

Saubere Wärme aus Holz – natürlich von thermostrom

Energie aus einem natürlichen Kreislauf

Bäume sind in der Lage, Sonnenenergie aufzunehmen und zu speichern. Bei der Photosynthese wird Kohlendioxid und Wasser in organische Verbindungen umgewandelt und bleibt als Energie im Holz erhalten. Die Verbrennung setzt diese Energie wieder frei und macht sie als Wärme nutzbar. Das frei werdende Kohlen-dioxid wird durch die Pflanzen-

blätter, die Mineralstoffe der Asche durch die Wurzeln aus dem Boden wieder aufgenommen. So schließt sich der Kreislauf.

Ein paar gute Gründe für das Heizen mit Holz

- Als nachwachsender Rohstoff ist Holz den fossilen Brennstoffen vorzuziehen.
- Holz gibt es meist in unmittelbarer Nähe.
 Es ist problemlos und sauber zu lagern und kann selber aufbereitet werden.
- 1 m³ trockenes Holz hat etwa den gleichen Heizwert wie 200 Liter Heizöl oder 200 m³ Erdgas.
- Holz ist praktisch frei von Schwefeldioxid und Schwermetallen.
- Bei der Holzvergasung mit dem thermostrom turbotec bleibt nur wenig Holzasche übrig, die ausschließlich aus Mineralstoffen besteht.

Wirtschaftlichkeit vom Grobhackgut bis zum 1 Meter Scheitholz

Als Brennstoff für den thermostrom turbotec lambda control eignen sich alle naturbelassenen Hölzer – vom kleinen Holzstückchen von 5 cm bis zu Scheitholz von 60 cm (TT 50L/60L/100L: 110 cm; TT75L: 130 cm). Die leistungsangepasste Wärmeerzeugung hat einen sehr geringen Holzverbrauch zur Folge und erspart dadurch wesentliche Heiz-kosten.

thermostrom turbotec lambda control – der Meister Proper des Heizens

Dank der exakt auf den Brennstoff Holz abgestimmten Steuerungstechnologie des thermostrom turbotec werden die Vorteile des Brennstoffes Holz optimal und effizient ausgenützt und die Emissionswerte der Luftreinhaltevorschriften bei weitem unterschritten.

Hightech-Holzvergasung mit intelligentem lambda-control-System

Das Grundprinzip – die Dreiphasenverbrennung

1. Erwärmung und Trocknung

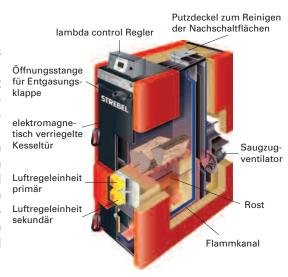
Das Brennholz im oberen Bereich des Füllraumes wird durch die darunter entstehende Verbrennungswärme bis zu 100°C erwärmt und getrocknet.

2. Zersetzung des Holzes (Pyrolyse)

Bei steigender Temperatur lösen sich die gasförmigen Stoffe Sauerstoff und Wasserstoff, aus denen Holz zu 70–80 % besteht. Danach werden auch die Feststoffe Zellulose und Lignin zu Gas. Diesen Vorgang bezeichnet man als Primärverbrennung. Den entzogenen, energiereichen Holzgasen wird nun Sekundärluft zugeführt, wodurch sich diese erst entzünden und bei Temperaturen ab 240°C verbrennen und Wärme freisetzen.

3. Die Verbrennung der Holzkohle

Nach dieser vollständigen Zersetzung des Holzes bleibt Holzkohle übrig, welche mit ruhiger Flamme verbrennt. Der unbrennbare Ascherest besteht aus Mineralien.


Computergesteuerte Verbrennungsregelung

Die Dreiphasenverbrennung wird mittels des Mikroprozessors in der lambda-control Steuerung präzise so geregelt, dass mit einem Maximum an Wirtschaftlichkeit, Bedienungskomfort, Sicherheit und Um-weltfreundlichkeit geheizt werden kann.

Die Lambda-Sonde misst kontinuierlich den Restsauerstoffgehalt (0₂) der in den Kamin austretenden Heizgase. Aufgrund dieser und weiterer Messdaten wird die notwendige Luftzufuhr errechnet und mittels Luftregeleinheiten reguliert. Auf diese Weise wird die Verbrennung in jeder Phase korrekt und schadstoffarm gesteuert.

