprq “
ÿ

m

ci,mpkq ˆ
1

?
Ω
eipk`Gmq¨r “ eik¨r 1

?
Ncell

ui,kprq (47)

Here Ω is Ω “ NcellΩcell and ui,k is:

ui,kpkq “
1

?
Ωcell

ÿ

m

ci,mpkqeiGm¨r (48)

As one might may see is this the Bloch theorem from classcial Solid-State physics.
Furthermore follows:

1

ΩCell

ż

Cell
u˚
i,kprq ¨ ui1,kprq dr “

ÿ

m

c˚
i,mpkqci1,mpkq “ δi,i1 (49)

This means that ci,mpkq are orthonormal vectors (in the index m). Second, one
can find a set of eigenstates labeled i “ 1, 2, ¨ ¨ ¨ for each k by diagonalizing the
hamiltonian in the basis of fourier components [10].
The plane wave basis is now the fundament to perform calculations for e.g. the
density, which is indispensable for the Kohn-Sham equation. In principle a periodic
wave function is transferred by the FFT into a basis with N grid points, squared
there (in order to receive in each case the density) and summed up over each i-th
band and each wave vector. Finally the inverse FFT takes place, whereby again
to the old basis is returned [10]. This is only a very simplified picture, but should
illustrate that the plane wave basis introduced above, as well as the FFT have a big
role in the calculation.
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3.3 k Points

If you want to make calculations with QE, you cannot avoid k points. In the course
of the DFT and the numerical calculations the algorithm must evaluate integrals of
the following kind:

Ξpkq “
Vcell

p2πq3

ż

BZ
ξpkq dk (50)

There are many numerical methods, which are dedicated to the computation of in-
tegrals, as for example the trapezoidal method or the gaussian quadrature, however
with these always the question arises, how efficiently they can be implemented nu-
merically [8]. An approach that is widely used today and efficient was developed by
Mockhorst and Pack in 1976. In fact QE is based on this method among others. The
original paper from the two developers states:

’To optimize the calculations it is helpful only to compute these functions at a
carefully selected set of points in the BZ’ [20].

These points in the BZ, also called k points, are therefore crucial for the evaluation of
the integrals mentioned above and thus for the calculation of decisive quantities, such
as the total energy of the system. Furthermore, it is possible to increase the efficiency
of the integral calculation over the entire BZ by exploiting all existing symmetries.
Instead of calculating the integral over the entire BZ, it is also possible to calculate
it over the entire Irreducible Brillouin Zone (IBZ) (reduced by all symmetries of the
point group of the lattice), which is much faster due to the smaller number of points.
The IBZ is then extended in principle to the entire BZ [8].

Figure 8: Schematic illustration of the k point convergence test

As you might have guessed, the number of k points has a strong influence on the
result. One can assume that with an increased number of k points a more exact
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result, but also an increased computational effort and an increased computational
time goes along. This is where the term convergence comes into play for the first time.
Since one can never know exactly, for which k point set the result is exact enough,
but the computation time is lowest, a convergence test must be accomplished before
the actual computation. This means that the total energy is plotted as a function of
the k-points and then checked for convergence. The convergence is shown by the fact
that the total energy settles approximately at one value and deviates only slightly
for increasing k-point sets [8]. This situation is illustrated in Fig. 8.
For calculations with hybrid functionals, you must specify a q point set in addition
to the k points. This is equivalent to the k point set, but here in relation to the Fock
operator. It is important that k+q corresponds to a k point in the k point set [21].
In addition to k point convergence, q point convergence should always be tested. It
should be noted, however, that the computation time is also enormously increased
here due to a larger q point set.

3.4 Cutoff Energy

Another parameter that influences the result is the plane wave kinetic cut-off energy.
The idea is that the Bloch waves are solutions of the Schrödinger equation with the
kinetic energy:

E “
1

2
|k ` G|2 (51)

The solutions with smaller energy must be weighted more heavily because they have
a larger physical impact, so solutions with energy greater than Ecut “ 1

2 |Gcut|
2 are

simply truncated. This leads to the fact that the, in principle, infinite plane wave
basis is drastically reduced and a faster solution is possible [8].

Figure 9: Schematic illustration of the cutoff energy convergence test
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As with the k point set, you can never know exactly what the correct cutoff energy
is before calculating it. So also here it is necessary to do a convergence test to get
solutions which are accurate enough on the one hand, but on the other hand also
did not take too much time. This situation is also pictured in Fig. 9.

