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Abstract The seismic potential of active low-angle normal faults (LANFs, < 30◦ dip) remains12

enigmatic under Andersonian faulting theory, which predicts that normal faults dipping less than13

30◦ should be inactive. The Alto Tiberina fault (ATF) in the northern Apennines, a partly creeping14

17◦-dipping LANF, has not been associated with any historical earthquakes but could potentially15

generate earthquakes up to Mw 7. We investigate the mechanical preconditions and dynamic plau-16

sibility of large ATF earthquakes using 3D dynamic rupture and seismic wave propagation simula-17

tions constrained by multidisciplinary data from the Alto Tiberina Near Fault Observatory (TABOO-18

NFO). Our models incorporate the complex non-planar ATF fault geometry, including hanging wall19

secondary faults and a recent geodetic coupling model. We show that potential large earthquakes20

(up to Mw 7.4) are mechanically viable under Andersonian extensional stress conditions if the ATF21

is statically relatively weak (µs =0.37). Large earthquakes only nucleate on favorably oriented,22

steeper fault sections (dip ≥30◦), and remain confined to the coupled portion, limiting earthquake23

magnitude. These ruptures may dynamically trigger an intersecting synthetic branch but are un-24

likely to affect more distant antithetic faults. Jointly integrating fault geometry and geodetic cou-25

pling is crucial for forecasting dynamic rupture nucleation and propagation.26

1 Introduction27

The Andersonian theory of faulting predicts that in an extensional tectonic regime (i.e. where the maximum com-28

pressive stress σ1 is vertical), normal faults should form at an angle of ∼60◦ with respect to the Earth’s surface (An-29

derson, 1905, 1951). The Anderson-Byerlee frictional fault reactivation theory also predicts that in order to reactivate30

a preexisting fault as a normal fault, the fault dip should fall between 40◦ and 80◦ for a static friction coefficient31
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µs ranging from 0.6 to 1 (Sibson, 1985). To the first order, these theoretical expectations seem consistent with the32

instrumental record, as the global compilation of large normal-faulting earthquakes (Mw>5.5) with unambiguously33

determined rupture planes shows that those earthquakes occur on faults dipping between 30◦ and 65◦ (Collettini and34

Sibson, 2001). Yet, despite both theoretical expectations and instrumental records, existing LowAngle Normal Faults35

(LANFs) - normal faults dipping less than 30° - have been identified worldwide (Axen, 2004; Abers, 1991; Wernicke,36

1995; Collettini, 2011). Active examples of LANFs include theMai’iu fault in PapuaNewGuinea (Biemiller et al., 2020a;37

Little et al., 2019;Mizera et al., 2019), the low-angle detachment in the Gulf of Corinth, Greece (Rietbrock et al., 1996),38

and the Alto Tiberina fault, Italy (Collettini and Barchi, 2002; Chiaraluce et al., 2007; Vadacca et al., 2016).39

The ability of LANFs to host large earthquakes remains debated due to the paucity of such events recorded in40

instrumental seismic catalogs. The 1985 Mw 6.8 Woodlark Basin earthquake in Papua New Guinea is a notable ex-41

ception, with one focal mechanism plane dipping at 24°, aligning with a seismically imaged LANF (Abers, 1991). Slip42

on the auxiliary, steeper plane would place the uplifted metamorphic core complexes on the downthrown side of43

the fault, supporting the low-angle fault hypothesis (Abers, 1991). The scarcity of large LANF earthquakes in the in-44

strumental recordmay be due to potentially longer recurrence intervals compared to steeper-dipping normal faults.45

Using simple mechanical considerations, Wernicke (1995) shows that the average slip D and recurrence interval R46

is proportional to 1/sin(θ) and 1/tan(θ), respectively (with θ the dip angle). This suggests that for a given rate of47

horizontal extension, LANFs accommodate the deformation with fewer but larger earthquakes compared to steeper48

normal faults, which aligns with neotectonic studies indicating large earthquakes on several LANFs globally (e.g.49

Cummins et al., 2020; Biemiller et al., 2020b; Karlsson et al., 2021). For instance, paleoseismological records of the50

Mai’iu fault show it has hosted infrequent but significantMw> 7 earthquakes over the past 7000 years (Biemiller et al.,51

2020b).52

LANFs have been the center of intense debate focusing on whether these faults formed and accommodated de-53

formation at low angles or whether they initiated and were active at steep angles before being progressively rotated54

to shallower dips (Wernicke, 1995; Collettini, 2011; Abers et al., 1997). Regardless of their geometrical origin, LANFs55

actively accommodating deformation are nowwell documented (Webber et al., 2018), including fromGNSSmeasure-56

ments (Wallace et al., 2014; Hreinsdóttir and Bennett, 2009; Anderlini et al., 2016; Vadacca et al., 2016; Biemiller et al.,57

2020a). Some are also clearly delineated by microseismicity (Valoroso et al., 2017; Abers et al., 2016; Rietbrock et al.,58

1996; Vuan et al., 2020). Moreover, slip rate estimates for 49 active or inactive LANFs (Webber et al., 2018) suggest that59

these faults slip faster (mostly <10 mm/y but one third >10 mm/y) than their high-angle counterparts (Nicol et al.,60

2005, mostly <1 mm/y and no faster than 6 mm/y). This observation may be explained by a combination of factors,61

including a dominant contribution of aseismic slip (Hreinsdóttir and Bennett, 2009). Moreover, due to their shallow62

dip angle, LANFs are more efficient at accommodating horizontal deformation than regular normal faults, which63

can result in an apparently higher slip rate when inferred from geodetic data or geological markers of horizontal64

extension.65

Fully dynamic rupture models are physics-based numerical models that couple the non-linear interaction of a66

fault or fault system’s yielding and sliding behavior described by the constitutive laws of friction with seismic wave67

propagation to simulate the nucleation, propagation, and arrest of a rupture (Andrews, 1976; Day, 1982; Harris et al.,68
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2018; Ramos et al., 2022). Dynamic rupture simulations can be used to understand the initial conditions allowing to69

reproduce specific aspects of a given earthquake (e.g., Aochi andMadariaga, 2003; Wollherr et al., 2019; Ulrich et al.,70

2019; Harris et al., 2021; Tinti et al., 2021; Jia et al., 2023b;Hayek et al., 2024), or to understand the influence of specific71

parameters on rupture characteristics (e.g., Harris et al., 1991; Harris and Day, 1997, 1999; Gabriel et al., 2013; Huang72

et al., 2014). Recent advances in numerical methods and computational infrastructure have enabled the modeling73

of increasingly complex problems, in which realistic initial conditions constrained by geological, geophysical, and74

seismic observations can be included (e.g., 3D multi-segmented fault geometry, fault roughness, spatially variable75

on- and off-fault initial conditions, topography; Pelties et al., 2012; Heinecke et al., 2014b; Ulrich et al., 2022; Taufiqur-76

rahman et al., 2022, 2023; Jia et al., 2023a; Gabriel et al., 2023). Therefore, dynamic rupture simulations may now77

be used to forecast realistic rupture scenarios for active fault systems that have not hosted moderate to large earth-78

quakes in modern times. Such scenarios can, in turn, be used to inform seismic hazard assessment by computing79

associated ground shaking (e.g., Li et al., 2023).80

In the Northern Apennines, a LANF, named the Alto Tiberina fault (ATF), accommodates a significant part of81

the 3 mm/y of extension (Anderlini et al., 2016, Figure 1). Microseismicity, recorded by the dense seismic network82

of the Alto Tiberina Near fault observatory (TABOO-NFO, Chiaraluce et al., 2014), illuminates the ∼17◦-dipping low83

angle normal fault as well as several synthetic and antithetic secondary faults located in its hanging wall (Chiaraluce84

et al., 2007; Valoroso et al., 2017). Although the ATF is large enough (70 km×40 km) to produce a Mw 7 earthquake,85

no historical earthquake is known to have occurred on the ATF in the last 1000 years (the completeness limit of the86

