RIR

Distributed, autonomous control solutions

F. Marchiori F. Avellino Quality as driver for Integrated Intelligent Manufacturing

MSTEEL

RI

"Integrated Intelligent Manufacturing for Steel Industries"

(I2MSTEEL)

CONTROL STEEL

RI

Use Case 1

slab over heated

Use Case 2

RIR

- Off-spec products
 - Example: product misses target thickness
- Blind products
 - Slabs being processed to coils, without having a specific order
- Current solution
 - · Sell steel-product at a secondary market
 - Lower profit
- Better: sell product on prime market
 - Find a matching order = reallocate during processing
 - Higher profit

CONTROL STEEL

Excellence in Applied Research

R

Implementation of service oriented architecture

CONTROL STEEL

BFI Excellence in

2MSTFFI

Implemented system

"Novel automatic model identification and online parameter adaption for supporting the industrial deployment of model-based material property process control "

(AutoAdapt)

AutoAdapt project Objectives

- **Riph** The aim of this project is to improve the *homogeneity* of material properties from *coil to coil* and *over coil length* throughout the whole
- Concerning the process route of steel making, the algorithms, models and concepts which were developed and industrially tested are separated in three use cases.

process chain.

• Use case 1 is intended to be shown.

٠

٠

Use case 1 Hot Strip Mill and Run-Out Table

The work of use case 2 was carried out at the Hot Strip Mill (HSM) TN2 at ILVA Taranto (Italy)

"CSM microView" is a system allowing:

- online calculation of strip thermal evolution, microstructure parameters and mechanical properties
- creation of quality reports
- optimization of the main control parameter (the coiling temperature) with reference to mechanical and micro-structural targets

Calculation modules included in the microView

Finite difference based strip thermal evolution

Physical-empirical based approach and Artificial Neural Network

Optimization module

Nonlinear constrained multitarget optimization procedure

CONTROL STEEL

Selection and organization of main information

- List of materials (chemical compositions from the industrial partner) and plant characteristics
- Properly filtered on-field signals

List of selected materials

Chemical range [%]	Thickness level	Steel name	Width [mm]	Thickness [mm]
	Low	S235JR+M	1500	2.00
	LOW	DD11	1500	2.00
0.025 - C - 0.1.0.18 - Mm - 0.75	Madium	S235JR+M	1500	4.00
0,055<0<0,10,16<1011<0,75	Medium	CS TYPE B	1676	4.55
	Lligh	CS TYPE B	1828	6.35
	піgli	DD11	1000	Thickness [mm] 1 1 2.00 2.00 2.00 4.00 6 6.35 6 0 2.00 2.00 2.00 2.00 2.10 0 2.10 0 2.10 0 4.70 4 6.45 0 2.70 5 2.00 5 1.80 5 1.80 0 4.51 0 8.00 9 8.00
	Low	S275JR+M	1500	2.00
0,13 <c<0,170,5<mn<1,2< td=""><td>LOW</td><td>S235J2+M</td><td>1160</td><td>2.10</td></c<0,170,5<mn<1,2<>	LOW	S235J2+M	1160	2.10
	Madium	S235J2+M	1180	4.70
0,13<0<0,17 0,3<1011<1,2	Medium	SS GR.36 TYPE 1	1524	4.80
	Lligh	SS GR.36 TYPE 1	1524	6.41
	піgli	SS GR.36 TYPE 1	1828	6.45
	Low	S355J2+M	1350	2.70
0,18 <c<0,21,3<mn<1,4< td=""><td>Medium</td><td>S355JR+M</td><td>975</td><td>2.00</td></c<0,21,3<mn<1,4<>	Medium	S355JR+M	975	2.00
	Law	S315 MC	1005	1.80
	LOW	S315 MC	1005	1.80
		S355J2C+M	1680	4.51
II	wedium	S355J2C+M	1680	4.51
	High	S275JR+M	1500	8.00
	пign	S355J2+M	1500	8.00

CONTROL STEEL

comparison with max values and extremes cut-off

RIR

Out-layers discarding and reporting

<u>Strip</u>	Id Slab	<u>Thickn</u>	Width	Cast	<u>Order</u>	Quality	Chemical
4G84999	1U30065	3,45	1.220,00	U64984	45923.4	SEMW06	DLS545

	Steel	%
	CARBON	0,0820
	MANGANESE	0,8410
	PHOSPHORUS	0,0540
	SULPHUR	0,0080
	SILICON	0,2170
	ALUMINIUM	0,0280
	CALCIUM	0,0030
	COPPER	0,0670
	NICKEL	0,0560
ANN	CHROMIUM	0,7560
	MOLYBDENUM	0,0090
	TIN	0,0120
	NIOBIUM	0,0030
	VANADIUM	0,0030
	TITANIUM	0,0030
	BORON	0,0008
	NITROGEN	0,0087
	OXYGEN	0,0000

e e	estimate	d
	Hea	
	av.	
	94.30	
	6.11	
	5.70	
	0.00	
	0.00	
	0,00	
t t	able	
	H	ea
Sp	eed(m/s)	5
r	Fin.	836
П	EC avit	700