3.5 Smearing

One more thing that should be addressed is smearing. As already shown in the
theory part, metals, semiconductors and insulators have different band structures and
different properties. For the latter both, the charge density decreases continuously
up to the band gap and the integration over the BZ can be done as described before.
Metals, however, exhibit a sharp jump in occupancies at 0K at the Fermi level. In
the plane wave representation, it is therefore quite difficult to perform an integration.
The idea behind smearing is now to soften this hard edge by a function. This function
makes the integrand smoother and thus the integration is easier [15]. There are
various functions available, such as Gaussian smearing, Fermi smearing or Methfessel-
Paxton smearing.

3.6 Calculation Procedure

3.6.1 Convergence

To test the convergence of the quantities as shown in section 3.3 and section 3.4,
several Self-consistent Field (SCF) calculations of the pw.x program from QE have
to be performed. To make the work easier, it is useful to know a little about the
shell programming language BASH. To avoid having to start each SCF calculation
individually and manually, a loop is used in BASH to write the SCF input files for
the respective k-points or cut-off energies into a file scf.in and then have QE execute
it. Afterwards one can also use a BASH script to write out the total energy from
the QE output file scf.out.

3.6.2 Calculation of the band structure with the PBE functional

Once the convergence of the k point and the cutoff energy has been checked, one can
continue with the determined values and perform various further calculations. For
the calculation of the band structure, a SCF calculation with the converged k point
set and the converged cut-off energy is performed. This leads to a more or less correct
charge density (compare arguments of convergence). In a further calculation, which
is called Non Self-Consistent Field (NSCF), this charge density is then assumed and
fixed [22]. In addition, a set of k points is specified, which corresponds to a high
symmetry path along which the band structure is to be calculated. The path is based
on high symmetry points of the reciprocal cell. In a third calculation, the program
bands.x (which is part of the post-processing modul of QE) is used to convert the
results of the NSCF calculation into a displayable format. The result is stored in a
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.gnu file, which can be displayed by Gnuplot or other programming languages like
python.

3.6.3 Calculation of the band structure with Gau-PBE functional

The calculation of the band structure with hybrid functionals is somewhat more
difficult, since no NSCF method is implemented. Therefore, maximally localized
Wannier functions (MLWFs) are used, which are implemented by the program wan-
nier.x. First, a converged SCF calculation is performed, but for the MLWFs a special
k point set is needed (full k point set), which can be generated by the tool kmesh.pl.
The k points generated by kmesh.pl are inserted into the scf.in file. After that, the
SCF calculation is performed. Next, the Wannier input file is written and executed
with the -pp option to generate required files. The pw2wannier90.x is then used for
conversion. Finally the actual wannerization is done by executing the Wannier input
file without the -pp option. The display can be done again with Gnuplot or another
programming language.
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4 Results

In this chapter, the band structures for Te are calculated. First, the general struc-
ture of Te is dealt with. This is followed by calculations with the PBE functional
for comparison purposes. Essentially, it is then about the prediction of the band
structure with the Gau-PBE hybrid functional. In both sections, the influence of the
SOC is also examined.

4.1 Preliminaries

This section shall contain a brief description of the material to be investigated and
the path for the band structure calculation.

4.1.1 Structure

The crystal structure of Te belongs to the space group number 152(P3121). Te can
thus be assigned to the trigonal crystal system, with hexagonal Braivais lattice. The
unit cell consists of three Te atoms, which are arranged in the cell as follows:

Figure 10: Te in the unit cell

In Fig. 11, Te is shown in a 2 ˆ 2 ˆ 7 supercell. You can see that three atoms,
labelled I, II and III, repeat periodically in the material. This type of Te forms helical
structures in space by itself. This gives reason to also investigate lower dimensional
Te, as Pan et al. have already done [23].

Figure 11: Te in a 2 ˆ 2 ˆ 7 supercell
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4.1.2 k Path for band structure Calculations

For the NSCF calculations with the PBE functional, as well as for the Wannierization,
it is necessary to specify a path of high symmetry points of the first BZ, along which
the band structure is calculated. The points correspond to specific locations of the
first BZ and are therefore different for different crystal structures. Fig. 12 shows the
hexagonal BZ for the crystal under investigation. The path is marked with green
arrows and the labels of the respective points are also noted.

Figure 12: First BZ, as well as the k path for the Te crystal

The path considered is:

Γ Ñ M Ñ K Ñ Γ Ñ A Ñ L Ñ H Ñ A

These points will then later also be marked in the band structures on the x-axis.

