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SCOPE OF ANALYSIS 

This document summarizes analysis conducted in support of the contract “Integrating a Community 

Cumulative Impacts Framework in the Implementation of AB 617 and SB 673”. It was conducted 

with data, input and guidance from the California Department of Toxic Substances Control (DTSC) 

and the California Air Resources Board (CARB). The objective of this analysis was to characterize 

communities near currently operating hazardous waste facilities (HWFs) regulated by DTSC with 

respect to their proximity to multiple environmental hazards and vulnerability to the health impacts 

of pollution. This phase of analysis utilized CalEnviroScreen 3.0 (CES) scores and percentiles as 

relative metrics of cumulative environmental health impact and community disadvantage.  It also 

includes a number of community metrics surrounding each facility that are not currently included in 

CES. 

 

The full list of metrics analyzed in the areas of analysis surrounding each HWF: 

• Mean CalEnviroScreen 3.0 Score & Percentile (See Appendix 1 for distinction between score 

and percentile)  

• Max CalEnviroScreen 3.0 Score & Percentile  

• Racial/ethnic composition (% people of color)  
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• Domestic drinking water well count  

• Active oil and gas well count  

• Average voter turnout in the 2012 and 2016 general elections (% of registered voters casting 

votes)  

• Sensitive Land Use (SLU) Count – Parks  

• SLU Count – Prisons  

• SLU Count – Healthcare Facilities  

• SLU Count – Senior Care Facilities  

• SLU Count – Schools  

• SLU Count – Childcare & Daycare Facilities 

• SLU Count (All) – Parks, Prisons, Healthcare Facilities, Senior Care Facilities, Public 

Schools, Childcare and Daycare Facilities 

 

Specifically, this analysis improves upon existing practices for assessing cumulative impacts near 

hazardous facilities in the following ways: 

• Polygon boundaries: HWFs were defined spatially using polygons instead of a single 

point.  
• Entire-facility and waste-specific boundary polygons: HWF polygons were delineated in 

two ways: 1) around the entire property boundary, and 2) around the area within property 

boundaries that is permitted to process or store hazardous waste. The results using both 

methods are provided in separate spreadsheets. 
• Population-weighted metrics: Community metrics (e.g. mean CES score/percentile,  % 

people of color) were calculated using population-weighting rather than area-weighting to 

better reflect cumulative impacts experienced by populations near HWFs.  
• High-resolution population distribution data: Populated areas were defined by 

combining information on the location of residential parcels (data provided by CARB) with 

block-level population estimates derived from the 2010 decennial US census and block-

group-level estimates from the 2013 - 2017 American Community Survey, and building 

footprint data from a remotely-sensed national dataset produced by Microsoft in 2018.  This 

approach better estimates conditions where people live by omitting places that are unlikely 
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to be inhabited, improving upon standard methods that assume a spatially uniform 

distribution of the population across the block group’s entire area. 

DATA SOURCES 
Hazardous Waste Facility Locations 

The names and locations of hazardous waste facilities (HWFs) currently permitted to operate in 

California were supplied by DTSC in the form of a geospatial point shapefile, with single points 

representing the approximate location of each HWF. This original shapefile contained coordinates 

for 82 sites. Five facilities that are no longer operating or are undergoing closure were omitted from 

the analysis after consultation with DTSC, leaving a final list of 77 active HWFs across the state 

(Figure 1). 

 
Figure 1. Location of active HWFs 
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CA Statewide Parcel Data  
We utilized a comprehensive, statewide shapefile of all California parcels obtained from CARB was 

utilized to: 1) construct facility polygons around the point locations provided by DTSC and 2) 

classify residential regions within census block groups for the purpose of calculating population-

weighted metrics of cumulative impact. Each parcel in this dataset has a number of attributes 

pertaining to various use code classifications which were used to distinguish between residential and 

non-residential parcels. 

 
Figure 2. Example parcel boundaries near Fresno, CA. 

 

Population Data 

Block-level estimates of population – the highest spatial-resolution of analysis recorded by the US 

Census Bureau (USCB) – were utilized.  However, estimates at the block-level were only last 

enumerated as part of the 2010 decennial census.  Estimates of population at coarser units of 

analysis, however, are updated continuously as part of the ongoing 5-year American Community 

Survey (ACS) projects by the USCB.  Therefore, population estimates at the block group-level – the 

finest spatial unit of analysis available in ACS datasets – were taken from the 2013 – 2017 ACS 

dataset in order to utilize more contemporary estimates of population.  This was done by utilizing 
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the block-level population distribution patterns within block groups represented in the 2010 

decennial census and applying these same distributional patterns with the updated population totals 

from the 2013 – 2017 ACS.  These population estimates were then disaggregated to the block level 

using the block-level distributional patterns of population within each individual block-group seen 

during the 2010 decennial census.   

 

For example, say a block group is comprised of two blocks (Block 1 & Block 2), and, according to 

the 2010 census, there are 40 people living in one block 1 and 60 people living in Block 2.  This 

means that 40% of the block group’s total population lives in Block 1 and 60% in Block 2.  Perhaps 

the new population total for that same block group according to the 2013 – 2017 ACS estimates has 

increased to 120 people.  In order to roughly approximate how these 120 people are distributed 

between Block 1 & Block 2, it was assumed that the relative distributions of people is equal to those 

observed in 2010 (40%, 60%).  Therefore, the new block-level population estimates for the 2013 – 

2017 period was assumed to be 40% of 120, or 48 people for Block 1, and 60% of 120, or 72 people 

for Block 2.  This assumption is obviously not valid in all cases, but is based on the belief that 

relative population distributions within block groups likely does not dramatically change over a ~5-

year timeframe.  For block groups with non-zero populations in the 2013 – 2017 ACS that had no 

population in the 2010 census, the ACS population was assumed to be uniformly distributed across 

all blocks in that block group given the lack of antecedent knowledge.   

 

Tabulated decennial census and ACS data were downloaded from the NHGIS data server1 for the 

state of California along with geospatial polygon shapefiles of the 2010 block and 2017 block group 

boundaries.  The percentage of residents of color was defined as the percentage of residents who 

identified as Hispanic or as being of any non-White race (including multiracial) and was estimated 

using ACS data from 2013 – 2017.  These values were assumed to be uniformly distributed across 

the populated areas (as identified using parcels, block populations and building footprints – see 

Methods) within each block group.   

 

                                                
1  https://www.nhgis.org/ 
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Figure 3. Example block group (top) and block-level (bottom) population data in Oakland. 

 

Building Footprint Data  
In some cases, distinguishing between open space and potentially populated areas within blocks was 

done with the help of a dataset of remotely-sensed building extents, or footprints, produced by 

Microsoft for the entire country in 2018.  This dataset used publicly-available satellite imagery of the 
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US and employed a series of machine learning classification algorithms to identify likely building 

rooftops, converting these footprints to a polygon shapefile for each state.  More information on the 

production of this dataset can be found on its download page2.  Further explanation as to how these 

data were used for this analysis is provided in Methods. 

 

 
Figure 4. Example of building footprint data in Oakland. 

 

Facility Operating Permits 
We used the final operating permit documents for each HWF in combination with the parcel data to 

better delineate facility boundaries and to determine the specific locations of waste stored within 

each facility boundary. Permits were reviewed for each facility both by DTSC staff and the UC 

Berkeley project team in order to identify property lines and waste locations from maps and figures 

                                                
2 https://github.com/Microsoft/USBuildingFootprints/ 
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in the permitting documentation. The permits for operating facilities can be found on DTSC’s 

EnviroStor web platform, or directly using this link3.  

 
CalEnviroScreen 3.0 

The third version of the California Communities Environmental Health Screening Tool 

(CalEnviroScreen 3.0, or CES 3.0) was downloaded from the Office of Environmental Health 

Hazard Assessment website4 and used to assess cumulative impacts surrounding each HWF. CES 

3.0 is an aggregate index combining 20 indicators of pollution burden and population vulnerability 

into a relative cumulative impact score for each census tract in the state. The final scores are also 

expressed on a percentile scale from 1 to 100, with higher scores/percentile indicating higher levels 

of cumulative impact.  Both raw CES scores and percentiles were calculated and included in the 

results. 

