CONTROLINSTEEL

From controlling single processes to the complex automation of process chains by artificially intelligent control systems

M. J. Neuer, F. Marchiori, V. Colla, S. Dettori, J. Ordierés-Meré, M. Loos and A. Wolff 2022-11-25, IFAC COSY 2022

Structure of this talk

Part 1.

3/6/23

Part 4. Unadressed methods in **CONTROL**^{IN}**STEEL** Steel industry Quality Improvement

Structure of this talk

Part 1. Ultra-short introduction

3/6/23

About the project

- projects for a scientific analysis
- Mission goals were

 - these former projects

ControllnSteel is a dissemination activity focusing advanced automation and control running till 2022-11

We selected around 45(+5) former RFCS research

I. Analyze and understand dynamics of the problem-, solutionand **impact space** which also includes **barriers** and **issues**, as well as physical interaction channels

2. Perform dissemination events, e.g. conference sessions and workshops to effectively distribute knowledge from and about

3. Provide a roadmap for future research

Structure of this talk

Part 1.

3/6/23

Taxonomy approach and graph connection

CONTROLINSTEEL

Problem space

Conceptual approach towards project evaluation

Impact space

Barriers & issues space

Solution space

Taxonomy for problem space

T1) Aggregate	Туре	Product	Interaction	
Casting	Continuous casting	Slab	physics:thermodynamic	
Furnace	Slab reheating	Slab	physics:thermodynamic	
	Walking bean reheating	Slab	physics:thermodynamic	
	Billet furnace	Billet	physics:thermodynamic	
Logistics	Transport	Slab	logistics:displacement	
Annealing	Continuous annealing Strip		physics:thermodynamic	
	Bright annealing		physics:thermodynamic	
	Batch annealing		physics:thermodynamic	
Delling	Doughing mill	Slab	pyhsics:forming;	
Rolling	Rougning mill		physics:thermodynamic	
			pyhsics:forming;	
	Finishing mill	Strip	physics:thermodynamic	
			pyhsics:forming;	
	Cold rolling	Strip	physics:thermodynamic	
			pyhsics:forming;	
	Iemper rolling	Strip	physics:thermodynamic	
	Plate mill			
Cooling	Cooling	Slab, Strip	physics:thermodynamic	
		Strip	chemical:galvanisation,	
Refinement	Hol dip galvanization		physics:thermodynamic	
			chemical:galvanisation,	
	Electro galvanisation	Sirip	physics:thermodynamic	
	Pickling mill	Strip	chemical:etching;	
			chemical: bond;	
	Coating	Strip	physics:adhesion	
			chemical: bond;	
	Foiling	Strip	physics:adhesion	
	Skin pass	Strip	physics:cutting;	
	Scarfing			
	Levelling	Strip	physics:forming;	
Thru-process				
Topical Descaling		Slab, Strip	physics:evaporation	
	Flatness	Strip	physics:forming	
	Quality			
	Long			
	Flat			

Taxonomy on automation solution techniques

- Source 1: Solution Taxonomy of ControllnSteel
- Source 3: Research on automation methodology for non-steel process industries
 - **Koopman space:** high potential for substantial breakthrough for single aggregate control, not considered yet
 - **Uncertainty**, dramatically underrepresented in current
 - Key technology for ecologic

Taxonomy for impact dimensions

Customer satisfaction Emerging technologies Waste reduction Novel approach. Worker performance

Worker safety

- Quality
 - Yield
 - Costs
- Root cause .
- Throughput
 - Power
 - Emission

Graph theory for connecting the projects

- Taxonomies
 - T₁ problem space
 - T_2 solution space
 - $T_3 \text{impact space}$
- Algorithm for retrieving conditional probabilities out of taxonomy entry combinations
- Semantic graphc constructor, formal edge definition

Internal edges per taxonomy $\phi_{\lambda}: E_{\lambda}(i) \to \{(f_{\lambda j}, \lambda) | f_{\lambda j} = \mathcal{T}_{\lambda}(i, j)\}$ $\phi_T: E_T(i) \to \{ (\lambda, \pi(i)) | \lambda \in (1, 2, 3) \land \pi(i) \in \Pi \}$

Top level taxonomy connectors

Property vector

$P(j, T_{\lambda} | m = 1 \text{ with } m \in T_{\rho}) = \sum \sum \int f_{\lambda j}(i) \delta_{kj} \delta_{mr}$ $i \in \Pi \ k \in T_{\lambda} \ r \in T_{\rho}$

CONTROLINSTEEL CONTROLINS EEL

Project number Taxonomy number

"just counting, because we have the data"

Structure of this talk

Part 1.