Minimaler Verbrauch – maximaler wirtschaftlicher Nutzen

Eine Tendenzsteuerung bewirkt, dass die Feuerung innerhalb der Bandbreite von Teillast und Volllast immer nur die dem Leistungsbedarf entsprechende Energie-menge erzeugt. Dabei wird der Brennstoff unter optimalen Verbrennungsbedingungen restlos ausgenützt. Im Fall, dass weniger Wärme gebraucht wird als der Kessel unter Einhaltung der Emissions- und Abgastem-peraturwerte produziert, wird die überschüssige Wärmemenge im Lastausgleich-speicher zwischengelagert, von wo sie bei Bedarf jederzeit wieder eingesetzt werden kann.

Palettenkessel

Halbmeterscheitkessel TT40S

Bedienkomfort, großzügige Füllverhältnisse, lange Brenndauer

Große Fülltüren und großer Füllraum

thermostrom turbotec lambda control kann bequem von vorne über die großen Fülltüren mit Holz versorgt werden. Z.B. beim turbotec 20 reicht der Füllrauminhalt von 150 Litern für eine Brenndauer von ca. 7 Stunden im Volllastbetrieb. Solch ergiebige Heizintervalle erfordern wenig Aufwand beim Bedienen und Nachlegen.

Einfache Bedienung mit funktioneller Textanzeige

Leuchtanzeigen signalisieren den jeweiligen Status:

EIN – NACHLEGEN – STÖRUNG.

Mit vier Tasten lassen sich sämtliche notwendigen Funktionen einstellen. Unterstützend wird die Bedienung mit Angaben auf einer digitalen Textanzeige angeleitet.

Betriebs- und Bedienungssicherheit

Die lambda-control Regelung erkennt die Anheiz- und Ausbrandphase innerhalb des Ver-

brennungsablaufs. NACHLEGEN wird über eine Leuchtanzeige signalisiert, die auch in der Wohnung installiert werden kann. Gegen das ungewollte oder plötzliche

Öffnen des gefüllten Kessels schützen elektromagnetische Türverriegelungen. Der Türverschluß wird nur freigegeben, wenn die Taste NACHLEGEN gedrückt wird. Während einer Sperrfrist zieht der Saugzugventilator die Schwelgase ab und schließt damit bei der Bedienung jedes Risiko aus.

Hydraulikgruppe für Rücklaufanhebung

Ein paar gute Gründe für das Heizen mit thermostrom turbotec lambda control

- Optimal gesteuerte Verbrennung
- Wirtschaftlichkeit durch restlose Brennstoffausnutzung
- Umweltfreundlichkeit mit minimalen Schadstoffen
- Bedienungskomfort beim Regeln und Einfüllen
- Sicherheit bei Bedienung und Betrieb
- Ausserordentlich hohe Lebenserwartung
- Anschlussfertig und schnell montiert
- Typengeprüft bei:
 - Bundesanstalten für Landtechnik in Wieselburg, TGM Wien
 - TÜV Bayern in München (DIN Reg.-Nr. 3R 155/2000 GA)

Reglersystem

LambdaControl easy

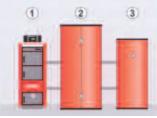
Offen für Ihre individuelle Heizvariante

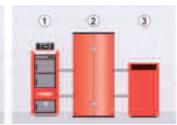
Die Grundvariante

- 1 thermostrom turbotec-Kessel
- 2 Lastausgleichspeicher
- Automatische Heizkreisregelung

Mit Warmwasser

- 1 thermostrom turbotec-Kessel
- 2 Lastausgleichspeicher
- 3 Brauchwassererwärmer
- Witterungsgeführte Heizkreis- und Brauchwasserregelung

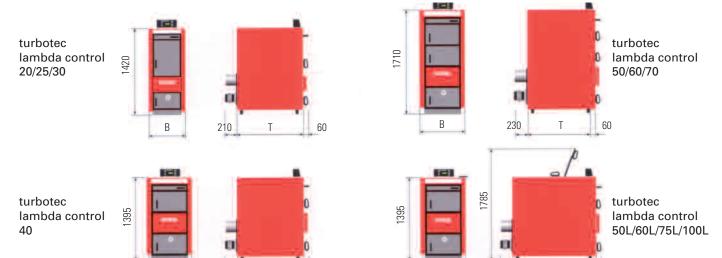

Als Bivalentsystem


- 1 thermostrom turbotec-Kessel
- 2 Lastausgleich-, Puffer oder Energiespeicher
- 3 Öl- oder Gasheizkessel in bivalenter Betriebsweise
- Automatische Heizkreisregelung

Die Totalvariante

- 1 thermostrom turbotec-Kessel
- 2 Lastausgleich-, Puffer oder Energiespeicher
- 3 Öl- oder Gasheizkessel in bivalenter Betriebsweise
- 4 Brauchwassererwärmer
- Witterungsgeführte Heizkreisund Brauchwasserregelung

Lastausgleich-, Puffer- oder Energiespeicher


Als nahezu unentbehrliche Ergänzung des tur-

botec-Kessels sind bei thermostrom Lastausgleichspeicher mit 1000 I sowie Puffer- oder Energiespeicher bis zu 5000 I Inhalt erhältlich. Mittels solcher Speicher lassen sich die Wärmeproduktion bedarfsgerecht verteilen und die Nachlege-Intervalle erheblich verlängern.