 

Domestic Well Data 

The location of domestic drinking water wells was estimated using the Online System for Well 

Completion Reports (OSWCR) maintained by the California Department of Water Resources 

(DWR) and downloaded September 1, 20185.  This dynamic dataset includes information on the 

approximate location of domestic drinking water wells across the state.  Exact locations (<50 ft of 

precision error) are known for some wells but the vast majority of wells are currently represented as 

part of a generalized well count for ~2-3 km2 “well sections”.  These sections form a somewhat 

uniform grid of rectangular land areas across the state with each section containing a certain number 

of active drinking water wells whose precise location within the section is unknown (Figure 5).   

                                                
3  https://tinyurl.com/y2md3mrw (List of Operating Facilities with Permits) 
4  https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-30 
5 https://water.ca.gov/Programs/Groundwater-Management/Wells/Well-Completion-Reports 
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Figure 5. Domestic drinking water well counts by section in the Monterey Bay area of California. 

 

Oil and Gas Well Data 

A dynamic database of the location and characteristics of oil and gas wells across the state is 

maintained by the California Department of Conservation’s Division of Oil, Gas, and Geothermal 

Resources (DOGGR)6.  We utilized the “All Wells” shapefile for this study, which contains point 

locations of oil and gas wells throughout the state as well as their current operating status (Table 1).  

Only wells that were classified as “New” or “Active” were included in the analysis (69,531 total 

wells).  The vintage of the dataset used is July 10, 2019.  

 

 

 

                                                
6 https://www.conservation.ca.gov/dog/maps/Pages/GISMapping2.aspx 
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Table 1. Oil and Gas wells counts by operation status 

Well Operating 

Status Count 

Abeyance 2 

Active 65450 

Buried 2 

Canceled 7453 

Idle 36185 

New 4081 

Plugged 122851 

Unknown 1966 

 

 
Figure 6. Active or new oil and gas well locations in Kern County, CA. 
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Voter Turnout Data 

The number of people who vote in elections provides a measure of civic engagement capacity and 

the degree to which communities are involved in local decision-making, which may have 

implications for community engagement in permitting and regulatory decisions. We utilized voter 

data from the UC Berkeley Statewide Database 2016 and 2012 General Election Precinct Data at the 

registration precinct level (RGPREC)7 to derive the average (mean) percent of registered voters who 

participated in the 2012 and 2016 elections. 

 

 
Figure 7. Average registered voter turnout by census block group in the 2012 and 2016 general 

elections in the Los Angeles metro area. 

 

 

                                                
7 https://statewidedatabase.org/d10/g16.html 
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Sensitive Land Use Data 

Locational data for six different types of sensitive land uses (SLUs) were included in this analysis to 

assess the proximity of such land uses to the HWFs studied.  SLUs were defined in this context as 

areas in which vulnerable populations (children, the elderly, people with respiratory illness) either 

reside or spend a substantial amount of time.  The six SLU classes were chosen to be consistent with 

the “sensitive uses” used by CARB in its Air Quality and Land Use Handbook8, and are defined for 

this project as: parks and playgrounds, pre-college level schools, childcare/daycare facilities, 

healthcare facilities of the type that house vulnerable populations, senior care and residential 

facilities, and prisons/correctional facilities.  The shapefiles used in our analysis were built using the 

most recent geospatial information available for each use that is consistent statewide, combining 

data (and removing duplicates) when more than one data source is available.  We also compared 

these locations to earlier versions of this type of data used in our research as a means of validating 

locations and understanding changes in the location and number of these uses statewide.  These 

locations were located either as geocoded points (healthcare facilities, senior care facilities) or 

polygons (parks, prisons, schools). 

 

The statewide parcel data provided by CARB was of limited utility in this process because of the 

poor match between the parcel use codes and the land use designation of most sensitive land use 

parcels.  Queries using use code to identify sensitive uses returned far fewer locations than other 

data sources that also identify these uses.  Parcels identified in this way were included in the final 

datasets for each sensitive use. However, the parcel dataset cannot be used alone to comprehensively 

identify any of the sensitive uses recognized in this project, and use of the parcel data generally 

should be cautious as it is primarily constructed to reflect land ownership for tax purposes.   

Where appropriate, geocoding was performed using two different address locater street data 

layers9,10. A minimum geocoding score of 0.8 was be required for each location, and features located 

by the two street layers had to agree with 10 meters.  Geocoded locations were validated when 

appropriate using comparison with aerial imagery in Google Earth Pro.  These point location 

shapefiles were also cross-checked with older datasets of each facility type, and with the parcels 

identified using use codes to ensure consistency.   

                                                
8 https://ww3.arb.ca.gov/ch/handbook.pdf 
 
9 https://www.openstreetmap.org/#map=5/38.007/-95.844 
10 https://www.tomtommaps.com/mapdata/ 
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Healthcare Facilities: This point shapefile was generated using the 2019 "Licenses and Certified 

Health Facility Listing" from the Dept of Public Health11, which lists descriptive information, 

including addresses, for over 30 types of healthcare facilities.  We selected the subset of these 

facilities that are consistent with the SLU definition for this analysis, and geocoded the addresses. 

The final shapefile consists of 2375 point-locations.   

 

Senior Care Facilities: This point shapefile was generated using the 2019 "Community Care 

Licensing for Residential Eldercare" data from CA Dept of Social Services12.  Similar to the 

healthcare listings, there were duplicate names, addresses, and addresses that limited the records that 

could be geocoded.  The final shapefile consists of 7470 point-locations. 

 

Childcare/Daycare: The most recent data is the list of "community care facilities" licensed as of 

Nov 2018 by the CA Dept of Social Services13.  This includes both facility locations and “family 

daycare” homes with capacity of 8 or more. There are nearly 20,000 licensed facilities, but once 

duplicate locations, head-start preschools, closed or inactive facilities and addresses that cannot be 

geocoded were removed, the final shapefile became 7952 point-locations.  We compared these 

locations with a dataset from 2015 Dun & Bradstreet showing businesses describing themselves as 

childcare or daycare14. Unfortunately, the parcel data from CARB was very incomplete, containing 

only 248 parcels statewide that are listed as a childcare use. 

 

Schools: We have high confidence in this dataset as there are several high-quality datasets available.  

We relied on the two most authoritative sources available.  The California Department of Education 

online data portal (“Schools and Districts Datafiles”) provides school addresses of both public and 

private schools15, which we geocoded to produce point locations.  These were combined with school 

polygons from the recently-updated ‘California School Campus Database’ from GreenInfo 

Network16, which comes from an ongoing project with the Stanford Prevention Research Center.  

                                                
11 https://healthdata.gov/dataset/licensed-and-certified-healthcare-facility-listing 
12 https://data.chhs.ca.gov/dataset/community-care-licensing-residential-elder-care-facility-locations 
13 https://data.chhs.ca.gov/dataset/community-care-licensing-child-care-center-locations 
14 https://www.dnb.com/products/marketing-sales/dnb-hoovers.html 
15 https://www.cde.ca.gov/ds/si/ds/pubschls.asp 
16 https://www.greeninfo.org/work/project/cscd 
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The final shapefiles are comprised of 8688 public schools as polygons, and 3076 private schools as 

points. 

 

Parks and Playgrounds: The parks SLU layer was derived by combining land use polygons from 

four different statewide datasets: 

• Real estate tax parcels provided by CARB for this project; park parcels were identified by 

“use code” 

• The California Protected Areas Database  a dataset maintained and updated by the 

Greeninfo Network17 that captures open space lands, parks, conservation easements, and 

preserves statewide, mapped using assessor ownership parcels with more extensive attribute 

information than the parcel data provided by CARB 

• USA Parks – a geospatial dataset produced by ESRI in partnership with TomTom, a private 

company specializing in location technologies and digital geodatabase products and services. 

This layer, which ESRI considers its “authoritative” data on parks, gardens and forests, 

combined with boundary information for national, state and local parks18. 

When compared to current (2018) aerial imagery it is apparent that some parks are represented by 

polygons in two or more of these data layers.  It is also apparent that no one dataset is sufficiently 

comprehensive to be used alone to represent parks and sensitive land uses for this project.  From 

these three data layers, a single composite and validated dataset was produced by using aerial imagery 

to identify each candidate SJU ( “parks and playgrounds” as defined by CARB in their Air Quality 

and Land Use Handbook19 and selecting from each layer the polygon(s) that best represent that SLU 

visible in the aerial imagery..  The aerial imagery was also used to determine which of these parks 

qualify as an SLU, using the presence of improvements such as athletic facilities, play structures etc. 

 

Prisons: The polygon data of prison boundaries statewide were collected via ESRI's OpenData site.  