	Hea		Bod	J		
	<u>av.</u>	dev.	<u>av.</u>	dev.	<u>av.</u>	dev.
Ferri	94,30	2,62	55,51	20,76	90,63	0,82
Grain	6,11	1,04	3,89	0,10	4,10	0,41
Perli	5,70	2,62	1,95	3,51	7,73	1,35
Marten	0,00	0,00	0,10	0,18	0,42	0,41
Bainit	0,00	0,00	43,04	24,56	1,26	1,71

in out table										
	Hea			Bod		Ta				
		av.	dev.	<u>av.</u>	dev.	av.	dev.			
Speed(n	1/s)	5,60		5,62		6,77				
F	in.	836,25	14,55	850,47	5,70	827,49	18,81			
UFC ex	tit	729,16	30,71	664,76	23,24	704,50	4,59			
Inter	m.	597,97	119,14	323,75	31,34	385,31	16,20			
Coli	ng	449,38	170,01	102,74	5,20	131,22	13,19			

Average estimated r	mechanica
---------------------	-----------

	Head			nron	erties Body				Tail			
	Av.	min	max.	StdDe	Av.	min.	max.	StdDe	Av.	min.	max.	StdDe
YS	430,72	412,27	455,44	18,56	460,59	453,07	467,04	4,60	458,40	455,95	463,13	2,95
UTS	517,66	502,90	536,87	14,19	548,16	534,60	558,50	8,29	536,73	534,78	539,82	1,95
El%	26,00	25,78	26,33	0,20	24,90	23,33	26,81	1,12	24,95	23,70	25,78	0,85
HV10	164,26	158,69	166,83	3,46	204,06	169,56	226,06	19,74	171,24	169,18	173,46	1,80

RIR

Microstructure forecasting

70	Perlite [%]	8.3
	Ferrite Grain Size [µm]	10.7
55	Calc. Ferr. Grain Size [µm]	11.48
164	Relative perc. error [%]	7.3
Excellence in	Sant	Anna Sitaria Superiore Pisa

Applied Research

Cartesio platform

Cartesio System entities:

Service

Communicating with the plant through interface tables

• Module

DLL that deals with launching mathematical models.

Message

Entity used to notify a service to perform certain operation

microView **Overview/tracking section**

500

Overview/tracking section GUI

YS

Report 🛛 🔣 Analizza Dati 🖉 Simulatore \$235 IBC S235JRC TOP \$235JB

Simulation section

microView

900 680038106 68003820 68003820 850 68003820 680038305 S235 25000 680038306 680038502 800 \$235J 129.9 680038503 <mark>ទ</mark>្ធ ₇₅₀ 680038504 \$235J 680038506 68003850 S235JF 680038701 \$235JF a 68004020 \$235JF . S235JR 680042704 E 700 68004290 S235JF 680042903 . S235JR 25000 402.0 68004310 S235JR TOP 25000 409.4 342.0 27.8 8 S235JF 680043102 406.9 **u** 650 680043103 \$235JF 407.0 131.3 680043104 409.8 68004310 \$235.0 131.5 131.9 680043106 130.7 68004320 S235J 405.3 338.6 28.8 600 Coil 680040201 Steel Grade AD01Z Steel Cust. S235JR Spessore Finale 4 550 STEEL JURN JURN J DOT JOHN 0.001448 500 5 0 1 2 3 4 6 7 8 0.002981 Time [s] ——Temp. Upper surf. [°C] ——Temp. Simmetry [°C] ——Temp. Bottom surf. [°C]

Be

Excellence in Annlied Research

Simulation section GUI

Example:

Re-calculated thermal evolution on the run-out table

CONTROL^{IN} **STEEL**

RIA

microView Optimization section

01/01/2018	A 31/01	2018 💌 Coil Numb am. \$235 Po	er Testa T	Spessore Min.	Spes	sore Max. Analisi Modello Completata	Analisi Labora	torio									
<i>riabili da Analiz</i> io i ✓ Scessore Finale	zave	□ Larohezza	Uscita HRM	I Temperatura													
Steel	Steel	- Composizione	Uscita HFM														
Stato analisi Mo	Grade	Chimica	IV Spessore	IV Temperatura													
UTS Av. V UTS Max. V UTS Min. V UTS dev. st. V	YS Av. I⊽ E YS Max. I⊽ E YS Min. I⊽ E YS dev.st. I⊽ E	1% Aer. HV10 Av. % Max. HV10 May % Min. HV10 May % Min. HV10 Min % dev. st. HV10 dev	Data Lab.	 ✓ Ferrite ✓ Perlite ✓ Bainite ✓ Grain Size 	V Martensite		□ Selezion Tutto	na									
Trovati: 138 Coll Number	Pos	Final Thick	Custom	HRM Exit Thick	HRM Exit Temp	HFM Exit Temp	HFM Ext Thick	UTS Av	UTS Max	UTS Min	UTS DevStd	YS Av	YS Max	YS Min	YS DevStd	BAy	El Max
680001205	C	1.75	\$235JR	15.00	976.9	852.1	1.75	415.4	415.7	414.9	0.19	346.0	346.3	345.7	0.16	27.83	27.85
680001206	C	1.75	\$235JR	15.00	978.1	852.4	1.75	413.7	413.9	413.4	0.15	344.6	344.8	344.3	0.13	27.87	27.88
680001404	C	1.50	\$235JR	13.50	975.8	834.9	1.49	403.2	403.5	403.0	0.14	333.8	334.3	333.4	0.24	27.98	27.99
680001405	C	1.50	\$235JR	13.50	967.8	834.8	1.50	402.5	403.1	401.8	0.26	333.4	334.0	332.9	0.23	28.04	28.07
680001501	C	1.50	\$235JR	13.50	971.1	834.5	1.50	408.3	408.8	408.0	0.20	340.6	341.1	340.1	0.26	27.70	27.72
680001502	C	1.50	\$235JR	13.50	973.2	837.2	1.50	408.2	408.5	408.0	0.14	340.8	341.0	340.6	0.11	27.72	27.73
680002005	C	3.90	\$235JR	16.00	941.3	865.2	4.12	390.2	390.4	389.9	0.11	324.1	324.3	323.7	0.12	31.60	31.60
680005302	C	2.40	\$235JR	16.00	1008.0	856.1	2.39	403.0	403.3	402.7	0.15	337.5	337.8	337.3	0.13	28.89	28.89
680005303	C	2.40	\$235JR	16.00	1006.3	857.9	2.39	402.7	402.9	402.3	0.18	337.3	337.5	337.0	0.15	28.89	28.89
680005804	C	2.70	\$235JR	15.00	988.6	846.0	2.70	405.9	406.1	405.6	0.11	340.0	340.1	339.7	0.09	29.20	29.20
680005805	C	2.70	\$235JR	16.00	963.2	849.5	2.70	405.7	406.5	405.3	0.34	319.5	320.4	319.0	0.37	31.32	31.34
680011801	C	5.03	\$235JR	13.50	974.9	846.1	5.29	463.8	463.9	463.7	0.05	401.5	401.8	401.3	0.12	31.84	31.91
680013401	C	2.00	\$235JR	15.00	940.1	844.4	2.00	396.6	396.9	396.4	0.16	331.2	331.4	331.0	0.13	28.72	28.75
680013605	C	1.48	\$235JR	13.50	935.1	843.4	1.47	399.1	400.1	398.5	0.37	332.7	333.5	332.3	0.30	27.67	27.76
680013606	C	1.48	\$235JR	13.50	937.6	843.3	1.48	398.0	398.2	397.5	0.18	331.6	331.8	331.3	0.14	27.83	27.86
680013701	C	1.48	\$235JR	13.50	939.1	841.2	1.48	404.4	404.8	404.2	0.17	335.8	336.2	335.5	0.20	27.80	27.84
680013702	C	1.48	\$235JR	13.50	939.3	841.6	1.48	403.5	403.8	403.3	0.17	334.9	335.2	334.7	0.14	27.91	27.92
680013703	C	1.48	\$235JR	13.50	938.9	840.9	1.48	404.1	404.3	403.8	0.16	335.5	335.7	335.2	0.13	27.83	27.84
680013704	C	1.48	\$235JR	13.50	939.7	843.2	1.48	403.3	403.5	403.1	0.12	334.7	334.9	334.6	0.09	27.89	27.90
680013705	C	1.48	\$235JR	13.50	939.1	844.0	1.48	403.3	403.6	403.0	0.18	334.8	335.0	334.5	0.14	27.89	27.90
680013706	C	1.48	\$235JR	13.50	936.2	844.1	1.48	403.5	403.8	403.2	0.18	335.0	335.3	334.7	0.18	27.84	27.90
680013801	C	1.48	\$235JR	13.50	936.9	842.8	1.48	402.4	402.7	402.2	0.16	336.8	337.0	336.7	0.12	27.28	27.29
680013802	C	1.48	\$235JR	13.50	937.8	844.1	1.48	402.2	402.5	401.9	0.14	336.7	337.0	336.5	0.11	27.28	27.29
680013902	C	1.48	\$235JR	13.50	952.0	842.8	1.48	411.2	411.5	410.8	0.18	341.4	341.6	341.0	0.14	27.15	27.16
	IC.	1.48	\$235JR	13.50	955.4	841.8	1.47	412.0	412.3	411.6	0.19	342.1	342.3	341.8	0.17	27.10	27.12
680013903	~																

Optimization section GUI

CONTROL^{IN} **STEEL**

Example:

Optimization time-line for a selected mechanical property (UTS)

Thank you for the attention:

Francesca Marchiori: francesca.marchiori@rina.org Filippo Avellino: filippo.avellino@rina.org