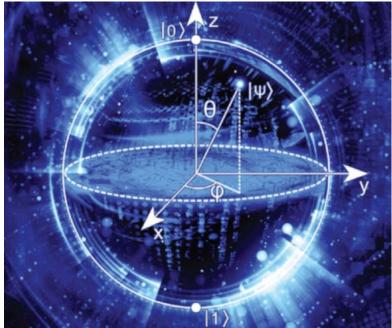


Dissemination and valorisation of RFCS-results in the field of "Advanced Automation and Control Solutions in Downstream Steel Processes" and development of a strategic vision for future research

CONTROL^{IN}**STEEL**

Joaquín Ordieres-Meré Technical University of Madrid

Project No.: 899208


CONTROL

STEEL

Quantum Computing in control applications for the steel sector

Outline

- Quantum advantages (sensing & communication)
- Quantum computing.
- Impact on Control applications
- Conclusions

Courtesy from National Academic Press

Project No.: 899208

14/07/2022

RFCS

Quantum Computing in control applications for the steel sector Contraction Quantum advantages Several edges are becoming relevant: Quantum sensing, Quantum communication devices, and Quantum computing.

- **Quantum Sensors (QS)** have applications in many fields including positioning systems, communication technology, electric and magnetic field sensors.
- Entanglement in QS can help to create more sensitive <u>magnetometers</u>, able to detect irregularities (defects) in materials.
- Able to model complex systems by positioning photons at specific places.

Project No.: 899208

RFCS

Quantum Computing in control applications for the steel sector

Quantum advantages

- **Quantum communication devices**, enable quantum entanglement "when two particles are inextricably linked together no matter their separation from one another". This was suggested to be *faster than the speed of light*, although no changes in the status of particles are allowed.
- Quantum communication takes advantage of the laws of quantum physics to protect data. These laws allow particles—typically photons of light for transmitting data along optical cables—to take on a state of superposition, then no observation can be possible without collapsing its status. It is cybersecure by nature.

Project No.: 899208

CONTROL

STEEL

Quantum Computing in control applications for the steel sector

Outline

- Quantum advantages (sensing & communication)
- Quantum computing.
- Impact on Control applications
- Conclusions

Courtesy from National Academic Press

Project No.: 899208

14/07/2022

RFCS

CONTROL

STEEL

0)

θ

 $|1\rangle$

Ψ

Quantum Computing in control applications for the steel sector

Quantum computing

- The quantum computer: Information processing with quantum computers relies on substantially different laws of physics known as quantum theory: qubits.
- Different technologies are available to create qubits, such as
 Optical qubits using light and working at environmental temperatura or Superconducting qubits working close to 0 K and microwave frequencies.
- Three big areas of development: Quantum Machine Learning (QML), Quantum optimization (QO) and Quantum cryptography (QC)

Project No.: 899208

14/07/2022

CONTROL

STEEL

Courtesy: DOI 10.1109/ACCESS.2020.2970105

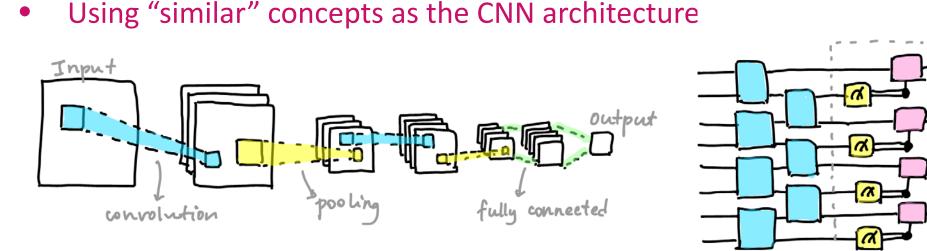
Quantum Computing in control applications for the steel sector

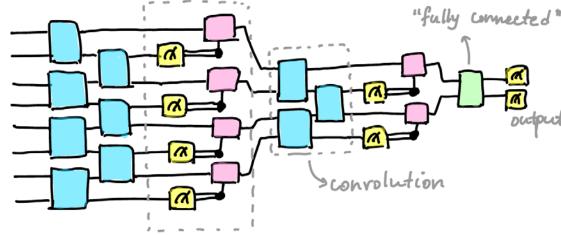
Quantum computing (optimization)

- Using the unique characteristics of quantum computing, intelligent optimization algorithms can be improved to quantum intelligent optimization methods (QPSO, etc).
- Quantum annealing optimization was enabled by Dwave and helps to solve TSP and other quadratic optimization problems (QBO).