Details eines erstklassigen Systems

230

60

Тур	Nenn-	Kessel-	Abmessungen			Gewicht	Füllraum-	- Füllraum-	Brenn-	Kessel-	Min.	Fülltüre		Abgas-	Rauch-
turbotec	leistung	wirkungs-	Ŭ				volumen	tiefe	dauer	wasser	Rücklauf-			temp.	rohr
lambda-		grad	В	T	Н					volumen	temp.	Н	В		
control	kW	%	mm	mm	mm	kg	Liter	cm	ca. h	Liter	°C	mm	mm	°C	mm
TT 20	20	91,0	650	1080	1435	515	150	60	7	115	60	600	340	158	150
TT 25	25	90,8	620	1080	1435	515	150	60	6	115	60	600	340	160	150
TT 30	30	90,6	620	1080	1435	515	150	60	5	115	60	600	340	163	150
TT 40	40	90,1	820	1105	1395	710	190	60	5	210	60	360	540	169	180
TT 40S	40	90,1	820	1105	1710	925	290	60	8	255	60	360	540	169	180
TT 50	50	90,3	820	1105	1710	925	290	60	7	255	60	360	540	176	180
TT 60	60	90,4	820	1105	1710	925	290	60	6	255	60	360	540	183	180
TT 70	70	90,6	820	1105	1710	925	290	60	5	255	60	360	540	191	180
TT 50L	50	90,0	820	1605	1395	940	340	110	8	370	60	360	540	167	180
TT 60L	60	90,4	820	1605	1395	940	340	110	6	370	60	360	540	186	180
TT 75L	75	91,1	820	1805	1395	1080	400	130	6	410	60	360	540	171	200
TT 100L	93	92,1	1020	1605	1395	1200	460	110	6	470	60	360	540	169	200

Höhe Boden-Mitte Rauchrohr 575mm, max. Kesseltemperatur 100°C, max. Betriebsdruck 3 bar Technische Änderungen vorbehalten, Maße unverbindlich.

Dreifache Qualität und Lebensdauer

- Die ausgeklügelte Technik der Verbrennungssteuerung verhindert die Kondensatbildung und somit Korrosionsschäden an Kesselwänden und am Kamin.
- 2. Als Festlaufschutz und zur Kesselbelüftung wird im Modus AUS regelmäßig und automatisch die Ladepumpe, das Mischventil und der Ventilator betätigt.
- **3.** Der Kessel ist aus 6 mm dickem hochwertigem Spezialkesselstahl gefertigt. Die **thermostrom**-typische Langlebigkeit liegt in solch überzeugenden Qualitätsmerkmalen begründet.

Das Hersteller-Werk in Steyr mit Ersatzteilhaltung und Kundendienst gibt Ihnen als Kunde zudem die Sicherheit, aus erster Hand fachmännische Betreuung und Beratung zu erfahren.

60

In ganz Österreich stehen Ihnen qualifizierte Fachleute sowie der Kundendienst mit Rat und Tat zur Seite.

Sprechen Sie mit **thermostrom**, wenn es um Entscheidungen für sauberes Heizen geht.

www.strebel.at

Strebelwerk GmbH

Wiener Straße 118 2700 Wr. Neustadt, ÖSTERREICH Telefon +43 (0) 2622 235 55-0 Fax +43 (0) 2622 235 55-82 verkauf@strebel.at

thermostrom® Energietechnik Ges.m.b.H.

Ennser Straße 91–93 4407 Steyr-Dietachdorf, ÖSTERREICH Telefon +43 (0) 7252 38271

Fax +43 (0) 7252 38273-25 office@thermostrom.at

GEBE Gesellschaft m.b.H.

Wiener Straße 118
A-2700 Wiener Neustadt
Tel. 1 +43 (0) 2622 235 55-85
Tel. 2 +43 (0) 1 786 51 26

Fax +43 (0) 1 786 51 26 200 verkauf.gebe@strebel.at