The ‘Prison Boundaries’ layer20 was constructed by the Homeland Infrastructure Foundation - an 

"online community" of the federal Department of Homeland Security. This is part of the Homeland 

Infrastructure Foundation-Level Data (HIFLD) Subcommittee, which is responsible for 

                                                
17 https://www.greeninfo.org/work/project/cpad-the-california-protected-areas-database 
18 https://www.arcgis.com/home/item.html?id=578968f975774d3fab79fe56c8c90941 
19 https://ww3.arb.ca.gov/ch/landuse.htm 
20 https://hifld-geoplatform.opendata.arcgis.com/datasets/2d6109d4127d458eaf0958e4c5296b67_0 
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improvements in data collection, processing, sharing and protection of National geospatial 

information across multiple levels of the federal government to provide common data sources to 

multiple agencies. 

 

Because each of these data layers contains some of the uses that fit our criteria, features from these 

three datasets were combined to produce the final SLU layer for parks and playgrounds used in this 

project. 

METHODS 

Defining Facility Boundaries 

Entire Facility Boundaries 
We created a set of polygons delineating each facility’s property boundary using the following 

process: 

• Step 1 – We reviewed the current operating permit document for the HWF for relevant 

maps and figures showing the facility location and boundary. 

• Step 2 – We validated the coordinates of DTSC’s point location for the site based on the 

facility address and the permitting documents. For points that appeared to be incorrectly 

located, we adjusted the location using the permit and provided site address information. For 

a number of sites, the existing DTSC point appeared to be located at a different address than 

that listed for the facility. These locations on Google Maps were cross-checked with the 

permit documents before correcting the point location. 

• Step 3 – We intersected the resulting HWF point locations with the statewide parcel dataset 

in order to identify the parcels within which each point is located. If this parcel looked to 

agree with the facility boundaries depicted in the permit, we used this parcel as the final site 

boundary polygon.  

• Step 4 – When parcel boundaries identified in Step 3 did not appear to match facility 

boundaries depicted in the permit, we selected different or additional parcels to match the 

facility boundaries depicted in the permit.  

• Step 5 – If there was no clear depiction of the facility’s property boundary in the permit 

document, we conducted additional online searches regarding the facility and reviewed 
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satellite imagery from Google Earth, made an educated guess as to its approximate property 

boundaries, and manually drew the final boundary polygon. 

 
Roughly a third of the site boundaries agreed nearly perfectly with a single intersected parcel and 

only required Steps 1-3. The majority of the sites required some form of manual alteration described 

in Step 4.  An example of one of each type of site is given in Figure 8. Four sites (Edwards, Travis 

and Vandenberg Air Force Bases and Naval Air Weapons Station China Lake) required rough 

estimation of facility boundaries described in Step 5 due to their large areas, irregular borders, and 

lack of access to official property boundary maps or shapefiles. 

Additionally, there were four sites for which the entire-facility boundaries were limited to the 

specific region of waste within them due to their unusual size and the fact that their exact 

boundaries would be difficult to construct. These sites included the Lawrence Berkeley National 

Lab, whose facility boundaries are dispersed across the eastern Berkeley hills, and three sites within 

the San Diego Naval Station/Naval Air Station, which is a massive facility the stretches across 

islands up the coastline of downtown San Diego. For these four sites, we felt a single polygon for 

the entire boundary would be large and potentially misleading. Therefore, the “entire-facility” 

polygons for these four sites either exactly correspond to the “waste-specific” polygons or represent 

the sub-region of the facility which encompasses the waste storage area. 
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Figure 8. Example of a site whose facility boundary exactly matches a single parcel (top). Example 

of a site whose facility boundaries spans multiple parcels and required manual drawing of its 

boundary (bottom). 

Waste-Specific Boundaries 
A second set of polygons representing the specific locations permitted to process or house 

hazardous waste within each facility was constructed via additional manual processing. We 

constructed each of these polygons site by site following a two-step process: 

• Step 1 – We reviewed the current operating permit document for the 77 HWFs for relevant 

maps and figures showing the specific permitted location of waste within the facility. 

• Step 2 – We manually drew polygons around the waste sites within the facility. This 

frequently entailed delineating single buildings, tank arrays or storage facilities within the 

greater property boundary according to permit maps and figures in conjunction with Google 

Earth satellite imagery. These locations were available in all 77 operating permits. 

Relatively few of the sites have waste permits for their entire-facility boundaries. Therefore, for the 

majority of sites the “entire-facility” and “waste-specific” boundaries differ, with the waste-specific 

being smaller (Figure 9).  
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Figure 9. Entire-facility and waste-specific polygon boundaries for sites within the Chevron refinery 

complex in Richmond, CA. 

 

 

 
Estimating Community Characteristics Near Facilities 
Areas of Analysis  
In order to assess the characteristics of communities surrounding each HWF, we considered 13 

different buffer distances from 0.1 to 7 miles: 0.1, 0.3, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7 miles. The 

areas delineated by these various buffer distances are referred to as “Areas of Analysis (AoAs)”. 

Each of the 13 AoAs were constructed using both sets of HWF polygon boundaries discussed 

above (Figure 10). 
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Figure 10. Example of an AoA (0.1 mi) around both the entire-facility boundary and the waste-

specific boundary at a facility in Stanislaus County (left). Example of AoAs from 0.1 to 5 mi drawn 

around a site’s waste-specific boundary in San Benito County (right).  

 
Populated Areas  
Using the census block-level population estimates from the ACS provides a fairly high-resolution 

map of population characteristics across the state. However, block groups contain a lot of land area 

that is non-residential, such as open space, water, vacant land, retail, industrial, or other non-

residentially-zoned areas. As a result, it is inaccurate to assume that the population of a given block 

group is evenly distributed across its land area. Filtering out non-residential areas from each block 

group yields a more spatially accurate representation of where people live.  

 

This was done using residential parcels from the CARB parcel data, census population at the block 

group and block-levels (from 2013-2017 and 2010, respectively) and building footprints from 

Microsoft’s US buildings dataset.  The final map of population using these data was made in the 

following steps and illustrated graphically in Appendix 1: 

1. Extrapolate block-level populations from the 2010 decennial census forward in time 

using population estimates from the 2013-2017 ACS for parent block-groups.  Proportional 

distribution of population amongst the blocks within each block group was kept constant 

according to patterns observed in 2010, but with their totals updated to reflect values in the 

ACS dataset.   
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2. Identify residential parcels from the CARB parcel data using the “USE_CODE_2” 

classification, which has some 278 unique land use types, of which 30 were identified (see 

Appendix 1) as being residential (e.g. ‘Single Family Residential’, ‘Apartment House (5+ 

units)’).  We also included “planned residential unit developments” because many of these 

parcels have already been developed, as evidenced by recent satellite imagery.  

3. Create a spatial polygon layer of only residential parcels. 

4. Of this parcel subset, identify those residential parcels that likely contain a large 

amount of open, unpopulated space.  This was defined as individual parcels with an area 

of more than 1-acre for low-density residential classes (e.g. ‘single-family residential’) or with 

more than 50-acres for high-density residence classes (e.g. ‘apartment house (100+ units)’).  

The distinction in thresholds between low and high-density residence types was made due to 

the observation that for most low-density uses, parcels may be large but only contain a small 

portion where a home is located and for which people likely are present., leading to the 1-

acre cutoff.  However, in densely-populated regions, it is common to see single parcels 

encompass large apartment or condominium developments that can span large areas of 

urban space, leading to the 50-acre area cutoff for these parcels. 

5. Assume that all parcels not excluded in step 4 (< 1-acre or < 50-acre areas), are populated 

areas, with population distribution assumed to be uniform within each individual parcel.  

These parcel areas account for roughly 91.8% of the state’s total population. 

6. For those parcels excluded in step 4 (> 1-acre or > 50-acres), identify the buildings within 

these parcels using the Microsoft US buildings layer, and make the assumption that the 

population within these large parcels is distributed only amongst the building areas within it.  

These areas account for roughly 4.9% of the population. 

7. For any blocks with a non-zero population but containing no residential parcels, identify 

buildings within them and assume population is distributed in these buildings.  These areas 

represent roughly 3.0% of the population. 

8. Finally, for any blocks with non-zero population but which contain neither residential 

parcels nor buildings, simply assume that its population is uniformly distributed across the 

entire block area.  This pertains to blocks containing only roughly 0.3% of the population. 