4.2 Studies with the PBE Functional

4.2.1 Convergence

First, the k point convergence was tested. QE automatically creates a uniform k
point set. k point sets were chosen in a range from 6 ˆ 6 ˆ 6 to 30 ˆ 30 ˆ 30, where
the step size is two. In addition, an initial estimated cut-off energy of 50Ry was
chosen. Since one of the two convergence tests must be started with, one of the two
quantities must always be estimated beforehand, since it is not possible to know it
beforehand.
The energy for different k point meshes is illustrated in Fig. 13. From a k point set
of 14 ˆ 14 ˆ 14 the total energy begins to converge approximately. The fluctuations
here are of the order of 10´5 Ry or below.
The next step is to examine the total energy as a function of the cut-off energy for
convergence. For this purpose, the k point set was fixed at 20 ˆ 20 ˆ 20 and the
cut-off energy was varied. This is based on the same scheme as for the k points.
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Figure 13: Total energy as a function of the k points as evaluated from DFT (PBE)

Here, a range of 20Ry to 140Ry was chosen for the cut-off energy. The convergence
in Fig. 14 can be clearly seen here. From a value of 40Ry, the total energy is
apparently at the same value.
A cut-off energy of 80Ry was chosen here, which is probably a good middle ground
between computational costs and accuracy.

Figure 14: Total energy as a function of the kinetic energy cutoff as evaluated from
DFT (PBE)

25



4.2.2 Band structure without SOC

First, the band structure was calculated without SOC. For this purpose, a fully
self-consistent calculation was carried out with the convergence parameters listed
here.
The band structure is illustrated in Fig. 15a. The band gap that occurs here is
determined by the distance between the valence band maximum and the conduction
band minimum at the H point. Fig. 15b shows this area in a magnified image.
The maximum of the valence bands slightly differs from the H point. The value of
the fundamental gap is 0.1667 eV. The Fermi energy lies between the valence band
maximum and the conduction band minimum. Therefore, the calculations at this
time and without SOC show that Te is a small gap semiconductor. The result of the
band structure is in good agreement with Nakayama et al.[24]. In the calculations
of Nakayama et al. a slight offset of the maximum of the valence band can also be
recognised.
Furthermore, Pan et al.[23] also performed calculations on bulk Te with the PBE
functional and came to the conclusion that without SOC there is an band gap of
0.17eV . The band gap calculated here is therefore also in good agreement with this
reference.
Notwithstanding the good agreement with the references, the band gap is underesti-
mated compared to the experimental value. In 1977, Anzin et al.[25] used the method
of photoconductivity spectra to show that Te at a temperature of 1.5 K to 4.2 K has
a band gap of p0.3296 ˘ 0.0009q eV. This means that compared to the band gap of
0.1667eV , the deviation is approximately 49, 4 %, which is a considerable difference.
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Figure 15: Band structure of Te as obtained from DFT with the PBE functional in
presence of SOC
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4.2.3 Band Structure with SOC

As a next step we include SOC in the simulations, while leaving other parameters
unchanged. The band structure is shown in Fig. 16a.
The larger number of bands, compared to Fig. 15a, results from the lifting of spin
degeneracy due to SOC. A zoom is illustrated in Fig. 16b, where is shown that the
valence band maximum and the conduction band minimum do not cross or touch
each other.
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Figure 16: Band structure of Te as obtained from DFT with the PBE functional in
absence of SOC

Nevertheless, a small part of the valence band maximum at the H point lies above
the Fermi level. This means that the valence band is not completely occupied. Here
Te exhibits a metallic character.
The calculated band structure is comparable to the structure worked out by Naka-
yama et al. [24]. Furthermore, the valence bands around the H point agree with
the experimental band structure (compare Fig. 17). Here, ARPES was used to gain
insight into the band structure of Te.

Figure 17: Band structure calculated and measured by Nakayama et al.[24] in pres-
ence of SOC
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Besides, Pan et al. also carried out a PBE calculation with allowed SOC and arrived
at a similar result [23]. They calculated a gap of 0.03 eV at the H point but the
fermi energy also lies over the conduction band which indicate a metallic character.
The band structures compare well with both references.

4.3 Studies with the Gau-PBE Functional

As shown in the last section, the conventional DFT, i.e. the calculation with GGA
xc functionals, fails to predict the band gap at the H point. As was shown in the
experiments mentioned earlier, Te has a finite band gap. This could be confirmed in
calculations with the GW approximation ([4],[23]). In order to obtain similarly good
results, the calculations are carried out in the following with the Gau-PBE hybrid
functional, which should lead to a better prediction of the band structure.