Italian catalog of large historical earthquakes for this part of the Apennines, Boschi, 1998; Castello et al., 2006; Visini87

et al., 2022).88

Here, we used 3D dynamic rupture and seismic wave propagation modeling to forecast plausible scenarios of89

moderate-to-large earthquakes for the Alto Tiberina low-angle normal fault system, in Italy. We use the multidisci-90

plinary data providedby theTABOO-NFO tohelp constrain the initial conditions of the simulations. Our dynamic rup-91

turemodels incorporatemulti-segment non-planar fault geometry constrained fromseismic data, homogeneous and92

data-constrained heterogeneous initial stress distributions, slip weakening friction, friction coefficients consistent93

with the lithology of the area, and topography. In the differentmodels, we investigate the favorable conditions (static94

fault strength, pre-stress level, nucleation location, fault non-planarity) that enable rupture to propagate. While our95

simulations show that potential large earthquakes (up to Mw 7.4) are mechanically viable under Andersonian exten-96

sional stress conditions for a statically relatively weak ATF (µs = 0.37), they also reveal that the non-planarity of the97

ATF is of primary importance, as dynamic rupture simulations assuming a planar 17°-dipping fault fail to propagate.98

When the initial stresses are constrained by a coupling model, the rupture remains confined to the coupled parts99

of the fault, limiting the earthquake magnitude to Mw 6.7. We then discuss the scenarios limitations and potential100

avenues for future work.101

2 The Alto Tiberina Low-Angle Normal Fault102

The Alto Tiberina low-angle normal fault (ATF) is located in the inner region of the Umbria-Marche Apennines, Cen-103

tral Italy (Figure 1). It is the easternmost, youngest, and only active fault of six subparallel east-dipping low-angle104
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normal faults that have successively accommodated in the last ∼10 My (along with associated high-angle antithetic105

normal faults) extension in the Northern Apennines as itmigrated eastward (Barchi et al., 1998; Collettini et al., 2002;106

Collettini and Barchi, 2002). The ATF has accommodated 2 km of slip in the last ∼2 My, leading to a long-term slip107

rate of 1 mm/y (Collettini and Barchi, 2002). Its main antithetic fault is the Gubbio fault, a N135◦ striking, 22 km108

long fault intersecting the ATF at ∼5 km depth (Figure 1). The Gubbio fault has accommodated ∼3 km of slip with109

a long-term slip rate estimated at 1.65–1.9 mm/y , assuming all the displacement occurred during the Quaternary110

(Collettini et al., 2003; Mirabella et al., 2004). The present-day regional stress field inferred from focal mechanisms,111

borehole breakouts, and striated fault planes is characterized by a sub-vertical σ1 and a subhorizontal, NE-SW trend-112

ing σ3 (Lavecchia et al., 1994; Mariucci and Montone, 2014, 2020; Montone and Mariucci, 2016, 2020), suggesting an113

Andersonian extensional stress-field.114

Historical earthquake records report seven historical events, among which three wereM>6 earthquakes (in 1352,115

1751, and 1781, Figure 1, Rovida et al., 2016). All of them occurred towards the northwestern or southeastern limits116

of the ATF but none of them is thought to have occurred on the ATF. In instrumental time, three seismic sequences117

of moderate earthquakes occurred in this area: the 1984 Gubbio (Mw 5.1), the 1997 Colfiorito (Mw 6.0, 5.7 and 5.6)118

and the 1998 Gualdo Tadino (Mw 5.1) sequences (Figure 1, Haessler et al., 1988; Amato et al., 1998; Chiaraluce et al.,119

2003; Ciaccio et al., 2006). All main shocks broke NW-trending faults dipping at steep angles (40-50 ◦) toward the SW.120

The Gubbio and Gualdo Tadino sequences occurred within the hanging wall of the ATFwhile the Colfiorito sequence121

occurred in the SE continuity of the ATF (Figure 1). Note that the Gubbio sequence did not break the Gubbio fault but122

another steeply-dipping fault segment located between Perugia and Gubbio (Collettini et al., 2003).123

Since 2010, the Alto Tiberina fault system is continuously monitored by the Alto Tiberina Near-Fault Observa-124

tory TABOO-NFO (Chiaraluce et al., 2014, Figure 1). TABOO-NFO is a multidisciplinary research infrastructure based125

on state-of-the-art observational systems that monitor in real-time various geophysical parameters to study seismic126

and aseismic deformation as well as potential preparatory processes on the ATF and nearby faults. In particular,127

the dense seismic network of TABOO records the seismicity of the Alto Tiberina fault system with a very low event128

detection threshold (down toML=-0.2) and completenessmagnitude (MC≈ 0.5), thus enabling the production of high-129

resolution earthquake catalogs that finely characterize the architecture of the Alto Tiberina fault system (Chiaraluce130

et al., 2007; Valoroso et al., 2017; Vuan et al., 2020; Essing and Poli, 2022, 2024; Poggiali et al., 2025).131

Microseismicity on the ATF is located between 3 and 16 km depth and defines a 1.5 km thick fault zone (Valoroso132

et al., 2017; Chiaraluce et al., 2007). The 2010-2014 catalog (Valoroso et al., 2017) reveals that very low magnitude133

earthquakes (ML < 2.4) occur at a nearly constant rate of 2.2 events per day with a homogeneous spatial distribu-134

tion, except for one portion located in the northern part of the fault between 7 km and 9 km depth where seismicity135

is almost absent. In the Alto Tiberina hanging wall, the seismicity rate is 10 times larger and occurs in bursts often136

associated with Mw>3 mainshock-aftershocks sequences (Valoroso et al., 2017; Vuan et al., 2020, Figure 1) break-137

ing small (few km long) secondary steeply-dipping faults. Such mainshock-aftershocks sequences occurred in the138

Pietralunga (three Mw 3.2-3.6 events between 2011 and 2014), Città di Castello (fiveMw>3 events in 2013), and Gubbio139

areas (7 Mw>3 events between 2011 and 2014, Figure 1). While the seismicity on the Pietralunga and Città di Castello140

areas delineates relatively simple structures dipping in only one direction (NE), the seismicity in the Gubbio area is141
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more complex and occurs on oppositely-dipping faults (Valoroso et al., 2017, and Figure 1b). The largest earthquake142

recorded in the Alto Tiberina hanging wall is a Mw 4.5 earthquake that broke a NE 38◦ dipping (dip angle from the143

TDMT solution, https://terremoti.ingv.it/event/34297011) splay of the ATF near the town of Umbertide in 2023 (Figure144