9. Using a combination of these four polygon geometries, ( i) small residential parcels, ii) 

buildings within large residential parcels, iii) buildings within populated blocks with no 

residential parcels, and iv) boundaries of populated blocks with no residential parcels or 
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buildings), create a polygon layer representing the union of all of them and assign the block-

level population totals only to these areas within each block, assuming uniform population 

density throughout the block.  

 
Figure 11. Example of AoAs from 0.1 to 7mi drawn around the waste-specific polygon at a facility 

in Fresno. Only the green area represents populated areas were included in the analysis. 

Unweighted Metrics: Minimum and Maximum CES 3.0 Values, Oil & Gas Wells, Sensitive 
Land Use (SLU) Counts 
The minimum and maximum CES values (scores and percentiles) were calculated by simply 

identifying the smallest or largest CES 3.0 value amongst the populated areas encountered within the 

given AoA. For example, in Figure 12, the maximum raw CES 3.0 score for the 0.5 mi AoA is 

determined by the populated area encountered in the eastern half of the AoA (value between 40-60). 

For the 1 and 2-mile AoAs, the maximum score is found in more southern populated areas and is 

between 60-80. 
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Figure 12. Map of tract-level CES 3.0 scores near the Fresno Safety-Kleen facility.  Populated areas 

were assigned the CES 3.0 score of the tract that contained them. 

 
Counts of sensitive land use (SLU) zones within each AoA were estimated using the point or 

polygon geometries of each SLU type.  If a point or any part of a SLU boundary polygon intersected 

with an AoA, it was counted as being in the AoA.  Therefore, all SLUs are each summarized as 

simple counts, with a total count for all six SLU types reported as well. 

Counts of new or active oil and gas wells in each AoA surrounding HWFs were calculated using 

the point-location data of the wells from the DOGGR dataset, with the final counts representing the 

total number of well points (active or new) that fall within a given AoA. 
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Figure 13. There are 5174 active or new oil and gas wells within the 5.0mi AoA surrounding the 

Clean Harbors facility in Buttonwillow. 

 
Area-Weighted Metrics: Domestic Drinking Water Wells  
In order to estimate the number of domestic drinking water wells within AoAs of each HWF, we 

utilized a simple area-weighted averaging approach using the sectional well totals provided from the 

OSWCR dataset.  This was done in the following steps: 

• Step 1 – We filtered out all well section geometries that have a well count of 0. 

• Step 2 – Assuming that domestic drinking water wells predominantly occur within 

populated areas, we intersected the well section geometries with the populated area 

geometries and assigned the well totals for each section to the populated areas within each 

section, excluding non-populated areas from analysis.  For sections containing wells that did 

not intersect with any populated areas, we assumed that their wells are uniformly distributed 

across the section area.  Roughly 5.4% of all registered domestic drinking water wells fell 
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into this category, suggesting that some domestic wells may no longer be used,  and/or that 

the populated area data being used does not fully capture all residences. 

• Step 3 – We then intersected these populated-area-only well sections with the AoAs and, 

assuming that each section’s wells are uniformly distributed across its populated area, 

calculated an area-weighted well count for each AoA.  For example, if an AoA intersects two 

sections, encompassing 50% of each section’s populated areas, and the well counts of the 

sections are 6 and 10, respectively, then the estimated total number of wells within the AoA 

will be: 

(0.5*6) + (0.5*10) = 8 domestic drinking water wells in AoA 

    

 
Figure 14a. Domestic drinking water well sections surrounding the Safety-Kleen facility in Fresno 

with well sections with 0 wells removed 



   
 

26 
 

 
Figure 14b. Populated areas intersected with well sections 

 

 
Figure 14c. Well counts assigned to populated areas within sections and intersected with the AoA 

to find the area-weighted mean well count.  Sections with non-zero well counts and no intersecting 

populated areas are left intact. 
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Population-Weighted Metrics: Mean CES 3.0 Values, Racial Composition, Voter Turnout 
Mean CES 3.0 scores and percentiles, racial composition, and average voter turnout are all metrics 

that were weighted by population and then averaged to generate a population-weighted mean as 

follows: 

• Step 1 – We assigned the populations of each block group to the populated area polygons 

within it assuming a uniform population distribution across the populated areas in each 

block group.  

• Step 2 – We intersected these populated-area-only block group geometries with each AoA 

and calculated the percentages of each area that fell within the AoA, and in turn the 

percentage of their populations within the AoA. This provided an estimation of the total 

number of people living in each populated area polygon or portion of a populated area 

polygon in the AoA.  

• Step 3 – Using the population estimates derived in Step 2 as weights, the average metric was 

calculated by summing the product of the weights and metric values (e.g. CES 3.0 score) 

from each populated area polygon or portion of a polygon within the AoA.  We repeated 

steps 1-3 for each facility AoA to calculate population-weighted CES scores, percentiles, 

racial composition and average voter turnout. 

 
Voter turnout data from the UC Berkeley Statewide Database (UCBSD) was downloaded for the 

2012 and 2016 general elections at the level of voter registration precinct (RGPREC), which was 

then re-mapped to populated areas within the 2017 census block groups using the RGPREC to 

census blocks crosswalk protocol available in the same UCBSD data repository.  This average 

percentage voter turnout by block group was the metric used in the population weighting scheme 

described above. 

RESULTS 

All results are tabulated in two excel workbooks, one for community characteristics within AoAs 

based upon the entire-facility polygons and one for those based upon the waste-specific polygons. 

Separate sheets are included for each metric (11 sheets total: Mean CES 3.0 Score, Min CES 3.0 Score, 

Max CES 3.0 Score, Mean CES 3.0 Percentile, Min CES 3.0 Percentile, Max CES 3.0 Percentile, Non-White 

%, Domestic Drinking Wells Count, Oil & Gas Wells Count, Sensitive Land Use Counts, Voter Turnout %). 
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The facilities are presented as separate rows in alphabetical order. The “ID” column represents a 

unique identifier for each facility that can be used to merge data between sheets or workbooks. 

These identifiers were originally created when working with the original set of 82 HWFs, which is 

why some of the IDs are higher than 77. 

  

Metric values by AoA are presented in separate columns for each HWF and may contain NA values. 

NA values entail that the given AoA did not intersect any populated areas and therefore has no 

values of cumulative impact to evaluate.  
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APPENDIX 1 - DTSC Community Vulnerability Metrics Explanations and 

Justifications for Inclusion 

 
CalEnviroScreen 3.0 (CES 3.0) 

This statewide tool provides information regarding environmental health indicators at the census-

tract levels across the entire state.  Commissioned and maintained by the California Environmental 

Protection Agency (CalEPA) and, more specifically, the Office of Environmental Health Hazard 

Assessment (OEHHA), this database serves as a tool for information transfer and environmental 

screening at the community level.  The newest iteration of this product, version 3.0, incorporates a 

wide array of pollution, demographic and socioeconomic metrics to estimate cumulative 

environmental burdens facing communities.  This product is widely used both by policy-makers, 

practitioners, academics and community organizations in order to identify and implement policies 

that are sensitive and responsive to environmental inequities21,22,23,24.   

 

Cumulative burdens are reported in terms of raw scores (ranging from roughly 0 to 95.0), which are 

calculated via a multi-step algorithm that incorporates the multiple factors considered, as well as in 

percentile terms (ranging from 0 - 100), which provides a relative measure of burden experienced by 

a given community compared to the rest of the state.  Both the raw scores and percentiles were 

provided in this analysis, and may each be appropriate for use in assessing community vulnerability, 

depending on the context of the research being done or questions being asked.  Using the raw 

scores will provide a true reflection of the actual cumulative burden experienced by each census 

tract, while using percentiles will only provide a relative measure.   

 

Using a simplified example, suppose there are only ten tracts in the state, three of which have a 

score of 30.0, one of which has a raw score of 80.0, and the remaining six with scores of 95.0.  

