CONTROL STEEL

How semantic tools help to understand impact mechanisms and transfer potential in research projects

M. J. Neuer, F. Marchiori, V. Colla, J. Ordieres-Meré, M. Loos, S. Dettori

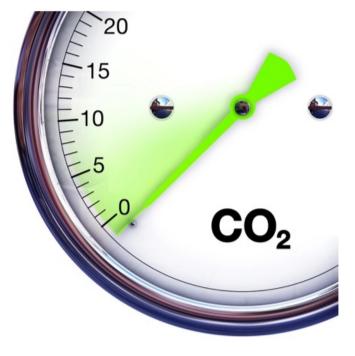
2022-06-21, ESTEP Dissemination Event 2022

1. Introduction

- 2. Analysis based on semantic tools
- **3.** Results

1. Introduction

- ControlInSteel is a dissemination activity focusing advanced automation and control
 - We selected around **46 (+5) former RFCS research projects** for a scientific analysis
 - Mission goals
 - 1. Analyze and understand dynamics of the problem-, solution- and impact space which also includes barriers and issues, as well as physical interaction channels
 - 2. Perform dissemination events, e.g. conference sessions and workshops to effectively distribute knowledge from and about these former projects
 - 3. Provide a **roadmap for future research**


Automation: Key Enabler for Process Industries

- Scheduling
- Optimization
- Complex process management

- Process control
- Throughput increase
- Product quality improvement

- CO2 reduction
- Energy optimization
- In general: producing towards ecological KPIs

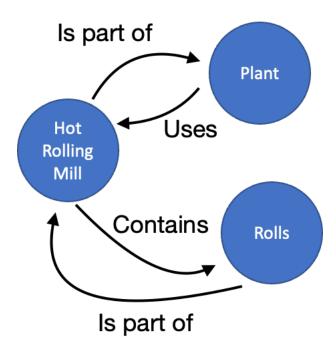
2. Analysis based on semantic tools

We want to know which **types of problems** are solved effectively by which **types of solutions** and generate what **types of impacts** by overcoming which **type of barriers and issues**.

If we know this, we can **maximize the overall impact**.

