Fragmentation mechanisms

Standard interpretation procedure for EI spectra

- Known information (other spectra, history of the sample), clear requirements for the MS measurement, control the m/z assignment (calibration)
- 2. **Elemental composition** isotopic pattern (for all peaks in the spectrum)
- **3. Molecular ion** (largest mass in the spectrum, odd number of electrons, logic neutral losses). Comparison with spectra obtained with CI or other soft-ionization method
- 4. Important ions: odd number of electrons, largest abundance, high mass, largest abundance in a group of the peaks
- 5. Appearance of the spectrum: stability of molecular ion, labile bonds
- 6. Possible sub-structures
 - 1. Important series of ions with low masses
 - 2. Important neutral losses from M+* (fragment with high masses)
 - 3. Characteristic ions
- 7. Suggest molecular structure

Comparison with a reference spectrum, with spectra of similar compounds, check with fragmentation mechanisms expected for the suggested molecular ion

Literature - Fred W. McLafferty, František Tureček: Interpretation of mass spectra

Fragmentations

- ► EI-MS → unimolecular reactions
 - Not all is understood and not all can be predicted
 - Similarities to pyrolytic, photolytic and common reactions in the condensed phase
 → but we deal with cations or cation-radicals in vacuum
 - Possible rearrangements before the fragmentation!
 - MS is not a sensitive method to all structural details
- M+• is formed with a large internal energy distribution
- "cold" M+• does not fragment
- "excited"/"hot" M+* fragments in a sequence of reactions depending on the internal energy

Knowledge of organic chemistry helps to solve the spectra!

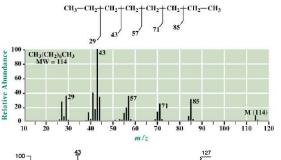
Factors affecting fragmentations

- Stability of ions
 - Electron sharing
 - From non-bonding orbitals of heteroatoms

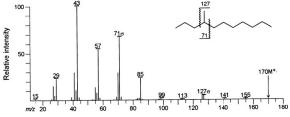
$$CH_3$$
- C^+ = $O \leftrightarrow CH_3$ - C = O^+

Resonance stabilization

$$CH_2$$
= CH - $^+CH_2 \leftrightarrow ^+CH_2$ - CH = CH_2 $(m/z \ 41)$
Phenyl: $C_6H_5^+<<$ Benzyl: $C_6H_5CH_2^+$


Distonic radical-cations (separation of the charge and the unpaired e)

(m/z 43)


$$\begin{array}{c} \mathrm{CH_3CH_2CH=O^+} \rightarrow \mathrm{CH_2CH_2CH=O^+H} \\ \mathrm{CH_3NH_2^+} \rightarrow \mathrm{CH_2N^+H_3} \end{array}$$

- Stability of neutral products (stability of ions is more important)
 - Neutral fragments can be molecules
 - Mostly small molecules with large ionization energy
 - → H₂, CH₄, H₂O, C₂H₄, CO, NO, CH₃OH, H₂S, HCl, CH₂=C=O, CO₂
 - Neutral losses: 2, 16, 18, 28, 30, 32, 34, 36, 42, 44

Fragmentation of alkanes: Sigma-bond cleavage (σ)

- The only important OE+* is M+*
- C₃H₇ (43) a C₄H₉ (57) are the most stable fragments
- Losses of H₂ and H
- > 27<29; 41<43; 55<57; 69<71

- Fragmentation at the branching carbon atom
- Loss of the larger alkyl prevails

Figure 3.3. Mass spectrum of 4-methylundecane

Fragmentations

OE+• ions lose radicals by a single-bond cleavage and form EE+ ions

$$CH_3CH_2^+CH_3$$
 $CH_3CH_2^+ + CH_3$ $CH_3CH_2 + CH_3^+$

Fragmentations of OE+* by two bond cleavages can lead to OE+* and a neutral molecule

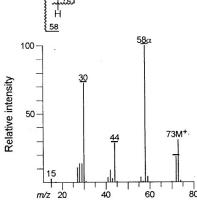
Even-electron rule

- Closed-shell ions lose only closed-shell fragments
- Radical-cations can lose closed-shell as well as open-shell fragments

3

α -cleavage (homolytic, heterolytic)

- Formation of a stabilized cation (resonance, non-bonding electron donation)
- Radical center moves, charge stays


$$CH_3$$
 CH_2 CC_2H_5 CC_2H_5

- Tendency to α-cleavage
 - Correlates with the electron donating ability of the radical center $N > S_r O_r \pi_r R$

$\alpha\text{-cleavage}$ - amines

→ dominant → stabilization of the fragments by electron donation from nitrogen

α -cleavage – double bonds

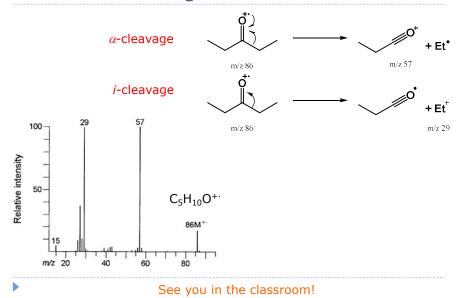
Carbonyls

$$C_2H_5$$
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5

▶ C=C

$$CH_3$$
 CH_2 CH_2 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_5 CH_6 CH_6 CH_7 CH_8 CH_8

Inductive cleavage (charge initiated)


▶ For OE+•

$$R \xrightarrow{f^{+}} R \qquad \xrightarrow{i} \qquad \stackrel{\uparrow}{R} + \stackrel{\downarrow}{V}R$$

$$C_{2}H_{5} \xrightarrow{f^{+}} OC_{2}H_{5} \qquad \xrightarrow{i} \qquad C_{2}H_{5}^{+} + OC_{2}H_{5}$$

$$40\%$$

lpha- and \emph{i} -cleavage of ketones