1). Finally, no seismicity is associated with the antithetic Gubbio fault.145

Modeling of GPS velocities shows that the Alto Tiberina fault system is accommodating two thirds of tectonic146

extension taking place in the Northern Apennines (Anderlini et al., 2016; Hreinsdóttir and Bennett, 2009; Vadacca147

et al., 2016) with a geodetic slip rate estimated at 1.7 mm/y on the ATF (Anderlini et al., 2016). Additionally, the148

distribution of interseismic coupling suggests that a large part of the ATF is creeping but locked near the surface149

(down to 5 km depth), as well as in the northwestern part of the fault between 7 and 10 km depth (Anderlini et al.,150

2016, see also Figure 3).151

Measurements in boreholes located in the foot-wall of the ATF reveals the presence of CO2 pressurized at 85%152

of the lithostatic pressure at around 4 km depth. This over-pressurized fluids are thought to be responsible for the153

microseismicity on the ATF (Collettini et al., 2002; Collettini and Barchi, 2002; Chiaraluce et al., 2007).154

3 Method155

We perform 3D dynamic rupture simulations for the Alto Tiberina fault system using SeisSol, an open-source soft-156

ware package that solves for spontaneous dynamic rupture and seismic wave propagation with high-order accu-157

racy in space and time (Käser and Dumbser, 2006; Pelties et al., 2014; Heinecke et al., 2014a; Uphoff et al., 2017).158

SeisSol uses the Arbitrary high-order accurate DERivative Discontinuous Galerkin method (ADER-DG, Dumbser and159

Käser, 2006) and is optimized for high-performance computing infrastructure. SeisSol uses unstructured tetrahedral160

meshes allowing representing geometrically complex structures such as non-planar and intersecting faults as well161

as topography. Dynamic rupture simulations require several initial conditions that need to be prescribed including162

the fault system geometry (section 3.1), the fault strength (section 3.2), the initial stress state (section 3.3) and the163

medium properties (section 3.4).164

3.1 Fault geometry165

Our fault model includes the Alto Tiberina and Gubbio master faults as well as four steeply-dipping secondary faults166

that have hosted Mw 3.2+ earthquakes since 2010 (Figures 1 and 2). The four secondary faults are the Umbertide,167

Pietralunga, Gubbio synthetic, and Gubbio antithetic faults. All faults except one are modeled with a realistic non-168

planar fault geometry. The 3D geometry of the Alto Tiberina and Gubbio master faults is built from the contour169

depth profiles of Mirabella et al. (2011, 2004), while we use the 2010-2014 seismicity catalog of Valoroso et al. (2017)170

to constrain the non-planar geometry of three of the secondary faults (Pietralunga, Gubbio synthetic, and Gubbio171

antithetic faults, supplementary text S1 and Figures S1 and S2). Very recently, Poggiali et al. (2025) have generated172

another high-resolution catalog covering a longer time span, from 2010 to 2023. This catalog, however, does not173

modify the first order of geometrical evidence identified by Valoroso et al. (2017). The last secondary fault (Um-174

bertide) is modeled with a planar surface using the focal mechanism of the 2023 Mw 4.5 Umbertide earthquake175

(https://terremoti.ingv.it/event/34297011).176

Our 3D fault geometry generates a heterogeneous dip angle distribution (Figure 2a). While the average dip angle177
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of the Alto Tiberina is 17◦, its distribution on the fault is very heterogeneous with values ranging from 4◦ to 62◦. The178

steepest area is found in the northwestern part of the fault between 6 kmand 10 kmdepth, where a large area exhibits179

a consistent dip of ∼30◦. Similarly, the dip angle distribution on the Gubbio fault is highly variable, with a steep dip180

angle (∼40◦) from the surface to 3 km depth and a shallower dip angle, of 18◦ on average at greater depths. The dip181

angles of the four secondary faults are steep and range from 38◦ to 63◦.182

3.2 Fault Friction183

The fault strength evolutionduring the rupture is describedby thewidely used linear slip-weakening friction law (Ida,184

1972; Palmer et al., 1973; Andrews, 1976; Day, 1982). The fault starts to slip when the initial shear stress τo reaches185

locally the static fault strength τs = µsσ
′
n + c. The fault strength then decreases linearly from its static level τs to its186

dynamic level τd = µdσ
′
n over a critical slip distanceDc.187

The fault core of the low-angle Zuccale fault, the exhumed and inactive analog of the ATF located on the Isle of188

Elba, is characterized by phyllosilicate-rich rocks (Collettini and Holdsworth, 2004; Collettini et al., 2009). Labora-189

tory friction experiments on samples of the Zuccale phyllosilicate-rich rocks reveal low frictional coefficients (µs<0.4,190

Smith and Faulkner, 2010; Tesei et al., 2012; Niemeijer and Collettini, 2014), with decreasing frictional strength for191

increasing phyllosilicate content (down to 0.2 for samples with 50% of phyllosilicate content, Tesei et al., 2012). Con-192

sequently, we assume a relatively weak fault with a static friction coefficient µs of 0.37 for the reference model.193

We set the dynamic friction coefficient µd to 0.1 and the critical slip distanceDc to 0.4 m. The frictional cohesion194

c is set to 0.5 MPa below 3 km depth (up-dip limit of the seismicity on the ATF) and increases linearly up to 1.5 MPa195

at the surface. The increased frictional cohesion in the first 3 km depth is used here as a proxy to mimic the velocity-196

strengthening behavior of the shallow part of the crust (Smith and Faulkner, 2010; Niemeijer and Collettini, 2014;197

Harris et al., 2021; Madden et al., 2022).198

3.3 Initial stress199

We run two sets of 3D dynamic rupture simulations that assume different initial stress distributions. The first set200

of simulations assumed laterally uniform Andersonian tectonic loading (section 3.3.1) while the second takes into201

account stress heterogeneities constrained from the kinematic couplingmap of Anderlini et al. (2016) (section 3.3.2).202

3.3.1 Uniform initial stress distribution203

We consider an Andersonian stress regime for normal-faulting (themaximum compressive stress σ1 is vertical) with204

a maximum horizontal compressive stress SHmax (σ2) oriented 158.8°N (averaged SHmax orientation in the Alto205

Tiberina area, Mariucci and Montone, 2014, 2020; Montone and Mariucci, 2016). The magnitudes of the principal206

stresses σ1, σ2, and σ3 (σ1 > σ2 > σ3) are controlled by the relative prestress level of a virtual optimally oriented207

fault R0, the effective lithostatic stress σ′
z and the stress shape ratio υ (Ulrich et al., 2019). The effective lithostatic208

stress σ′
z increases linearly with depth and is equal to the lithostatic pressure σz = ρcgz reduced by the effect of the209

pore fluid pressure Pf . Pf is assumed proportional to the lithostatic stress, Pf = γσz, with γ the fluid-pressure ratio210

(Ulrich et al., 2019). We assume an average rock density for the crust ρc = 2670 km/m3 and an overpressurized state211

with γ = 0.75 (consistent with the high fluid pressures measured in the area, Chiaraluce et al., 2007).212
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Table 1 Parameter values for the homogeneous reference model. Other tested values are listed in brackets.