4.3.1 Convergence

In this section, it is again first necessary to check for convergence. Since the hybrid
functional Gau-PBE is to be used the input files have to be edited. It is now partic-
ularly important that convergence is also tested for the q point set (compare section
3.3).
The dependence of the total energy on the k points and the q points is shown in Fig.
18. I consider a much lower number of k points as compared to PBE calculations,
since a too fine set of k points in combination with a too fine set of q points would
have led to excessive calculation time.

Figure 18: Total energy as a function of the k points, respectively of the q points, as
evaluated from hybrid DFT (Gau-PBE)
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Furthermore, no total energy could be determined for a k point set of 12 ˆ 12 ˆ 12

and a q point set of 12 ˆ 12 ˆ 12, as the calculation was aborted due to the time
limit. The changes of the total energy in Fig. 18 are in the order of 10´6 Ry, which
is why a k point set of 8ˆ8ˆ8 and a q point set of 4ˆ4ˆ4 is considered convergent
enough, especially with regard to the computing time.
The convergence of the total energy with respect to the cut-off energy was then
tested using the convergent k point set. This was done as already shown in section
4.2.1.

Figure 19: Total energy as a function of the kinetic energy cutoff, as evaluated from
hybrid DFT (Gau-PBE)

Here the convergence is again more visible. It starts to converge at a cut-off energy
of 60Ry. After that, the fluctuations in the total energy are only marginal. Here,
too, there is only a fluctuation in the sixth decimal place. The parameters for the
following calculations are therefore a k point set of 8ˆ8ˆ8, a q point set of 4ˆ4ˆ4

and a kinetic energy cut-off of 80Ry

4.3.2 Band Structure without SOC

Also using the Gau-PBE functional, the band structure is first considered without
the use of SOC. The band structure is calculated as described in section 3.6.3. As
already stated in section 2.2.6, the fraction of HF exchange energy can be changed.
In the first step, it is left at the default value of 0.24 for the Gau-PBE functional.
After the Wannierization one gets a band structure which is quiet good comparable
with the PBE case. The main difference is that the band gap is larger, one can see
in comparison to Fig. 15, that the individual bands are somewhat smoother.
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Figure 20: Band structure of Te as obtained from hybrid DFT with the Gau-PBE
functional (HF fraction of 0.24) in absence of SOC

A problem that presumably arises from the use of a relative coarse k- and q-point
grid and the Wannierization becomes apparent when the band structure is magnified.
Fig. 20b shows this issue. Around the H point, the valence band has an unexpected
jump, as does the underlying band. The maximum of the valence band is again
shifted a minimal distance to the left. This results in a band gap of 0.7016 eV.
A comparison with the experimentally measured band gap of 0.3296 eV shows, an
overestimation by 0.3720 eV. This suggests that the fraction of the HF exchange
energy is too large and a smaller fraction must be chosen to improve agreemure.
Accordingly, the influence of the fraction of the HF exchange energy on the band
gap is investigated in the following. To do this, the HF exchange energy is varied in
small steps and plotted against the bandgap (compare Fig. 21).
As can be seen, the size of the band gap increases with increasing HF fraction. The
size of the band gap at a proportion of zero is almost identical to the band gap
calculated by the PBE functional (without SOC). This is not surprising since, as de-
scribed in section 2.2.6, the pure PBE functional is present at an HF fraction of zero.
In all calculations, the Fermi level lies between the valence band and the conduction
band. Accordingly, Te shows semiconducting properties in all calculations, as in the
PBE analysis.
In this case of calculation, according to Fig. 21, one would assume that the band
gap at an HF fraction of about 0.09 corresponds to the experimentally calculated
band gap. Even though this is a small value, it significantly affects the results of the
conventional DFT calculation. With this value of the HF fraction, the band gap of
tellurium can be reproduced, however, the calculation was carried out without SOC
until now. However, since this has a decisive influence on the band structure, it must
be included. Hence, this is done in the same way as in the calculations with the PBE
functional in the following section.
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Figure 21: Dependence of the Band Gap on the Exx-Fraction in absence of SOC

4.3.3 Band Structure with SOC

The band structure with the default value for the HF exchange energy was used
again to get an overview of the band structure with allowed SOC. This is illustrated
in Fig. 22a.
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Figure 22: Band structure of Te as obtained from hybrid DFT with the Gau-PBE
functional (HF fraction of 0.24) in presence of SOC