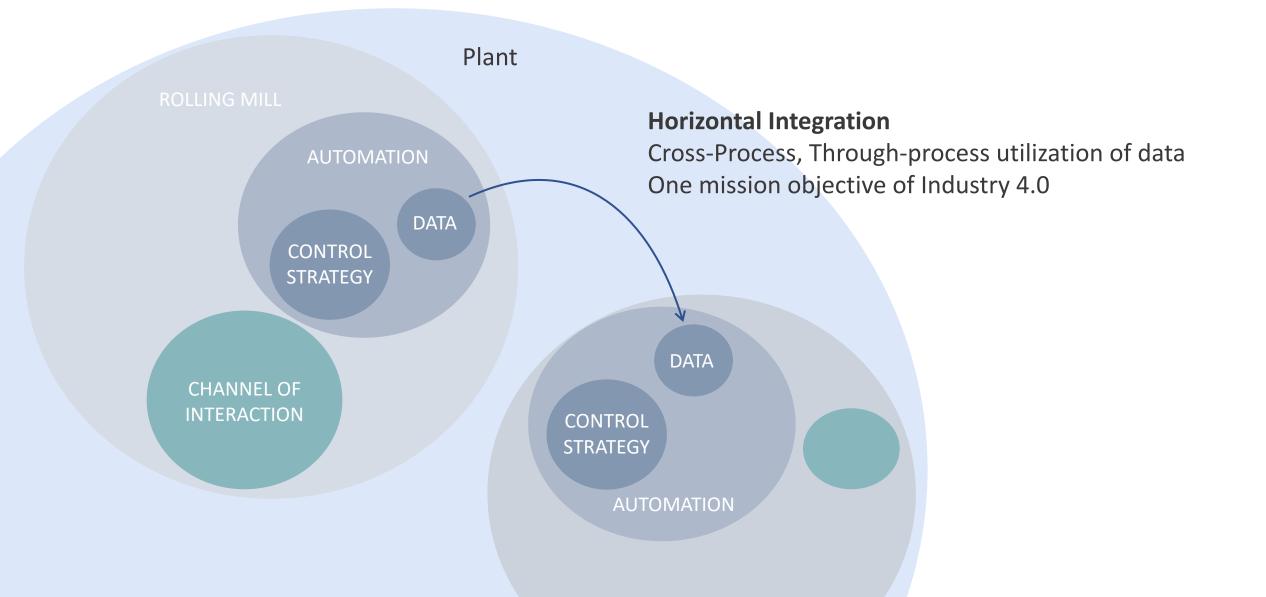
Synonyms

Taxonomies

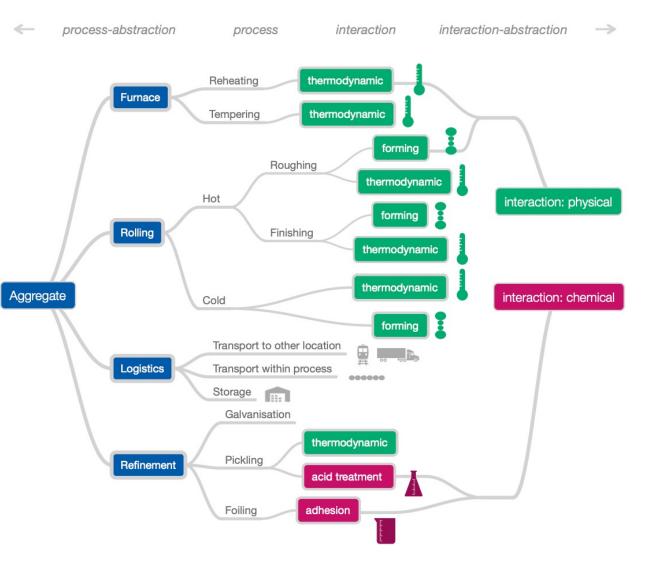

Ontologies Relationships

----- Degree of complexity ------

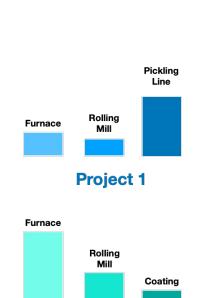
C	0			$\mathbf{\Gamma}$	
Synonyms	for	the	word:		
Syntony	LUI		WUI UI	uu	


😐 Wonderful	• Astounding	Astonishing	• Exciting
🗕 First-rate	• Outstanding	• Impressive	Delightful
🗕 Fabulous	 Magnificent 	• Awesome	Dazzling
Superior	Beyond belief	Splendid	Breathtaking
😐 Superb	• Stupendous	• Majestic	 Glorious
Excellent	• Amazing	• Grand	Incredible

	BLOOM'S TAXONOMY DIGITAL PLANNING VERBS								
R	EMEMBERING	UNDERSTANDING	APPLYING	ANALYZING	EVALUATING	CREATING			
	16			0000-00 0 0 0 00 0 0 0 00	1	1			
	Copying	Annotating	Acting out	Calculating	Arguing	Blogging			
	Defining	Tweeting	Articulate	Categorizing	Validating	Building			
	Finding	Associating	Reenact	Breaking Down	Testing	Animating			
	Locating	Tagging	Loading	Correlating	Scoring	Adapting			
	Quoting	Summarizing	Choosing	Deconstructing	Assessing	Collaborating			
	Listening	Relating	Determining	Linking	Criticizing	Composing			
	Googling	Categorizing	Displaying	Mashing	Commenting	Directing			
	Repeating	Paraphrasing	Judging	Mind-Mapping	Debating	Devising			
	Retrieving	Predicting	Executing	Organizing	Defending	Podcasting			
	Outlining	Comparing	Examining	Appraising	Detecting	Wiki Building			
E F	Highlighting	Contrasting	Implementing	Advertising	Experimenting	Writing			
Ν	Memorizing	Commenting	Sketching	Dividing	Grading	Filming			
1	Networking	Journaling	Experimenting	Deducing	Hypothesizing	Programming			
	Searching	Interpreting	Hacking	Distinguishing	Measuring	Simulating			
	Identifying	Grouping	Interviewing	Illustrating	Moderating	Role Playing			
	Selecting	Inferring	Painting	Questioning	Posting	Solving			
	Tabulating	Estimating	Preparing	Structuring	Predicting	Mixing			
1	Duplicating	Extending	Playing	Integrating	Rating	Facilitating			
	Matching	Gathering	Integrating	Attributing	Reflecting	Managing			
В	ookmarking	Exemplifying	Presenting	Estimating	Reviewing	Negotiating			
Bu	ullet-pointing	Expressing	Charting	Explaining	Editorializing	Leading			