3/6/23

CONTROLINSTEEL

Graph connecting the taxonomies per project

Internal edges per taxonomy

Impact distribution per project

FlexGap

Emmission Reduction

Deffree

Enabling Technologies

Novel Approach

Customer Satisfaction

Worker Performance

Worker Safety

Novel Approach

Emmission Reduction

SHAPEHPM

Enabling Technologies

Customer Satisfaction

Worker Performance

Worker Safety

Emmission Reduction

Yield Improvement

DYNERGYSteel

Identification of missing activities

- EITHER Technique is not helping many problems and was not considered out of good reasons
- OR Technique was simply not covered by research
- Example: Laurent expansion never actually mentioned,
- Example: Bayesian statistiscs has not been "embraced" in steel production research yet, despite massive successes in

Impact distribution per method

Internal Model Control

Machine Learning Control

CONTROLINSTEEL

Wavelet Transform

Impact evolution as function of time

Impact Dimension: Quality Improvement

CONTROLICSTEROLI

Go further than the books...

Cov(X) =

 $C = \operatorname{Cov}\{\operatorname{CWT}[x(t)](a,b)\}$

Application case in steel: Anomaly detection at the continuous caster

Mixture-Density Network with Uncertainty Prediction

$T_i, P, \delta t, \lambda,$ $\exp(-\lambda\Delta t),$ $\exp[-NN(123)\Delta t],$

Physics-informed approach with NNcrossreference

Control application case: Prediction of scale for iterative learning control for water flow

σ Ð Φ g S

Counterfactual ML and MDNN-based reasoning

Control application case: automatic feedforward setup of water pressure for descaling helps as optimizer for MPC

CONTROLINSTEEL

Perturbation theory & sensitivity

 $T = \{\mathbf{t}^{(1)}, \mathbf{t}^{(2)}, \dots, \mathbf{t}^{(N)}\}$

 $\tilde{\mathbf{t}}(i,k) = \mathbf{t}^{(i)} + \sum \delta_{\lambda,k} \mathbf{e}_{\lambda} \Delta t_k$

Counterfactual: Let ML ask the

Structure of this talk

Part 1.

3/6/23

Part 4. Unadressed methods in **CONTROL**^{IN}**STEEL** Steel industry

20

by a semantic description operator:

Today this appears like wasting storage.

With increasing plug'n-play demand of new sensors and actuators as well, as data provenance, this solution will become more and more status-quo.

Semantics

The object oriented input data point can also be marked

$x = \{x\} * [x] \pm u_x; t_x; P(x, \mu, \sigma); \mathbf{SD}(x) =$ "Temperature"

Knowledge Graphs / Ontologies

Artificial Intelligence

Al Process Chain

Input data

Example: Mixture Density Network

Autoencoder Network

x(

Koopman Space

$\xi(t) = \mathbf{K} \ \xi(t+1)$ If the Koopman operator can be found, the dynamics in x(t+1) atent space is fully linear The control solution then reduces to linear systems

x(t+1)

- - Inclusion of uncertainty

 - Koopman approach

It shows the progress achieved by modern control solutions It also allows to scientifically investigate the path to impact per method Assorted successful methods have been shown

Promising and recent techniques are yet missing and potential chances for future projects

Physics-informed approaches especially building upon expert knowledge

- ControllnSteel is a systematic, semantic analysis of 45(+5) former RFCS research projects

Inank you for your interest!

Dr. Marcus J. Neuer Marcus.Neuer@bfi.de +49 175 2064672

Machine Learning

Physics-information

Decision Tree Regressor

Cooling Curve

$T(t) = T_0 \exp\left(-\alpha t\right)$

Knowledge Graphs / Ontologies

CONTROLINSTEEL

Knowledge Graphs / Ontologies

Artificial Intelligence

Machine Learning

Impact vectors of research projects

 Example: RFCS SOPROD, because coordinator was the same

Allows to define project by one or multiple points (!)

 Automatic Python code that runs on top of our assessment