Genetic Algorithm	Quantum System
The evolution population formed by a	The statistical system formed by
number of individual	a number of quantum
The average population fitness	Energy
Competitiveness between selection	Competitiveness between energy
pressure and diversity of population	and entropy
Population convergence	Free energy reduces
Get solutions	Non-equilibrium state to
	equilibrium state

RFCS


CONTROL


.**STEEL**

Courtesy: pennyline.ai

Quantum Computing in control applications for the steel sector

Quantum computing (ML)

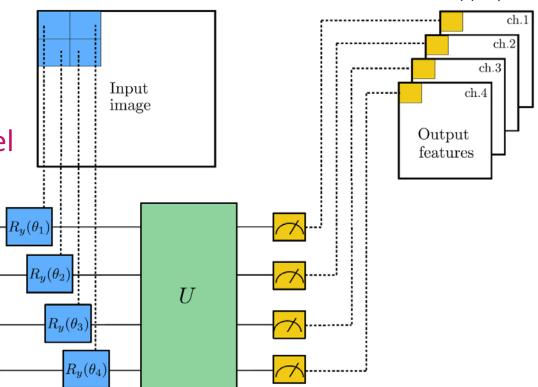
- A set of N qubits can encode information for 2^N-1 different states (variables).
- Of course, there are limitations such as **error propagation** and lack of enhanced algorithms **over large sets of qubits**. More development is needed.

Project No.: 899208

RFCS

CONTROL


IN STEEL


Courtesy: pennyline.ai

Quantum Computing in control applications for the steel sector

Quantum computing (ML)

- Quantvariational operations over images (tensors) can be performed (each pixel plays as parameter for the gate where the transformation U observed will collapse in the different features as per channel
- QGANs are also possible and powerful:

Project No.: 899208

14/07/2022

CONTROL

STEEL

Quantum Computing in control applications for the steel sector

Outline

- Quantum advantages (sensing & communication)
- Quantum computing.
- Impact on Control applications
- Conclusions

Courtesy from National Academic Press

Project No.: 899208

14/07/2022

Dissemination and valorisation of RFCS-results in the field of "Advanced Automation and Control Solutions in Downstream Steel Processes" and development of a strategic vision for future research

RFCS

CONTROL

STEEL

Quantum Computing in control applications for the steel sector Impact on Control Applications

 Nippon Steel and Cambridge Quantum Computing concluded that QC is a powerful tool for companies seeking a competitive advantage, when complex scheduling problems are being undertaken, based on the pilot project they have conducted

(https://www.quantinuum.com/case-study/nippon-steel). Scheduling is linked to Decision making processes and therefore related to process control.

How Quantum Computing Can Help Nippon Steel Improve Scheduling at Plants

https://www.honeywell.com/us/en/news/2021/06/how -quantum-computing-can-help-nippon-steel-improvescheduling-at-plants

Project No.: 899208

14/07/2022

ESTEP webinar: The future of control in the steel sector.

RFCS

Quantum Computing in control applications for the steel sector CONTROL **STEEL** Impact on Control Applications An application has been Signal in 2-D Domain Original Image Quantum Convolutional Filter created with Quantum $G = \{(0,1), (1,2), (2,3), (3,0)\}$ convolutional filters, to $f = \{f_{m,n}; n, m \in [0, n]\}$ $255] \subset \mathbb{R}x\mathbb{R}$ preprocess quality images Ψ, > Conditional Probabilit inside furnaces, decidind if scale can be a problem Deep Learning Architecture Transformed Domain after convolution related to the final product. Class 1 Class 2 Dense 2 Act: SoftMax It was shown that the ----Dense 32 16m--- ---Act: ReLu 2 Qclassifier compites with the Dense 512 100 Act: ReLu $\subset \mathbb{R} \times \mathbb{R}$ alternative CNN Flatten Courtesy: https://doi.org/10.1016/j.ifacol.2022.04.216

Project No.: 899208 Dissemination and valorisation of RFCS-results in the field of "Advanced Automation and Control Solutions in Downstream Steel Processes" and development of a strategic vision for future research

CONTROL

STEEL

Quantum Computing in control applications for the steel sector

Outline

- Quantum advantages (sensing & communication)
- Quantum computing.
- Impact on Control applications
- Conclusions

Courtesy from National Academic Press

Project No.: 899208

14/07/2022

Dissemination and valorisation of RFCS-results in the field of "Advanced Automation and Control Solutions in Downstream Steel Processes" and development of a strategic vision for future research

RFCS

Quantum Computing in control applications for the steel sector

CONTROL .™STEEL

Conclusions

- Enormous opportunities for the industry & society are expected from the Quantum technology (devices, ML, communications, etc.)
- Although QT is just at its early stage, it has proved to be useful and competitive in comparison with existing solutions.
- QC enables uncertainty from its design.
- More algorithms will be created, expanding the potential set of applications.
- Intergation between Quantum devices and Quantum computing will be disruptive in industrial applications.

Project No.: 899208

14/07/2022

Dissemination and valorisation of RFCS-results in the field of "Advanced Automation and Control Solutions in Downstream Steel Processes" and development of a strategic vision for future research

Quantum Computing in control applications for the steel sector

- Thank you for attending this presentation
- Merci d'avoir participé à cette présentation
- Vielen Dank für Ihre Teilnahme an dieser Präsentation
- Gracias por asistir a esta presentación
- Grazie per aver partecipato a questa presentazione

Project No.: 899208

14/07/2022