Rearrangements

Standard interpretation procedure for EI spectra

- Known information (other spectra, history of the sample), clear requirements for the MS measurement, control the m/z assignment (calibration)
- **2. Elemental composition** isotopic pattern (for all peaks in the spectrum)
- **3. Molecular ion** (largest mass in the spectrum, odd number of electrons, logic neutral losses). Comparison with spectra obtained with CI or other soft-ionization method
- **4. Important ions**: odd number of electrons, largest abundance, high mass, largest abundance in a group of the peaks
- 5. Appearance of the spectrum: stability of molecular ion, labile bonds

6. Possible sub-structures

- 1. Important series of ions with low masses
- 2. Important neutral losses from M+*(fragment with high masses)
- 3. Characteristic ions

7. Suggest molecular structure

Comparison with a reference spectrum, with spectra of similar compounds, check with fragmentation mechanisms expected for the suggested molecular ion

Literature - Fred W. McLafferty, František Tureček: Interpretation of mass spectra

Retro-Diels-Alder reaction

1

McLafferty rearrangement

McLafferty rearrangement

Ortho effect

Ortho effect

Stable sub-structures

Stable sub-structures are connected with a weak bond \rightarrow A simple spectrum with prominent peaks

Figure 5.1. Mass spectrum of nicotine.

Common Ion Series

Table 5.1. Common ion series (see Tables A.6 and A.7)

		Index,	
Function ^a	Formula	Δ^b	m/z values
Nitriles	$C_n H_{2n-2} N^+$	-1	40 54 68 82
Alkenyl, cycloalkyl	$C_nH_{2n-2}N^+$ $C_nH_{2n-1}^+$	0	27 41 55 69 83
Alkenes, cycloalkanes,	2001344.0 - 14 C C C 10		
alkyl-Y°	C,H2,+	+1	28 42 56 70 84
Alkyl	$C_n H_{2n+1}^+$	+2	15 29 43 57 71 85
Aldehydes, ketones	$C_n H_{2n-1} O^+$	+2	29 43 57 71 85
Amines	$C_n H_{2n+2} N^+$	+3	30 44 58 72 86
Alcohols, ethers	$C_n H_{2n+1} O^+$	+4	31 45 59 73 87
Acids, esters	$C_nH_{2n-1}O_2^+$	+4	45 59 73 87
Thiols, sulfides	$C_{n}H_{2n+1}S^{+}$	+6	33 ^d 47 61 75 89
Chloroalkyl	C _n H _{2n} CI ⁺	-6	35 49 63 77 91
Aromatic	C″H≤″	-2 to -8	38, 39, 50-52, 63-65, 75-78

^aConnected to a saturated aliphatic substructure

4

For which HY is a molecule of low proton affinity.

HS⁺ ion

All of these peaks may not be of significant abundance in a particular spectrum, and neighboring peaks are sometimes observable.