                                                
21 Padula, Amy M et al. “Environmental pollution and social factors as contributors to preterm birth in Fresno County.” 
Environmental health : a global access science source vol. 17,1 70. 29 Aug. 2018, doi:10.1186/s12940-018-0414-x 
22 Cushing, L., Faust, J., August, L. M., Cendak, R., Wieland, W., & Alexeeff, G. (2015). Racial/ethnic disparities in 
cumulative environmental health impacts in California: evidence from a statewide environmental justice screening tool 
(CalEnviroScreen 1.1). American journal of public health, 105(11), 2341-2348. 
23 Meehan August, L., Faust, J. B., Cushing, L., Zeise, L., & Alexeeff, G. V. (2012). Methodological considerations in 
screening for cumulative environmental health impacts: Lessons learned from a pilot study in California. International 
journal of environmental research and public health, 9(9), 3069-3084. 
24 Mataka, A., & Galaviz, V. (2016, October). CalEnviroScreen: A Pathway to Address Environmental Justice Issues in 
California. In APHA 2016 Annual Meeting & Expo (Oct. 29-Nov. 2, 2016). American Public Health Association. 
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Analyzing these raw scores will tell the observer that most of the tracts have a very high level of 

burden, with 7 out of 10 experiencing a score of 80 or higher.  However, using the percentile 

analysis, could distort this understanding to some extent.  In our simple example above, given the 

high proportion of scores equal to 95.0, the tract with the score of 80.0 would be placed in the 40th 

percentile.  In other words, the percentile value of 40% for the tract with a score of 80.0 would 

indicate that 60% of the state has a higher score than this tract, which may make it seem like the 

tract has a low level of burden, but in reality is only saying that its level of burden is lower relative to 

the remainder of the state’s tracts.  However, if the analysis at hand is specifically oriented towards 

identifying the relative level of burden experienced by each tract relative to the rest of the state, then 

using percentiles would be appropriate.  It is up to the investigator to decide the most appropriate 

metric to utilize. 

 

When studying the CES 3.0 scores and percentile values to assess the level of environmental health 

burden in a given area of analysis (AoA) that encompasses multiple tracts, it is also prudent to 

consider whether the tract-averaged values are the best metric to consider, or simply the maximum 

score or percentile present within the AoA.  Using a simple maximum will highlight the most 

burdened tract in the AoA, a value that is probabilistically expected to increase if the AoA grows in 

size and more tracts are included.  This is valuable if the analysis at hand is aimed at identifying the 

presence of any particularly high-burdened tracts rather than assessing the average level of burden 

across the AoA.  However, if multiple AoAs are being assessed and compared, using a simple 

maximum score/percentile metric could be inadequate to truly assess the relative differences in 

burdens experienced between different AoAs as a whole.   

 

For example, it is possible that one AoA could have a low-level of burden overall, with most of its 

tracts having low CES scores, but perhaps has one small tract with a high CES score.  Perhaps a 

neighboring AoA has a much higher level of burden overall, with all of its tracts with higher CES 

scores.  However, suppose that none of the tracts in the more-burdened AoA individually have a 

score equal to or higher than that of the single high-score tract in the first AoA.  Using a simple 

maximum CES score as the metric of analysis would identify the first AoA as being more highly-

burdened as compared to the second AoA, even though on average, the level of burden across the 

second AoA as a whole is much higher than in the first.  Using instead an average CES score or 

percentile metric would identify the second AoA as more burdened than the first, though it would 
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mask the presence of the single high value in the first.  Therefore, it is likely always appropriate to 

consider both the mean and maximum metrics when conducting analyses of multiple AoAs and is 

again up to the investigator to choose the priorities of their analysis in order to inform the way in 

which they interpret these metrics.  

 
Racial Composition 

Analysis of racial and ethnicity-based metrics is commonly done when assessing issues of 

community vulnerability and environmental equity/justice more broadly.  Given the legacy of 

segregation, inequality and marginalization of communities of color in the United States, they are 

often disproportionately exposed to hazards, environmental and otherwise.  There is a very strong 

precedent for including such metrics in environmental health and community vulnerability studies, 

especially in the last three to four decades25,26,27,28,29. 

 
Healthcare & Senior Care Facilities 

Senior centers and medical facilities such as hospitals, health clinics, and nursing homes, are all 

considered sensitive land uses, as individuals within these types of facilities are the most vulnerable 

to health risks from exposure to poor air quality.  Individuals older than 65 years of age are more 

susceptible to air pollution-related illnesses such as stroke, asthma, heart disease, lung cancer, and 

other respiratory diseases. Similarly, those individuals with pre-existing medical conditions, such as 

those people admitted in hospitals and other healthcare facilities, are more prone to developing air 

pollution-related illnesses30. 

 
Parks 

Park are sensitive land uses in which populations uniquely susceptible to environmental hazard 

exposures, including children and older adults, are likely to spend time31. While parks bring health 

                                                
25 Bullard, R. D. (1993). Race and environmental justice in the United States. Yale J. Int'l L., 18, 319. 
26 Maantay, J., & Maroko, A. (2009). Mapping urban risk: Flood hazards, race, & environmental justice in New York. 
Applied Geography, 29(1), 111-124. 
27 Bullard, R. D., Mohai, P., Saha, R., & Wright, B. (2008). Toxic wastes and race at twenty: Why race still matters after 
all of these years. Envtl. L., 38, 371. 
28 Morello-Frosch, R., Pastor, M., & Sadd, J. (2001). Environmental justice and Southern California’s “riskscape” the 
distribution of air toxics exposures and health risks among diverse communities. Urban Affairs Review, 36(4), 551-578. 
29 Pastor, M., Sadd, J., & Hipp, J. (2001). Which came first? Toxic facilities, minority move-in, and environmental justice. 
Journal of urban affairs, 23(1), 1-21. 
30 CARB Land Use Handbook, available at: https://ww3.arb.ca.gov/ch/handbook.pdf 
31 Air Quality and Land Use Handbook: A Community Health Perspective; California Environmental Protection 
Agency; California Air Resources Board, 2005. 
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benefits through facilitating outdoor physical activities, performing physical activities in polluted 

environments also has adverse health effects32. Therefore, reducing potentially hazardous exposures 

to pollution in parks can ensure their net health benefits.  

 
Prisons 

Compared with the general population, prisoners tend to have higher rates of underlying health 

conditions, including higher odds of chronic (e.g. asthma, cardiovascular disease, arthritis, and 

cancer)33 and infectious diseases (e.g. HIV , hepatitis, and tuberculosis), and mental disorders34. By 

virtue of being incarcerated, prisoners have little to no control over their living conditions and are 

also likely to have inadequate access to health care35. Furthermore, prisoners are faced with worse 

living conditions such as overcrowding, which in turn leads to the prevalence of infectious diseases 

and mental disorders36.  These conditions can make this community uniquely susceptible to the 

adverse health effects of environmental hazard exposures.  

 
Schools and daycare centers 

Children are sensitive to pollution given their small size, high metabolic rates, and developing lung 

structure and immune systems. In addition to health consequences, air pollution may cause some 

students to be absent from school, leading to other social cost (e.g. school dropout, parents missing 

work, and cut in attendance-based school funding). For children with respiratory issues, not going to 

school on a heavily polluted day is either a result of respiratory problems triggered by air pollution 

or a preventive measure.  Since children spend more time indoors, their exposures are strongly 

                                                
32 Li, F.; Liu, Y.; Lü, J.; Liang, L.; Harmer, P. Ambient Air Pollution in China Poses a Multifaceted Health Threat to 
Outdoor Physical Activity. J Epidemiol Community Health 2015, 69 (3), 201–204. https://doi.org/10.1136/jech-2014-
203892. 
33 Binswanger, I. A.; Krueger, P. M.; Steiner, J. F. Prevalence of Chronic Medical Conditions among Jail and Prison 
Inmates in the USA Compared with the General Population. J. Epidemiol. Community Health 2009, 63 (11), 912–919. 
https://doi.org/10.1136/jech.2009.090662. 
34 Fazel, S.; Baillargeon, J. The Health of Prisoners. The Lancet 2011, 377 (9769), 956–965. 
https://doi.org/10.1016/S0140-6736(10)61053-7. 
35 Wilper, A. P.; Woolhandler, S.; Boyd, J. W.; Lasser, K. E.; McCormick, D.; Bor, D. H.; Himmelstein, D. U. The 
Health and Health Care of US Prisoners: Results of a Nationwide Survey. Am. J. Public Health 2009, 99 (4), 666–672. 
https://doi.org/10.2105/AJPH.2008.144279. 
36 García-Guerrero, J.; Marco, A. Overcrowding in Prisons and Its Impact on Health. Rev. Esp. Sanid. Penit. 2012, 14 
(3), 106–113. 
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correlated with pollution concentration in schools and home environments and during 

transportation37,38.   