The Fermi level also lies between the valence band and the conduction band. With a
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band gap of 0.4488 eV, this calculation appears to be closer to the experimental value
than the previous hyrid analysis without SOC. The overestimation is only 0.1192 eV.
It is also noticeable in the enlargement 22b that the same problems do not occur as
in the hybrid calculation without SOC. There are no unexpected jumps around the
H point with an HF fraction of 0.24.
The influence of the HF component on the band gap is investigated below. As shown
in Fig. 23, the appearance is the same as in the calculation without SOC, reported
in Fig. 21. The band gaps are generally smaller than in the calculation without
SOC, as expected in analogy to the PBE analysis.
With a fraction of HF exchange energy of almost zero, the material also shows
metallic characteristics, since the valence band lies over the fermi energy. This also
means that for a low HF fraction, the same band structure can be observed as for
pure PBE calculations. It can also be seen that the conduction band minimum is
shifted slightly to the right.

Figure 23: Dependence of the Band Gap on the HF fraction in presence of SOC

If we look at Fig. 23, the question now arises on the one hand as to the fraction
of the HF exchange energy at which there is no metallic character but the experi-
mentally confirmed semiconducting character, and at which fraction the value of the
experimental band gap is reached.
Regarding the second point it turns out that a HF fraction of 0.194 reproduces the
experimentally measured value. The calculated Gap is 0.3296 eV. The band structure
is illustrated in Fig. 24. Apart from a slightly different k path, the band structure
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calculated here is in good agreement with the band structure calculated by Hirayama
et al. especially at the crucial H point (compare Fig. 25), calculated with many-body
pertubation theory (GW Approximation).
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Figure 24: Band structure of Te as obtained from hybrid DFT with the Gau-PBE
functional (HF fraction of 0.194) in presence of SOC

Figure 25: Band structure calculated by Hirayama et al. using many-body pertuba-
tion theory (GW approximation) [4]

It remains to be verified at what fraction of the HF exchange energy a transition
from the calculated metallic phase to the semiconducting phase takes place. For this
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purpose, calculations are carried out again for the values 0.02, 0.03 and 0.04. In all
these calculations, the valence band lies over the fermi energy at the H point. Due to
insufficient time for the calculations, a more accurate calculation around the value of
0.40 was not performed. It is estimated that the semiconducting phase should begin
around a value of 0.42.
A summary can be seen in Fig. 26 respectively. The grey area represents the area
where Te shows metallic properties. The area with a green background represents
the area where Te behaves like a semiconductor. The experimental value, or the
value calculated with an HF fraction of 0.194, is also marked.
The metallic area, because it is so small, is only clearly visible under magnification.
There you can see very well that the transition from metallic to semiconducting
is fluid. The estimated critical value of the HF fraction of 0.042 should definitely
be taken into account in further calculations with a hybrid functional so that the
characteristic properties of Te can be reproduced correctly.
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Figure 26: Dependence of the Band Gap on the HF fraction in presence of SOC
(magnified)
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5 Conclusion/Outlook

In summary, in this thesis the band structure of trigonal Tellurium was investigated.
The most important outcome was that the use of the hybrid DFT leads to a band
gap which is in accordance to the experimental measured gap. Thus, it could be
confirmed that Tellurium is a small gap semiconductor.
The use of DFT as implemented in QE has led to an incorrect prediction of the band
gap around the H point. In the absence of SOC the band gap was underestimated, in
the presence of SOC trigonal tellurium shows a metallic character, which is due to the
fact, that the fermi level cuts through the valence band. This does not correspond
to the experimental measurements in either case.
To overcome this problem, the hybrid DFT method was used to obtain a better
prediction of the band gap. By changing the HF fraction of the hybrid functional,
the band gap around the H point could be determined exactly to the experimental
value. It could also be seen here, that at very small values of the HF fraction,
Tellurium shows a metallic character.
With regard to the displacive excitation of coherent phonons mentioned in the intro-
duction, the prediction of the band structure is so important because it is precisely
the excitation of electrons in excited bands that leads to a decrease in the advantage
of the present spiral structure of tellurium, resulting in a new equilibrium position
and thus the generation of coherent phonons.
Accordingly, the foundation for further theoretical descriptions of laser-matter inter-
action, especially with respect to coherent phonons, was laid in this work.
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