Stress parameters
Maximum horizontal stress direction SHmax 158.8◦N
Stress-shape ratio υ 0.5
Pre-stress ratio of an optimally oriented fault R0 0.70 [0.65, 0.75]
Fluid pressure ratio γ 75%
Friction parameters
Static friction coefficient µs 0.37 [0.30, 0.40, 0.45]
Dynamic friction coefficient µd 0.1
Critical slip weakening distance Dc 0.4 m
Nucleation parameters
Nucleation patch radius rnuc 2.5 km

σ′
z = (1− γ)ρgz (1)213

The stress shape ratio υ = (σ2−σ3)/(σ1−σ3) balances the relativemagnitudes of the principal stresses (Ulrich et al.,214

2019) and is set to 0.5 assuming pure normal faulting on an optimally oriented fault. The relative pre-stress level215

R0, the ratio of potential stress drop over breakdown strength drop (Aochi and Madariaga, 2003; Ulrich et al., 2019),216

describes the closeness to failure of a virtual optimally-oriented fault under the Mohr–Coulomb theory. WhenR0=1,217

an optimally oriented fault is critically stressed (Aochi and Madariaga, 2003). R0 is defined as:218

R0 = (τ0 − µdσ
′
n)/((µs − µd)σ

′
n) (2)219

PrescribingR0, µs, andµd allows for the calculation of themagnitude of the deviatoric stresses. We assumeµs=0.6220

(and µd=0.1), therefore, in the assumed stress regime, an optimally oriented fault is a 60°-dipping planar fault (strik-221

ing in the SHmax direction). We use R0=0.70 for the reference model and vary this value to evaluate its influence on222

the scenarios (Table 1 and Figure 4). SinceR0 represents the background pre-stress level relative to fault strength of a223

virtual, optimally-oriented fault within the assumed stress field, it does not necessarily reflect the ratio of pre-stress224

level to fault strength on the geometrically complexmodeled faults. Therefore, for each testedmodel, we computeR,225

the relative pre-stress level resolved on the modeled faults (using the µs distribution shown in Figure 2b and µd=0.1).226

Although the faults are loaded with a laterally homogeneous regional stress field (uniform orientation and ampli-227

tude of the principal stresses), the normal and shear stresses resolved on the non-planar faults surfaces are spatially228

variable, leading to heterogeneous values of R (e.g. Figure 4 ans Ulrich et al., 2019). Finally, the deviatoric stresses229

(σ1 − σ3) are progressively tapered to 0 from 11 to 13 km depth to represent the transition from a brittle to a ductile230

deformation regime (Boncio et al., 2004). This depth range is consistent with the depth limit of the microseismicity231

in the Alto Tiberina area (Valoroso et al., 2017). The parameter values used for the reference model, as well as the232

range of tested values, are shown in Table 1. The result of the homogeneous dynamic rupture simulations are shown233

in section 4.1234

3.3.2 Data-constrained heterogeneous initial stress distribution235

The kinematic couplingmodel (giving the ratio of slip deficit to long-term slip rate) of Anderlini et al. (2016) obtained236

from interseismic GPS data suggests that while a large part of the ATF is creeping, the fault is mainly coupled near237
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the surface (down to 5 km depth), as well as in the northwestern part of the fault between 7 and 10 km depth. The238

coupled parts, therefore, accumulate stress while the stress within the creeping parts is continuously released. Here,239

we use the kinematic coupling model of Anderlini et al. (2016) to constrain the initial stress distribution on the ATF240

(Ramos et al., 2021; Chan et al., 2023). To that end, we first compute the slip deficit rate SDr using the following241

equation:242

SDr = Vo × IC (3)243

with Vo the Alto Tiberina long-term slip rate and IC the interseismic kinematic coupling coefficient from Anderlini244

et al. (2016). We assume Vo = 1.7 mm/y (Anderlini et al., 2016). The interseismic coupling coefficient IC ranges245

between 0 and 1, where 0 means fully creeping fault patches (i.e. slipping at the long-term slip-rate Vo) and 1 means246

fully coupled fault patches (i.e. not slipping). We use the slip deficit rate as input in a dynamic relaxation simulation247

with SeisSol (supplementary text S2, Glehman et al., 2024) using the same computational mesh, fault geometries,248

and material parameters to compute the corresponding stress change rate SCr associated with the slip deficit rate.249

The slip deficit and shear stress change rates are shown in Figure 3. Following Ramos et al. (2021), we consider a250

parameter T , defined as the time needed for a certain level of stress to accumulate on the ATF, such as the stress251

change SC is:252

SC = SCr × T (4)253

The initial stress is then obtained by adding the stress change SC to a background stress state. The background254

stress state is obtained from the same Andersonian stress field as before (section 3.3.1) but using a pre-stress ratio255

R0=0 (supplementary text S2). The static and dynamic coefficients of friction µs and µd are the same as in the refer-256

ence homogeneous model. Note that the kinematic coupling model of Anderlini et al. (2016) includes only the ATF.257

Therefore, in our heterogeneous simulations, only the initial stress distribution on the ATF is constrained by the258

kinematic coupling model, while the initial stress distribution on the other faults is identical to the homogeneous259

reference model (withR0=0.70, section 3.3.1). Therefore, the secondary faults are not affected by the partly-creeping260

Alto Tiberina fault.261

We use T=1800 years, corresponding to the stress accumulation time necessary for the rupture to propagate. We262

explore T in a range of 1000-3000 years. Values lower than 1600 years do not allow rupture to propagate, while T=1700263

years results in aMw6.1 earthquake. For values greater thanT=2000 years, unrealistic rupture occurs instantaneously264

across large fault areas. The result of the heterogeneous dynamic rupture simulation is shown in section 4.2.265

3.4 Medium properties266

We adopt the 1D layered model for the Alto Tiberina area shown in Latorre et al. (2016). This model consists of267

five crustal layers above the Moho where the shear wave velocity ranges from 2.22 km/s to 3.33 km/s, with a velocity268

inversion at∼6 kmdepth corresponding to Paleozoic-Triassic clastic andmetasedimentary rocks (Latorre et al., 2016,269

and Figure S3). We choose not to use the 3D velocity model of Latorre et al. (2016) due to its limited spatial extent270

which does not fully cover the ATF and the challenge of merging properly the 3D model with a larger one.271
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3.5 Nucleation Procedure272

The rupture is initiated by linearly decreasing the static frictional strength to the dynamic frictional strength within273

a gradually expanding nucleation patch of 2.5 km radius (Day et al., 2005; Galis et al., 2015). The nucleation location274

of our reference model is chosen at∼8 km depth in an area favorably stressed (Figure 4). Other nucleation locations275

are also tested on the ATF, at various depths and along-strike positions, as well as on the other faults of the system276

(Figure 7).277

3.6 Computational mesh278

Our fault model is included in a structural domain of 500× 500× 200 km3 in the east, north, and vertical direction,279

respectively. The surface of the domain includes the topography from the SRTM global DEM (Farr et al., 2007) down-280

sampled at 400 m. The structural domain is discretized with tetrahedral elements of variable size using the software281

PUMGen (https://github.com/SeisSol/PUMGen/). PUMGen embeds MeshSim from SimMetrix, the underlying mesh282

generator of SimModeler (www.simmetrix.com), and exports the mesh into the efficient PUML format used by Seis-283