From: ESL Forums, eslforums.com, 2019

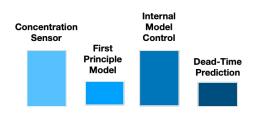
From: Blooms Taxonomy, Terry Heick, 2018


Taxonomy for problem space

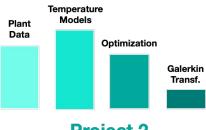
T1) Aggregate	Туре	Product	Interaction		
Casting	Continuous casting	Slab	physics:thermodynamic		
Furnace	Slab reheating	Slab	physics:thermodynamic		
	Walking bean reheating	Slab	physics:thermodynamic		
	Billet furnace	Billet	physics:thermodynamic		
Logistics	Transport	Slab	logistics:displacement		
Annealing	Continuous annealing	Strip	physics:thermodynamic		
	Bright annealing		physics:thermodynamic		
	Batch annealing		physics:thermodynamic		
			pyhsics:forming;		
Rolling	Roughing mill	Slab	physics:thermodynamic		
		o	pyhsics:forming;		
	Finishing mill	Strip	physics:thermodynamic		
			pyhsics:forming;		
	Cold rolling	Strip	physics:thermodynamic		
			pyhsics:forming;		
	Temper rolling	Strip	physics:thermodynamic		
	Plate mill		physics.merniodynamic		
Cooling	Cooling	Slab, Strip	physics:thermodynamic		
Cooling	Cooling	Slab, Strip	chemical:galvanisation,		
Refinement	Hot dip galvanization	Strip	physics:thermodynamic		
	Electro galvanisation	Strip	chemical:galvanisation,		
			physics:thermodynamic		
	Pickling mill	Strip	chemical:etching;		
	Coating	Strip	chemical: bond;		
			physics:adhesion		
	Foiling	Strip	chemical: bond;		
	1 olinig	•	physics:adhesion		
	Skin pass	Strip	physics:cutting;		
	Scarfing				
	Levelling	Strip	physics:forming;		
Thru-process					
Topical	Descaling	Slab, Strip	physics:evaporation		
	Flatness	Strip	physics:forming		
	Quality				
	Long				
	Flat				