 
Oil and Gas Wells 

Oil and gas well development (OGD) involves the development of oil/gas sites and wells 

(production and injection for enhanced recovery), transport of materials to and from well sites, 

drilling, operation of equipment to recover oil/gas, and collection and disposal of chemicals and 

waste separated from the raw oil and gas39,40. These activities are associated with diverse 

environmental hazards including air and water pollutants, noise, odors, excessive and inappropriate 

lighting, and undesired land use changes41,39.  As of 2017, California (CA) was one of the top five 

producers of crude oil in the country42. Four of the ten largest US oil fields are in CA’s San Joaquin 

and Los Angeles Basins39,40 and unlike newer shale gas plays, most of CA’s natural gas is extracted 

from reservoirs also producing oil39,40. Stimulation techniques, such as water and steam injection and 

hydraulic fracturing (HF), are o used at established sites rather than newly drilled wells. Oil 

recovered via water flooding and steam injection (conventional enhanced oil recovery methods) 

accounted for 76% of the state’s oil production in 2009 while HF accounted for 20% of CA’s oil 

production in the last decade39,40. The application of unconventional techniques can enhance 

                                                
37 Currie, J.; Hanushek, E. A.; Kahn, E. M.; Neidell, M.; Rivkin, S. G. Does Pollution Increase School Absences? Rev. 
Econ. Stat. 2009, 91 (4), 682–694. https://doi.org/10.1162/rest.91.4.682. 
38 Ashmore, M. R.; Dimitroulopoulou, C. Personal Exposure of Children to Air Pollution. Atmos. Environ. 2009, 43 (1), 
128–141. https://doi.org/10.1016/j.atmosenv.2008.09.024. 
39 Long JCS, Feinstein LC, Bachmann CE, Birkholzer JT, Camarillo MK, Domen JK, et al. 2015a. An Independent 
Scientific Assessment of Well  Stimulation in California Volume II: Potential Environmental Impacts of Hydraulic 
Fracturing and Acid Stimulations. 
40 Long JCS, Feinstein LC, Dirkholzer J, Jordan PD, Houseworth JE, Dobson PF, et al. 2015b. An Independent 
Scientific Assessment of Well Stimulation in California Volume I: Well Stimulation Technologies and their Past,  
Present, and Potential Future Use in California. 
41 Adgate JL, Goldstein BD, McKenzie LM. 2014a. Potential Public Health Hazards, Exposures and Health Effects from 
Unconventional Natural Gas Development. Environ Sci Technol 48:8307–8320; doi:10.1021/es404621d. 
42 US EIA. 2018a. CA - State Profile and Energy Estimates. Available: https://www.eia.gov/state/analysis.cfm?sid=CA. 
US EIA. 2018b. U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves. Available: 
http://www.eia.gov/naturalgas/crudeoilreserves/  
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environmental burdens as additional toxic chemicals are used that can potentially be released into 

air, water, and soil41,39,40,43,44,45. 

 

Air pollutants associated with OGD include particulate matter with an aerodynamic diameter of < 

2.5µm (PM2.5), diesel PM, nitrogen oxides (NOx), secondary ozone formation, mercury, and 

volatile organic compounds (VOCs) like benzene, toluene, ethylbenzene and xylene (BTEX) from 

                                                
43 Macey GP, Breech R, Chernaik M, Cox C, Larson D, Thomas D, et al. 2014. Air concentrations of volatile 
compounds near oil and gas production: a community-based exploratory study. Environmental Health 13:82; 
doi:10.1186/1476-069X-13-82. 
44 Roy AA, Adams PJ, Robinson AL. 2014a. Air pollutant emissions from the development, production, and processing 
of Marcellus Shale natural gas. Journal of the Air & Waste Management Association 64:19–37; 
doi:10.1080/10962247.2013.826151. 
45 Vengosh A, Jackson RB, Warner N, Darrah TH, Kondash A. 2014a. A Critical Review of the Risks to Water 
Resources from Unconventional Shale Gas Development and Hydraulic Fracturing in the United States. Environmental 
Science & Technology 48:8334–8348; doi:10.1021/es405118y. 
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truck traffic, drilling, hydraulic fracturing, production and flaring46,47,48,49,50,51,52,53,54,42,55,56,57,43,58. 

Additionally, fugitive toxic air contaminants can escape at the wellhead59,57 that might impact health 

of communities living near points of release. Water contaminants associated with OGD include gas-

phase hydrocarbons, chemicals mixed in drilling fluids, and naturally occurring salts, and metals and 

radioactive elements within shale that surface with wastewater along with recovered oil and gas and 

                                                
46 Allshouse WB, McKenzie LM, Barton K, Brindley S, Adgate JL. 2019. Community Noise and Air Pollution Exposure 
During the Development of a Multi-Well Oil and Gas Pad. Environ Sci Technol 53:7126–7135; 
doi:10.1021/acs.est.9b00052. 
47 Brantley HL, Thoma ED, Eisele AP. 2015. Assessment of volatile organic compound and hazardous air pollutant 
emissions from oil and natural gas well pads using mobile remote and on-site direct measurements. Journal of the Air & 
Waste Management Association 65:1072–1082; doi:10.1080/10962247.2015.1056888. 
48 Colborn T, Schultz K, Herrick L, Kwiatkowski C. 2014. An Exploratory Study of Air Quality Near Natural Gas 
Operations. Human and Ecological Risk Assessment: An International Journal 20:86–105; 
doi:10.1080/10807039.2012.749447. 
49 Eapi GR, Sabnis MS, Sattler ML. 2014. Mobile measurement of methane and hydrogen sulfide at natural gas 
production site fence lines in the Texas Barnett Shale. Journal of the Air & Waste Management Association 64:927–944; 
doi:10.1080/10962247.2014.907098. 
50 Esswein EJ, Snawder J, King B, Breitenstein M, Alexander-Scott M, Kiefer M. 2014. Evaluation of Some Potential 
Chemical Exposure Risks During Flowback Operations in Unconventional Oil and Gas Extraction: Preliminary Results. 
Journal of Occupational and Environmental Hygiene 11:D174–D184; doi:10.1080/15459624.2014.933960. 
51 Franklin M, Chau K, Cushing LJ, Johnston JE. 2019. Characterizing Flaring from Unconventional Oil and Gas 
Operations in South Texas Using Satellite Observations. Environ Sci Technol 53:2220–2228; 
doi:10.1021/acs.est.8b05355. 
52 Goetz JD, Floerchinger C, Fortner EC, Wormhoudt J, Massoli P, Knighton WB, et al. 2015. Atmospheric Emission 
Characterization of Marcellus Shale Natural Gas Development Sites. Environ Sci Technol 49:7012–7020; 
doi:10.1021/acs.est.5b00452. 
53 Koss AR, Yuan B, Warneke C, Gilman JB, Lerner BM, Veres PR, et al. Observations of VOC emissions and 
photochemical products over US oil- and gas-producing regions using high-resolution H3O+ CIMS (PTR-ToF-MS). 
Atmos. Meas. Tech., 10, 2941–2968, 2017 
https://doi.org/10.5194/amt-10-2941-2017. 
54 Lan X, Talbot R, Laine P, Torres A, Lefer B, Flynn J. 2015. Atmospheric Mercury in the Barnett Shale Area, Texas: 
Implications for Emissions from Oil and Gas Processing. Environ Sci Technol 49:10692–10700; 
doi:10.1021/acs.est.5b02287. 
55 Marrero JE, Townsend-Small A, Lyon DR, Tsai TR, Meinardi S, Blake DR. 2016. Estimating Emissions of Toxic 
Hydrocarbons from Natural Gas Production Sites in the Barnett Shale Region of Northern Texas. Environ Sci Technol 
50:10756–10764; doi:10.1021/acs.est.6b02827. 
56 Maskrey JR, Insley AL, Hynds ES, Panko JM. 2016. Air monitoring of volatile organic compounds at relevant 
receptors during hydraulic fracturing operations in Washington County, Pennsylvania. Environmental Monitoring and 
Assessment 188; doi:10.1007/s10661-016-5410-4. 
57 Mellqvist J, Samuelsson J, Andersson P, Brohede S, Isoz O, Ericsson M. 2017. Using Solar Occultation Flux and other 
Optical Remote Sensing Methodsto measureVOC emissions from a variety of stationary sourcesin the South Coast Air 
Basin. 
58 Warneke C, Geiger F, Edwards PM, Dube W, Pétron G, Kofler J, et al. 2014. Volatile organic compound emissions 
from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air 
composition. Atmospheric Chemistry and Physics 14:10977–10988; doi:10.5194/acp-14-10977-2014. 
59 Garcia-Gonzales DA, Shonkoff SBC, Hays J, Jerrett M. 2019. Hazardous Air Pollutants Associated with Upstream Oil 
and Natural Gas Development: A Critical Synthesis of Current Peer-Reviewed Literature. Annu Rev Public Health 
40:283–304; doi:10.1146/annurev-publhealth-040218-043715. 
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can contaminate potable water via leaks and spills or evaporation41,60,39,40. Noise pollution is 

associated with well pad construction, truck traffic, drilling, pumps, flaring of gases, and other 

processes45,61. Drilling and production activities occur both during the daytime and nighttime, and 

light pollution has been previously reported as a nuisance in communities undergoing OGD39,40, 

suggesting OGD may impact the health of nearby communities via increased psychosocial stress. 