Sol. The element edge length is 200m on the faults and gradually coarsened away from the faults. Themesh includes284

a 110× 110× 17 km3 high-resolution box oriented N140◦ and covering the Alto Tiberina fault system as well as most285

stations of the TABOO-NFO (Figure S4). The mesh resolution inside and outside the high-resolution box can resolve286

frequencies of at least 1 Hz and 0.25 Hz, respectively. However, we note that the use of a 1D velocity model may limit287

the realism of the simulated ground motions. The mesh comprises 7 million cells.288

4 Results289

4.1 Homogeneous models290

4.1.1 Impact of the pre-stress level291

In an Andersonian stress regime for normal faulting, pre-stress levels on an optimally-oriented fault R0 of 0.75, 0.70292

(reference scenario), and 0.65 lead to averaged pre-stress levels R of 0.32, 0.30, and 0.29, respectively, on the ∼17◦293

dipping ATF (Figure 4). Due to the non-planar geometry of the faults, R is very heterogeneous. The northwestern294

part of the fault below 6 km depth displays several highly pre-stressed patches within which R is 0.8 on average295

for R0=0.70. On the contrary, some other parts of the fault are far from failure, such as the northwestern part at296

shallow depths, that has an average R ratio close to 0. The distribution of R is directly linked to the local dip angle,297

the shallower is the local dip angle, the lower is the R ratio. This is because, in a stress regime where the maximum298

compressive stress σ1 is vertical, areaswith shallow dip angle experience larger normal stress and lower shear stress,299

compared to steeper regions. Similarly, on the Gubbio master fault, highest R values are found at shallow depths,300

where the mean dip angle is 40◦ (mean R of 0.28 for R0=0.70) whereas the deeper part of the Gubbio master fault301

(mean dip angle of 18◦) display lower R values (0.1 on average for R0=0.70). On the antithetic and synthetic Gubbio302

faults, as well as on the Pietralunga fault, R values are high (mean of 0.63 for R0=0.70) due to the steep dip angles of303

these faults (mean of 53◦). Finally, the 38◦ dipping Umbertide fault has a R of 0.39 for the R0=0.70 scenario.304

R0 values of 0.75, 0.70, and 0.65 lead to Mw 7.4, Mw 7.3 and Mw 6.9 earthquakes, respectively. Higher pre-stress305

ratios lead to higher slip amplitudes (averages of 2.2 m, 1.9 m, and 1.4 m, for R0=0.75, 0.70, and 0.65, respectively)306
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and higher rupture speeds (averages of 1978 km/s, 1709 km/s, and 1258 m/s, Figure 4). Both the R0=0.75 and R0=0.70307

scenarios break the entire fault (except a small portion at shallow depths in the northwestern part) while the rupture308

in theR0=0.65 scenario is confined to the northeastern part of the fault. The rupture of a scenario withR0=0.60 does309

not propagate away from the hypocenter (Figure S5). Finally, the Umbertide segment is triggered by the propagating310

rupture when it reaches the intersection between the ATF and the Umbertide segment. The other segments remain311

locked (Figure 4a,b).312

The moment rate releases of the three scenarios are significantly different, highlighting different rupture behav-313

iors (Figure 6a). The moment rate releases of the R0=0.75 and reference (R0=0.70) scenarios both show two main314

peaks separated by a slower moment rate, but the peak amplitude is lower and the slowdown more pronounced in315

the reference model. Additionally, despite its larger magnitude, the R0=0.75 model lasts shorter than the reference316

model due to its larger rupture speed enabled by its higher pre-stress level (Figure 6a). TheR0=0.65 rupture lasts 40 s.317

The moment rate is low for the first 15 s before reaching a peak at 22 s.318

4.1.2 Impact of the static coefficient of friction µs319

Figure 5 shows three scenarios where the ATF has a static coefficient of friction µs of 0.30, 0.40 and 0.45, respectively320

(against 0.37 for the reference model shown in Figure 4b). Other parameters are kept unchanged (Table 1). Lower321

static coefficient of friction µs values lead to higher pre-stress levels R on the ATF, resulting in larger earthquake322

magnitudes and rupture speeds (Figure 5). Static coefficient of friction µs values of 0.30, 0.40, and 0.45 lead tomoment323

magnitudes Mw of 7.4, 7.3 and 6.1, respectively. For the latter scenario, the rupture does not propagate far from the324

nucleation area (Figure 5c).325

Interestingly, scenarios having the samemomentmagnitude and similar final slip distributions do not necessarily326

have the same dynamics. For example, the R0=0.75 (µs=0.37, Figure 4a) and µs=0.30 scenarios (R0=0.70, Figure 5a)327

both produce a Mw 7.4 earthquake with a very similar final slip distribution. However, the rupture speed is higher328

for the µs=0.30 scenario (mean rupture speed of 2202 m/s) than for theR0=0.75 scenario (mean rupture speed of 1978329

m/s). This is also shown by their respective moment rate release (Figure 6). The moment rate release of the µs=0.30330

scenario (Figure 6b) is shorter (30 s) and displays two more pronounced and higher peaks (reaching 1 × 1019 Nm/s)331

than the R0=0.75 scenario (Figure 6a, 35 s with highest peak of 0.85 × 1019 Nm/s). Similarly, the reference (µs=0.37,332

R0=0.7), and µs=0.40 (R0=0.7) scenarios both produce aMw 7.3 event (Figures 4b and 5b, respectively) but the rupture333

of the latter lasts 85 s with 3 peaks in themoment rate (reaching∼ 0.4×1019 Nm/s, Figure 6b) whereas the rupture of334

the reference model has a shorter duration (50 s) and a moment rate release with only two peaks reaching a higher335

amplitude (∼ 0.6× 1019 Nm/s, Figure 6a).336

4.1.3 Influence of the nucleation location337

Previous dynamic rupture studies have shown that the nucleation location can significantly impact the rupture ex-338

tent, slip distribution, and final earthquake size (e.g. Aochi and Ulrich, 2015; Kyriakopoulos et al., 2019; Ramos et al.,339

2021; Yu et al., 2023; Chan et al., 2023). In this section, we therefore test the impact of the nucleation location on the340

rupture scenarios. All the initial parameters are identical to those of the reference scenario (Table 1 and Figure 4b),341

only the nucleation location is changed. We test 13 nucleation locations, 6 on the ATF (Figure 7a), 3 on the master342
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Gubbio fault (Figure 7b), and one on each of the four other secondary faults (Figure 7c). The nucleation radius on the343

Alto Tiberina and Gubbiomaster faults is 2.5 kmwhile we use a nucleation radius of 1.5 km on the smaller secondary344

faults.345

On the ATF, the rupture propagates only when the nucleation is located in a relatively large area of high pre-stress346

(that is where the local dip angle is steeper, models n◦1,6, Figure 7a,d) while the other tested nucleation locations347

(models n◦2-5) fail to propagate. None of the tested nucleation locations on the Gubbio fault leads to a propagating348

rupture (models n◦7-9, Figure 7b,d). Indeed, the relatively shallow dip angle of the Gubbio fault and its high fault349

strength (µs=0.6) do not favor a propagating rupture. Finally, when the nucleation location is located on one of the350

small secondary segments, the rupture stays confined on the nucleation segment without jumping on the ATF (mod-351

els n◦10-13, Figure 7c,d).352

4.2 Data-constrained model353

Figure 8 shows the result of the dynamic rupture simulation constrained by the kinematic couplingmap of Anderlini354

et al. (2016). The pre-stress level distribution shows one main high-stressed patch located on the northeastern part355

of the fault between 4.5 and 9 km depth. Another smaller and less stressed patch is located updip between 1.5 and356