 

To date, most epidemiological studies on the impacts of OGD have focused on populations in 

Pennsylvania, Colorado, and Texas. For example, several recent studies have found associations 

between OGD and various adverse birth outcomes, including reductions in term birth weight62,63 

and increased odds or incidence of low birth weight64,61, preterm birth65,66,67 and small for gestational 

age birth61,62.  One study indicates that asthma exacerbation is also of concern in relation to OGD68. 

 
Drinking Water Wells 

Communities served by water with elevated contaminant levels are disproportionately poor and 

Latino, raising environmental justice concerns69,70.  In 2012, California passed Assembly Bill (AB) 

                                                
60 Hildenbrand ZL, Carlton DD, Fontenot BE, Meik JM, Walton JL, Taylor JT, et al. 2015. A Comprehensive Analysis 
of Groundwater Quality in The Barnett Shale Region. Environ Sci Technol 49:8254–8262; doi:10.1021/acs.est.5b01526. 
61 Blair BD, Brindley S, Dinkeloo E, McKenzie LM, Adgate JL. 2018. Residential noise from nearby oil and gas well 
construction and drilling. J Expo Sci Environ Epidemiol 28:538–547; doi:10.1038/s41370-018-0039-8. 
62 Hill EL. 2018. Shale gas development and infant health: Evidence from Pennsylvania. Journal of Health Economics 
61:134–150; doi:10.1016/j.jhealeco.2018.07.004. 
63 Stacy SL, Brink LL, Larkin JC, Sadovsky Y, Goldstein BD, Pitt BR, et al. 2015. Perinatal Outcomes and 
Unconventional Natural Gas Operations in Southwest Pennsylvania. J. Meliker, ed PLOS ONE 10:e0126425; 
doi:10.1371/journal.pone.0126425. 
64 Currie J, Greenstone M, Meckel K. 2017. Hydraulic fracturing and infant health: New evidence from Pennsylvania. 
Science Advances 3:e1603021; doi:10.1126/sciadv.1603021. 
65 Casey JA, Savitz DA, Rasmussen SG, Ogburn EL, Pollak J, Mercer DG, et al. 2015. Unconventional Natural Gas 
Development and Birth Outcomes in Pennsylvania, USA: Epidemiology 1; doi:10.1097/EDE.0000000000000387. 
66 Walker Whitworth K, Kaye Marshall A, Symanski E. 2018. Drilling and Production Activity Related to 
Unconventional Gas Development and Severity of Preterm Birth. Environmental Health Perspectives 126; 
doi:10.1289/EHP2622. 
67 Whitworth KW, Marshall AK, Symanski E. 2017. Maternal residential proximity to unconventional gas development 
and perinatal outcomes among a diverse urban population in Texas. PLOS ONE 12:e0180966; 
doi:10.1371/journal.pone.0180966. 
68 Rasmussen SG, Ogburn EL, McCormack M, et al. Association between unconventional 
natural gas development in the Marcellus Shale and asthma exacerbations. JAMA Intern 
Med. 2016;176:1334–1343. 
69 Balazs CL, Morello-Frosch R, Hubbard AE, Ray I. Environmental justice implications of arsenic contamination in 
California’s San Joaquin Valley: a cross-sectional, cluster-design examining exposure and compliance in community 
drinking water systems. Environ Health. 2012;11(1):84. doi:10.1186/1476-069X-11-84 
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68571, known as the Human Right to Water law, which recognizes the universal right to clean, safe, 

affordable water among all Californians including disadvantaged communities in rural and urban 

areas served by community water systems (CWS -- with at least 15 service connections or serving at 

least 25 year-round residents), small water systems (i.e. <15 service connections) and private 

domestic wells.   Several state and regional agencies tasked with implementing California’s Human 

Right to Water law include the State Regional Water Boards, the Department of Water Resources, 

and Cal EPA’s Office of Environmental Health Hazard Assessment.  A major barrier to achieving 

universal access to clean drinking water is a lack of regulatory oversight and data on untreated 

drinking water sources, including small water systems and private wells. Little water quality 

information about these water sources exists because they fall outside the purview of state and 

federal drinking water regulations. Nevertheless, it is estimated that as many as 1.5 – 2.5 million 

Californians72,73 rely on small water systems or private wells (referred to herein as “domestic wells”), 

which may face even more significant water quality challenges compared to regulated CWS.  

Previous studies have sought to characterize the extent to which Californians rely on domestic wells 

and estimate their water quality and suggest that domestic well users are uniquely vulnerable to 

potential contamination from diverse agricultural, industrial and other sources with significant EJ 

concerns74,75,76,77,78,79.  

  
 
Voter Turnout 

                                                
71 AB-685 State water policy. The Human Right to Water. 
https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201120120AB685. Accessed November 8, 2019. 
72 Johnson TD, Belitz K. Identifying the location and population served by domestic wells in California. J Hydrol Reg 
Stud. 2015;3:31-86. doi:10.1016/j.ejrh.2014.09.002 
73 Dieter CA, Maupin MA, Caldwell RR, et al. Estimated Use of Water in the United States in 2015. U.S. Geological Survey; 
2018. doi:10.3133/cir1441 
74 Balazs CL, Ray I. The Drinking Water Disparities Framework: On the Origins and Persistence of Inequities in 
Exposure. Am J Public Health. 2014;104(4):603-611. doi:10.2105/AJPH.2013.301664 
75 Anning, David, Paul, Angela P., McKinney, Tim, Huntington, Jena, Bexfield, Laura, Thiros, Susuan. Predicted Nitrate 
and Arsenic Concentrations in Basin-Fill Aquifers of the Southwestern United States. U.S. Geological Survey; 2012. 
76 Ayotte JD, Medalie L, Qi SL, Backer LC, Nolan BT. Estimating the High-Arsenic Domestic-Well Population in the 
Conterminous United States. Environ Sci Technol. 2017;51(21):12443-12454. doi:10.1021/acs.est.7b02881 
77 Ayotte JD, Nolan BT, Gronberg JA. Predicting Arsenic in Drinking Water Wells of the Central Valley, California. 
Environ Sci Technol. 2016;50(14):7555-7563. doi:10.1021/acs.est.6b01914 
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doi:10.1016/j.scitotenv.2017.05.192 
79 CalEnviroScreen 3.0 | OEHHA. https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-30. Accessed 
October 7, 2019. 
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Studies in the economic, social science and environmental health literature suggest key linkages 

between voter turnout, as an indicator of community and local civic engagement capacity and 

environmental quality indicators80,81.  Boyce et al. (1994, 1999) examined variations among US states 

using a composite index of environmental stress that incorporated 167 indicators of air and water 

pollution, toxic chemical releases, pesticide use, and other measures, as well as an index of state-level 

environmental policy related to these aspects of environmental quality82,83. Utilizing a cross-sectional 

study design, the authors found that an index of power equality that combined voter turnout, 

educational attainment, tax fairness, and access to Medicaid was associated with stronger 

environmental policies, which were, in turn, associated with less environmental stress. In separate 

models, greater environmental stress and power inequality were also associated with a higher infant 

mortality rate and a premature death rate. 

 
 
 
 
  

                                                
80 Cushing L, Morello-Frosch R et al. et al. Annu. Rev. Public Health 2015. 36:193–209 
81 Press, D. (1998). Local environmental policy capacity: framework for research. Nat Resources Journal, 38(1), 29-52. 
82 Boyce JK. 1994. Inequality as a cause of environmental degradation. Ecol. Econ. 11:169–78 
83 Boyce JK, Klemer AR, Templet PH, Willis CE. 1999. Power distribution, the environment, and public health: a state-
level analysis. Ecol. Econ. 29:127–40. 
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APPENDIX 2 

CES 3.0 Score vs. Percentile 

The raw CalEnviroScreen 3.0 “scores” are simple the point total between 0-100 for each census 

tract computed as the sum of all the various exposure factors calculated as part of the CES 3.0 

dataset.  In contract, the percentile values represent percentiles (also from 0-100) of those scores.  