3 km depth. These two patches correspond to the areas of greater shear stress change inferred from the kinematic357

couplingmodel (Figure 3b). The northeastern part of the fault at shallow depths displays a nearly null pre-stress level358

(Figure 8a) whereas the same area displays a positive (albeit slight, ≤ 2000 Pa/y) slip deficit rate (Figure 3a). This is359

an indirect impact of the local dip angle, which is very shallow in this area (Figure 2a). This leads to a high normal360

stress, that in turn, leads to a lower pre-stress ratio. Indeed, the data-constrained model is based on an Andersonian361

stress regime (see method section 3.3.2). Therefore, the normal stress is modulated by the fault topography, with362

higher normal stress in areas with shallower dip angles.363

The dynamic rupture simulation is nucleatedwithin the highest stressed patch and produces aMw6.7 earthquake364

with 1.3mof slip on average (maximumof 2.62m). The rupture is confinedwithin the strongly-coupled patchwithout365

propagating upward in the other relatively stressed area (Figure 8b). The rupture last 12 s with an average rupture366

speed of 1996m/s (Figures 9 and 8c). A simulationwith a nucleation located in the second less stressed patch does not367

lead to a propagating rupture (Figure S6). We also tested other nucleation locations within the high-stressed patch,368

as well as lower values ofDc. In each case, the rupture remains confined at depth within the main stressed patch.369

4.3 Coulomb stress changes on the hanging wall faults370

Our scenarios show that a rupture on the ATF can dynamically trigger the Umbertide fault when the rupture on the371

main fault reaches the branching intersection (Figures 4, 5). In contrast, in our scenarios, none of the other hanging372

wall faults is triggered by a rupture on the ATF (Figures 4, 5, and 7). Here we compute the Coulomb stress changes373

(dCFS) induced by our reference scenario to evaluate the impact of a rupture on the ATF on the closeness to failure374

of the hanging wall faults (Figure 10). The results show that all secondary faults, except the master Gubbio fault, are375

brought further away from failure (negative dCFS of ∼2 MPa on average, Figure 10c,d,f). The master Gubbio fault is376

brought closer to failure at depth, near the intersectionwith the ATF (average positive andmaximumdCFS of 1.7MPa377

and 9.7 MPa, respectively), but further away from failure above∼3 km depth (-1.1 MPa on average, Figure 10b). Areas378
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of positive dCFS are located where the dip angle is very shallow and thus not well oriented within the Andersonian379

stress regime. Therefore, under the initial conditions assumed, these positive dCFS do not result in a significantly380

higher risk of triggering an earthquake, as indicated by the still low pre-stress level R on the Gubbio fault at the end381

of the simulation (mean R ratio of 0.13 at the end of the simulation, against 0.20 at the beginning, Figure S7).382

To obtain a systematic view of the impact of a rupture on the ATF on the hanging wall faults, we compute the383

Coulomb stress change at different depths for 50◦-dipping receiver faults, antithetic and synthetic to the ATF (Figure384

S8). In the hangingwall of the ATF, the dCFS above 4 kmdepth and in the immediate vicinity of the ATF (within 10 km385

of the ATF) is positive (up to 6 MPa). At larger depths and further away from the ATF, the dCFS is negative. We also386

note positive lobes of dCFS at both along-strike tips of the ATF. These results suggest that a rupture on the ATF would387

decrease seismic hazard related to the hanging wall faults, except the ones located above 4 km depths near the ATF,388

whether the receiver faults are synthetic or antithetic to the ATF (Figure S8).389

We also compute the peak dynamic Coulomb stress change on the hanging wall faults (Figure S9). The peak390

dynamic dCFS remain low (<3 MPa) on all secondary faults, except on the Gubbio master fault near the intersection391

with the ATF, where they reach up to 10 MPa. These dynamic stresses are not high enough to trigger a rupture on392

the Gubbio master fault during our simulation. Still, it is worth noting that dynamic triggering may be possible if393

the Gubbio master fault was initially stressed closer to failure, for example, due to different initial conditions such394

as non-Andersonian stress, higher-pore pressure, or weaker faults.395

5 Discussion396

5.1 Importance of the ATF geometry and scenario limitations397

Ourmodels show that dynamic earthquake rupture can propagate on the ATF only when it nucleates where the local398

dip angle is ≥30◦ (Figures 7 and 2a), suggesting that the geometry of the ATF has a primary impact on where a large399

earthquake may initiate. To confirm this, we run a simulation having the same initial conditions as our reference400

scenario butwhere theATF ismodeled as a 17◦ dippingplanar fault (averagedip angle of theATF). Such fault geometry401

leads to a uniform R ratio of 0.23 (Figure S10a), too low for the rupture to propagate (Figure S10b). In contrast, when402

the fault geometry is taken into account, areas of the fault that are more steeply dipping have a R ratio high enough403

to enable a successful rupture initiation (e.g., Figure 7a). The other parts of the fault do not need to be close to failure404

to break, the rupture can propagate solely due to the large dynamic stresses arising from the rupture front.405

Uncertainties of theATF geometrymay impact our results. Weuse the fault geometry estimated byMirabella et al.406

(2011) from 40 seismic reflection profiles and six boreholes. The seismic reflection profiles are unevenly distributed,407

suggesting that some areas of the fault are less well constrained than others (see Figure 13 in Mirabella et al., 2011).408

One way to increase the precision of the fault geometry would be to use the TABOO-NFO microseismicity catalog to409

verify and adjust the geometry of the ATF in areas not covered by the seismic reflection profiles (e.g., Palgunadi et al.,410

2020). Another source of uncertainty stems from the initial stress distribution. For example, we here do not take into411

account potential remnant stress changes due to theprevious large earthquakes in the area. Our initial stress distribu-412

tion of the heterogeneous scenario is constrained by a kinematic couplingmap estimated from unevenly distributed413

GPS data. In particular, the southeast half of the fault is not well covered by GPS stations, and coupled portions of414
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the fault could bemissed by the current GPS network (Anderlini et al., 2016). Moreover, both themagnitude and spa-415

tial distribution of stress on secondary faults, such as those near Gubbio, Umbertide and Pietralunga remain poorly416

constrained. Higher stress amplitudes or different stress distributions could potentially facilitate rupture on these417

faults. In this study, we explore a range of plausible rupture scenarios, but we acknowledge that assuming differ-418

ent frictional and elastic properties or a different stress accumulation pattern could lead to significantly different419

rupture behaviors. For instance, incorporating 3D variations in elastic properties could affect the dynamic trigger-420

ing potential of the hanging wall faults. Finally, our choice of friction law and parametrization may underestimate421

the dynamic triggering potential compared to rapid velocity-weakening and restrengthening rate-and-state friction422

behavior (Gabriel et al., 2024).423

5.2 Low angle normal fault mechanics424

Various explanations have been proposed to explain themechanical paradox of LANFs. Some propose that the stress425

field around LANFs could be non-Andersonian and oriented in such a way that favors slip on a LANF (e.g. Abers426

et al., 1997;Westaway, 1999; Lister and Davis, 1989;Wernicke, 1995; Yin, 1989, 1991; Melosh, 1990; Spencer and Chase,427

1989). Alternatively, high fluid pressures could facilitate slip by reducing the effective normal stress (e.g. Axen, 1992;428

Collettini and Barchi, 2002). Finally, fault rocks of LANFs could be statically or dynamically weak (Townend and429

Zoback, 2001; Lavier and Buck, 2002; Collettini, 2011; Collettini et al., 2019; Lavier et al., 1999; Biemiller et al., 2022,430

2023).431

In this paper, we show that a large rupture on a LANF under a perfectly Andersonian stress regime is mechani-432

cally viable. This is consistent with Biemiller et al. (2022) that present dynamic rupture simulations for the Mai’iu,433

Papua New Guinea, LANF. Their models assume a rate-and-state with strong velocity weakening friction law with an434

estimated equivalent static friction coefficient µs ≈ f0 = 0.6 and a critically stressed fault. Here, the fault does not435

need to be critically stressed to rupture (R0=0.70 in our preferred model against R0=0.95 in Biemiller et al., 2022).436

Instead, it is the low static coefficient of friction on the Alto Tiberina fault (µs=0.37 in our reference model) along437

with a nucleation on the steeper part of the fault that allows a successful rupture propagation.438

In our scenarios, 60◦ dipping faults with a static friction coefficient of µs=0.6 would be optimally oriented in the439

Andersonian normal faulting regime we assume. Steeply-dipping normal faults in the hanging wall are therefore440

expected to reach failure before the on average 17◦ dipping ATF. This is not the case in our scenarios, best-oriented441

(i.e steeper) parts of the ATF have a pre-stress ratio R similar or higher to the steep hanging wall faults due to the442

smaller ATF static coefficient of friction.443

The heterogeneous scenario, geodetically-constrained from the coupling map of Anderlini et al. (2016), leads to444

aMw 6.7 rupture confined in the coupled asperity at depth (Figure 8). The rupture is not able to propagate within the445

other asperity located at shallower depth due to a narrow zonewhere both the lower coupling coefficient and the fault446

geometry lead to a very low pre-stress level that acts as a barrier to the rupture propagation, nor within the creeping447

zones (Figures 3 and 8). Since this scenario is constrained by data, it can be considered more likely to occur than448

the homogeneous reference scenario, which breaks the entire fault and results in a significantly larger earthquake449

(Mw 7.3). However, it is important to note that our models do not incorporate fast velocity weakening rate-and-state450

friction (Ampuero and Ben-Zion, 2008; Noda et al., 2009) observed in laboratory experiments (e.g. Di Toro et al., 2011;451
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Kohli et al., 2011) and thought to account for physical weakening processes operating on natural faults at the high452

slip velocities typical of dynamic earthquake rupture (Rice, 2006).Incorporating such a frictional law facilitates the453

concept of statically strong and dynamically weak faults, and enables a range of rupture complexities and fault inter-454

actions (Dunham et al., 2011; Taufiqurrahman et al., 2023; Palgunadi et al., 2024). For example, in dynamic rupture455

simulations for the Mai’iu low angle normal fault, velocity-weakening friction law allowed rupture to propagate into456

a shallow velocity-strengthening portion of the fault (Biemiller et al., 2022). Similarly, fully dynamic seismic cycle457

simulations with rate-and-state friction laws show that ruptures can propagate through velocity-strengthening barri-458

ers under specific conditions (Kaneko et al., 2010). Additionally such friction laws allow faults to rupture at relatively459

low shear stress levels (e.g. Ulrich et al., 2019). Incorporating a strong velocity weakening friction law in simulations460

for the ATF would therefore be highly relevant. While this is beyond the scope of the present study, we consider this461

an important direction for future work.462

5.3 Realistic rupture scenarios for seismic hazard assessment and rapid response463

Due to the scarcity of large LANF earthquakes, seismic hazard associatedwith these structures is poorly constrained.464

By identifying a number of potential rupture scenarios, 3D dynamic rupture simulations can help constraining seis-465

michazard in such regionswhere the instrumental record lacks large earthquakes (Ramos et al., 2021; Biemiller et al.,466

2022; Li et al., 2023). To produce scenarios as realistic and precise as possible, geophysical and geological observa-467

tions must be integrated to constrain the initial conditions of the simulations (e.g. Ramos and Huang, 2019; Ramos468

et al., 2021; Biemiller et al., 2022; Li et al., 2023). For instance, as in our study, seismic data such as seismic reflection469

profiles and high-resolution seismicity catalogs can be used to constrain the often complex geometry of a fault sys-470

tem. Analyses of exposed fault surfaces can help constrain small-scale geometrical complexities (fault roughness,471

e.g. Power et al., 1987; Candela et al., 2010), which can then be integrated in dynamic rupture models (e.g. Bruhat472

et al., 2020; Taufiqurrahman et al., 2022). Additionally, seismic, geodetic, and field analyses can also constrain the473

shape and characteristics of damages zones (e.g. Li et al., 2007; Mitchell and Faulkner, 2009; Rodriguez Padilla et al.,474

2022), while laboratory experiments made on fault zone rocks can help determined frictional properties of faults.475

Those data-informed physic-based scenarios can then be used to simulate realistic ground motions (e.g. Taufiqur-476

rahman et al., 2022; Li et al., 2023) and to compute shake maps (Figure S11).477

Dynamic rupture scenarios can also be used in rapid-response workflows for rapid source and associated shake-478

maps determination. Contrary to rapid data-driven kinematic source characterization workflows (e.g. Hayes, 2017;479

Goldberg et al., 2022; Delouis, 2014) that provide results within hours after an earthquake, complex dynamic rupture480

simulations such as the ones presented in this paper aremore computationally expensive (90 s of simulation requires481

∼3000 CPUhours) and require super-computing facilities. To overcome this limitation, a catalog of rupture scenarios482

for a given fault system can be produced in advance and compared with early observations (e.g., seismic waveforms,483

moment-rate release) when an earthquake happens. The best-fitting scenario(s) of the catalog would provide a first-484

order but physically consistent representation of the event and the associated shake maps could help emergency485

responses. Such rapid-response dynamic source determination workflow based on a pre-built catalog of realistic486

physic-based scenarios is currently under development within the DT-GEO project (https://dtgeo.eu/) for the Alto487

Tiberina fault system, which is integrated into this project as a site demonstrator (Figure S12).488
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Finally, such a catalog of scenarios can also be the base of machine-learning training. For example, after train-489

ing a Reduced-Order Model (ROM) using the scenarios of the pre-built catalog, the ROM can be evaluated for any490

point of the parameter space defined by the training catalog (e.g. Rekoske et al., 2023). The advantage is that ROMs491

are computationally cheap models that can enable the evaluation of new earthquake scenarios instantaneously (in492

milliseconds) without resorting to HPC infrastructures.493

6 Conclusion494

In this study, we show that large earthquakes (up to Mw 7.4) on the 17◦-dipping Alto Tiberina low-angle normal fault495