Therefore, if there are not many scores of given value range, it requires a large change in score to 

result in a difference in percentile.  Indeed, we see this with the CES 3.0 score and percentile data, 

where due to the lack of high score instances, there is a very large range of scores which result in 

very high percentile values. 

 

 
Figure A1.1. Distribution of CES 3.0 Scores 
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Figure A1.2. CES 3.0 Percentiles (y-axis) vs. CES 3.0 Scores (x-axis). 
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Residential Parcel Classifications 

Classes identified as residential using the “USE_CODE_2” land classification field. 

 

USE_CODE_2  

APARTMENT HOUSE (100+ UNITS) 

APARTMENT HOUSE (5+ UNITS) 

APARTMENTS (GENERIC) 

CLUSTER HOME (RESIDENTIAL) 

COMM/OFC/RES MIXED USE 

CONDOMINIUM (RESIDENTIAL) 

COOPERATIVE (RESIDENTIAL) 

DORMITORY, GROUP QUARTERS (RESIDENTIAL) 

DUPLEX (2 UNITS, ANY COMBINATION) 

FRATERNITY HOUSE, SORORITY HOUSE 

GARDEN APT, COURT APT (5+ UNITS) 

HIGHRISE APARTMENTS 

HOMES (RETIRED; HANDICAP, REST; CONVALESCENT; NURSING) 

MANUFACTURED, MODULAR, PRE-FABRICATED HOMES 

MISC RESIDENTIAL IMPROVEMENT 
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MOBILE HOME 

MOBILE HOME PARK, TRAILER PARK 

MULTI-FAMILY DWELLINGS (GENERIC, ANY COMBINATION 2+) 

PLANNED UNIT DEVELOPMENT (PUD) (RESIDENTIAL) 

QUADRUPLEX (4 UNITS, ANY COMBINATION) 

RESIDENTIAL (GENERAL) (SINGLE) 

RESIDENTIAL COMMON AREA (CONDO/PUD/ETC.) 

RESIDENTIAL INCOME (GENERAL) (MULTI-FAMILY) 

RURAL RESIDENCE (AGRICULTURAL) 

SINGLE FAMILY RESIDENTIAL 

STORES & APARTMENTS 

TIMESHARE (RESIDENTIAL) 

TOWNHOUSE (RESIDENTIAL) 

TRIPLEX (3 UNITS, ANY COMBINATION) 

ZERO LOT LINE (RESIDENTIAL) 
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Populated Area Layer Construction Example 

 
Figure A1.3. “Small” residential parcels (area < 1-acre for low-density, < 50-acre for high-density) 

for area in Fresno.  These parcels were used in final populated area layer. 
 

 
Figure A1.4. “Large” residential parcels.  Intersecting buildings used in final populated areas layer. 
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Figure A1.5. Populated blocks with no residential parcels within them.  Intersecting buildings used 

in final populated areas layer. 
 

 
Figure A1.6. Populated blocks with no residential parcels or buildings within them.  Block 

boundaries used in final populated areas layer. 
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Figure A1.7. Composite of the four geometries highlighted in figures A1.3-A1.6, which makes up 

the final populated areas layer in this example region in Fresno. 
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APPENDIX 3 – Population Weighting vs. Area-Weighting 

The use of population weighting for the analysis of many of the community metrics was done due to 

the fact that is accounts for the relative distribution of people within a given area of interest (AoA) 

and weights their respective characteristics accordingly.  This is relevant when an AoA intersects 

residential areas of more than one block group (or tract when considering CES metrics).   

 

Let’s explore an example where we want to calculate the average CES 3.0 score within a given AoA.  

Say our AoA intersects residential portions of three different census tracts, let’s call them A, B, and 

C.  Let’s pretend their characteristics are as follows: 

 

 

Tract 

Residential area 

within AoA [km2] 

Tract Residential 

Area [km2] 

 

Tract Population 

 

CES 3.0 Score 

A 0.4 1.6 30 65 

B 0.4 1.2 200 40 

C 0.2 1.0 750 85 

 

Area Weighting 

If we were to calculate the average CES score using a simple, area-weighted approach, we would just 

calculate the fraction of each tract’s total residential area that is within the AoA and then use those 

values as our weights for the weighted-averaging process.  This essentially assumes that all residential 

area, regardless of its parent tract’s population, is treated equally when calculating average CES 

scores.  The formula for each tract would look like this: 

 

(Area in AoA/Total area)*CES + … + … 

 

Putting this all together for all tracts using our hypothetical values: 

 

(0.4/1.6)*65 + (0.4/1.2)*40 + (0.2/1.0)*85 = 46.6 

 

This approach is simple and does not require knowledge about each tract’s population.  However, 

area-weighting is most appropriate when the metric of concern is related to land area.  For example, 
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say you are surveying three different wheat fields, each of which has a different, uniform rate of 

yield.  If you wanted to calculate the average yield across the area of these three fields, you would 

want to employ an area-weighted approach, with the weights corresponding to the total area of each 

field.  However, when calculating metrics of vulnerability or exposure that inherently pertain to 

populations, it may not be sufficient to simply employ an area-weighted approach. 

 

Population Weighting 

For any metrics that relate to the residents of an area, using a simple area-weighted approach will 

still be using the area of land as its weights, rather than the presence or absence of people 

themselves, which can be misleading.  Say we want to calculate the average, median income across 

two different census tracts, each with equal area, but one of which has 10 people and the other 100.  

An area-weighted approach would simply be the average of the two tracts’ median incomes, which 

would mean that the incomes of the 10 people in the sparsely-populated tract would have equal 

influence as the incomes of the 100 people in the more densely-populated tract.  However, if we 

employ a population-weighted approach, we would instead account for the populations of each tract 

and therefore find the true average income of all 110 people in the study area. 

 

Using the numbers from our hypothetical example, let’s recalculate the average CES score using 

population-weighting.  The steps are as follows: 

1. Assuming population is evenly distributed within each tract, estimate the total population 

within the AoA.  This intermediate step is done using the area fractions of each tract within 

the AoA as follows: 

(Area in AoA/Total area)* (Tract Population) + … + … 

 

Total Population in AoA = (0.4/1.6)*30 + (0.4/1.2)*200 + (0.2/1.0)*750 = 224 people 

 

2. Now that we have our total estimated population within our AoA, we can use that value as 

the denominator in our calculation of population weights for each tract: 

(Area in AoA/Total area)* (Tract Population/Total Population in AoA)*CES + … 

 

(0.4/1.6)*(30/224)*65 + (0.4/1.2)*(200/224)*40 + (0.2/1.0)*(750/224)*85 = 71.0  



   
 

48 
 

Notice how different our population-weighted result (71.0) is from the simple, area-weighted one 

(46.6).  This is due to the fact that the three tracts each have different population densities, and even 

though tract C has a smaller area of intersection with our AoA, it has far more people total, meaning 

that there are more people within this area of intersection, who have a higher CES score than tracts 

A and B.  These people were being underrepresented in the simple, area-weighting scheme because 

it simply weighted tract C’s CES score based on its area and not population.  

 

Note above how in this population-weighting scheme we still use the areas to calculate how many 

people are presumed to be within each tract’s area within the AoA.  This is because we do not have 

detailed population distribution information regarding changing population densities within each 

tract and therefore must assume that the tract’s population is spread uniformly across its residential 

area. 

 

Other important clarifications: 

- Population-weighting only accounts for populations within a given area of interest and not 

beyond.  Therefore, this approach does not inherently under-weight AoAs in which few 

people reside compared to a different AoA with a higher total population.  If 10 people 

reside in one AoA and all have a CES score of 60, the average CES score for that AoA will 

be 60, even if there exist other AoAs that have much higher populations within them around 

the state. 

 

- It is true that population-weighting does weight more populous tracts within a given AoA, 

and therefore may dilute certain values of sparsely-populated tracts within the same AoA.  

However, this is an issue inherent to any form of averaging.  If one would like to capture the 

highest or lowest CES in an AoA, we suggest using the Max/Min CES 3.0 metrics provided. 
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Another visual example for calculating the CES score showing a hypothetical AoA intersecting 

multiple census tracts is shown below: 

 

 
 

 