(ATF) are mechanically viable under Andersonian extensional stress conditions, and assuming a statically relatively496

weak fault (µs = 0.37). We show that local heterogeneities in the geometry of the ATF, which result in a non-planar497

fault surface, are of critical importance, as dynamic ruptures can nucleate only at favorably oriented, steeper parts498

of the faults (≥∼30◦ dip). When initial conditions are constrained by a geodetic coupling map, dynamic ruptures re-499

main confined to the coupled part of the Alto Tiberina fault, limiting earthquakemagnitudes toMw 6.7. These results500

suggest that detailed knowledge of fault geometry and kinematic coupling distributionprovides valuable insights into501

where large ruptures can nucleate and propagate on low-angle normal faults. In our simulations, earthquakes nu-502

cleating on secondary faults cannot propagate onto the ATF. However, ruptures on the ATF can dynamically trigger a503

small synthetic branch connected to theATFbut not themore distant, disconnected secondary faults. Coulomb stress504

change analysis shows that an ATF rupture may reduce seismic hazard related to the hanging wall faults, except for505

those located above 4 km depth near the ATF. Finally, we argue that data-informed 3D dynamic rupture simulations506

are key to advancing accurate earthquake rupture forecasting and physics-based seismic hazard assessment. Pre-507

built catalogs of dynamic rupture scenarios can be integrated into rapid-response workflows, enabling rapid source508

characterization and associated shake-map generation.509

Data and code availability510

The dynamic rupture simulations were performed using SeisSol (www.seissol.org), an open-source software freely511

available to download from https://github.com/SeisSol/SeisSol/. We use SeisSol, commit 01ae1b1. All data required to512

reproduce the dynamic rupture scenarios (i.e. computational mesh and SeisSol input files) can be downloaded from513

the Zenodo repository 10.5281/zenodo.14895123. Instructions for downloading, installing, and running the code are514

available in the SeisSol documentation at https://seissol.readthedocs.io/. Downloading and compiling instructions are515

at https://seissol.readthedocs.io/en/latest/compiling-seissol.html. Instructions for setting up and running simulations516

are at https://seissol.readthedocs.io/en/latest/configuration.html. Quickstart containerized installations and introduc-517

tory materials are provided in the docker container and jupyter notebooks at https://github.com/SeisSol/Training. Ex-518

ample problems and model configuration files are provided at https://github.com/SeisSol/Examples, many of which519

reproduce the SCEC 3D Dynamic Rupture benchmark problems described at https://strike.scec.org/cvws/benchmark_520

descriptions.html.521
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Figure 1 (a) Topographic map of the Alto Tiberina, Northern Apennines, Italy, area showing the depth contours of the north-
east dipping Alto Tiberina (gray lines, Mirabella et al., 2011) and south-west dipping Gubbio (green lines, Mirabella et al.,
2004) faults. Thicker lines indicate the fault surface traces. The black and orange dots show the 2010-2014 Alto-Tiberina and
hanging wall faults seismicity, respectively (Valoroso et al., 2017). Note that, at the time this study was conducted, high-
resolution catalogs published for the ATF fault system did not cover longer time periods. Light orange stars represent the
Mw>3.2 events that occurred between 2010 and 2023 while large orange stars locate the large (Mw>5.1) instrumental events
(Haessler et al., 1988; Chiaraluce et al., 2003; Ciaccio et al., 2006). Orange squares locate the M>6 historical events (Rovida
et al., 2016). The GPS, seismic, and strainmeter stations of the TABOO-NFO (Chiaraluce et al., 2014) are shown by diamonds,
triangles, and pentagons, respectively. Gray squares locate the main towns of the area. CdC and Ptlga mean Città di Castello
and Pietralunga towns, respectively. The bottom-left inset shows the general location of the study area (blue box). The dashed
line locates the cross-section shown in b. (b) Cross-section showing the seismicity on the Alto-Tiberina fault (black dots) and
within its hanging wall (orange points and star). Events located within ±1 km of the cross-section are plotted.
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Figure 2 3D view of the modeled faults colored with (a) the dip angle and (b) the static friction coefficient used in our refer-
ence model. The colormap in panel (a) is chosen such that the low-angle areas of the fault (dip-angle < 20◦) appear in bluish
tones, while the steeper parts (dip angle > 20◦) appear in reddish.

Figure 3 (a) Slip deficit rate on the Alto Tiberina fault computed from the kinematic coupling model of Anderlini et al. (2016)
and (b) associated shear stress change rate.
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Figure 4 Influence of the pre-stress ratio R0 on the homogeneous rupture scenarios. Distribution and average value of R
ratio (left), final slip amplitude (middle), and rupture speed (right) for R0 values of (a) 0.75, (b) 0.70, and (c) 0.65 respectively.
The white star in the top left subplot shows the nucleation location (the nucleation location is the same for the three simula-
tions). The average (and maximum) slip for R0 values of 0.75, 0.70, and 0.65 is 2.2 m (4.4 m), 1.9 m (4.2 m), and 1.4 m (3.3 m),
respectively.
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Figure 5 Influence of the the static friction coefficient µs of the Alto Tiberina fault on the homogeneous rupture scenarios.
Distribution and average value ofR ratio (left), final slip amplitude (middle), and rupture speed (right) forµs values of (a) 0.30,
(b) 0.40, and (c) 0.45 respectively. R0=0.70 for the three models. The white star in the top left subplot shows the nucleation
location (the nucleation location is the same for the three simulations). The average (and maximum) slip forµs values of 0.30,
0.40, and 0.45 is 2.1 m (4.20 m), 1.8 m (4.3 m), and 0.7 m (1.50 m), respectively.
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Figure 6 Impact of the (a) pre-stress level R0 and (b) static friction coefficient µs of the Alto Tiberina fault on the moment
rate release of the homogeneous scenarios. (c) Close-up view of the moment rate release for the model µs=0.45.
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Figure 7 Impact of the nucleation location on the homogeneous scenario. (a) R ratio distribution of the reference homo-
geneous scenario (Table 1) and tested nucleation locations on the Alto Tiberina fault (white stars). (b,c) Same as (a) with a
different view showing the tested nucleation locations on the Gubbio fault and on the secondary faults, respectively. (d) Final
slip distribution for the different nucleation locations. The black number written on the top-right of each model corresponds
to the nucleation location shown in Figure (a-c). The colorscale is between 0 and 5 m for the models 1 and 6 and between 0
and 1 m for the others. All the tests share the same initial conditions (R0=0.70, µs = 0.37), only the nucleation location differs.

Figure 8 Data-constrained simulation. The initial stresses are constrained from the kinematic coupling map of Anderlini
et al. (2016). The shear stress change computed from the slip deficit rate and assuming T=1800 years is added to an An-
dersonian background stress field having the same orientation and shape as in the homogeneous scenarios, but with a null
pre-stress level (R0=0). (a) Pre-stress level distribution, (b) final slip distribution and (c) rupture speed of the data-constrained
model. The white star on panel (a) locates the nucleation location.
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Figure 9 Moment rate release of the data-constrained simulation.

Figure 10 (a) Coulomb stress changes (dCFS) induced by the homogeneous reference scenario (Figure 4b and Table 1) on
the Alto Tiberina fault system. The Alto Tiberina fault is plotted with a lower opacity level to highlight the hanging wall faults.
(b-f) Close-up views on each hanging wall fault. On panel d, the Gubbio synthetic segment is not plotted for visibility. Note
that the Coulomb stress changes on the Umbertide segment (panel e) are negative because this segment ruptures during the
reference scenario.
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