Idea of ControlInSteel

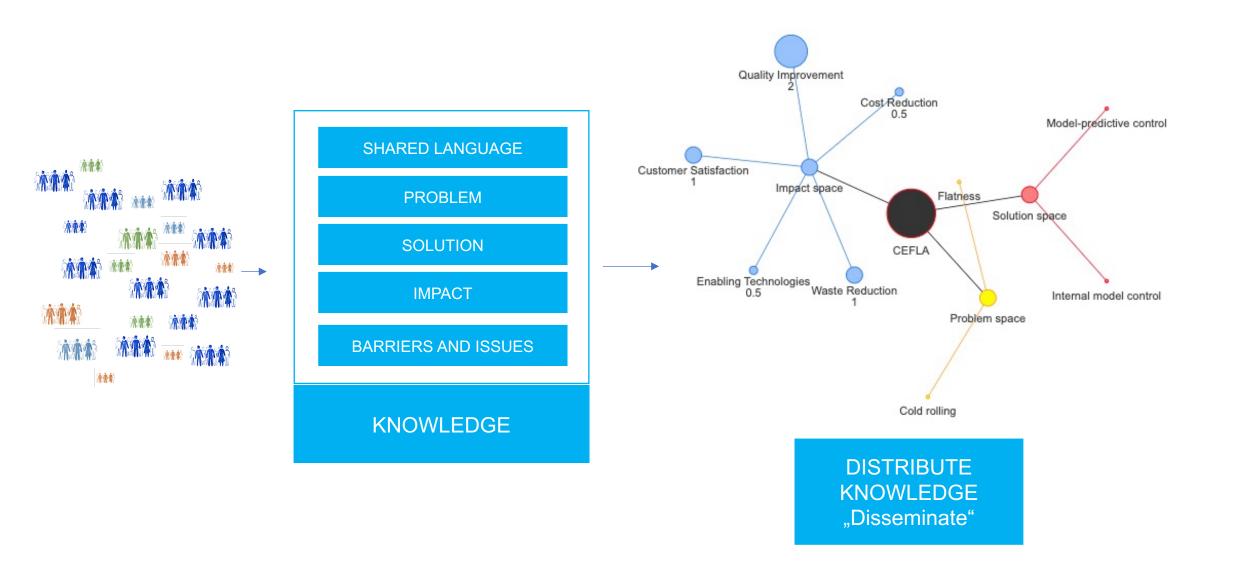
CONTROL[™]**STEEL**

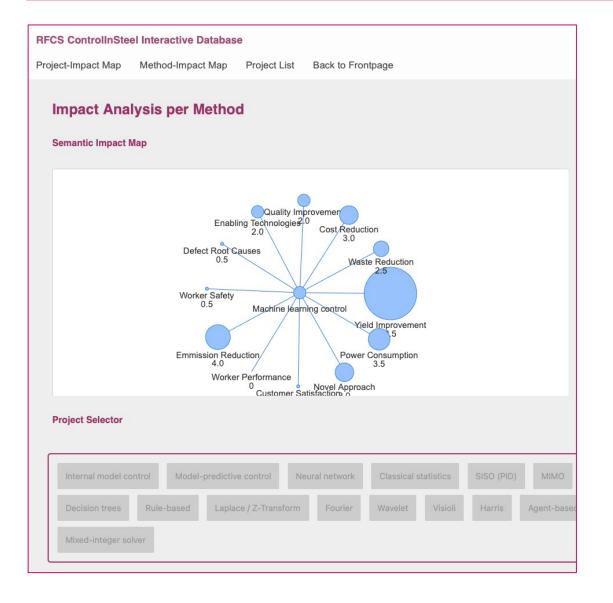

Problem space

Project 2



Solution space


Project 1

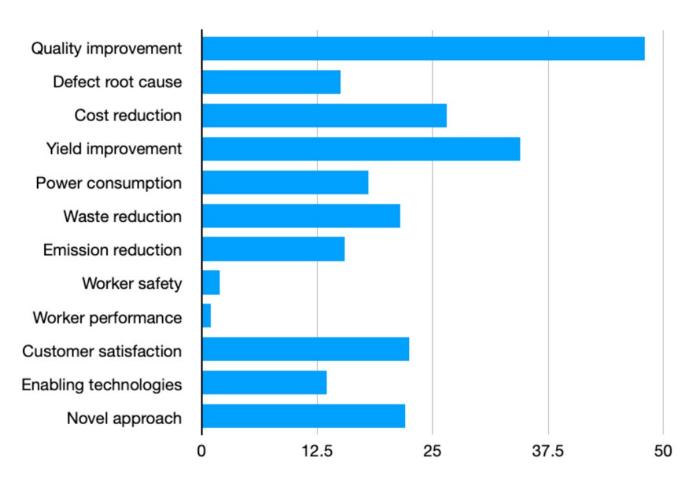

Project 2

Barriers & issues space

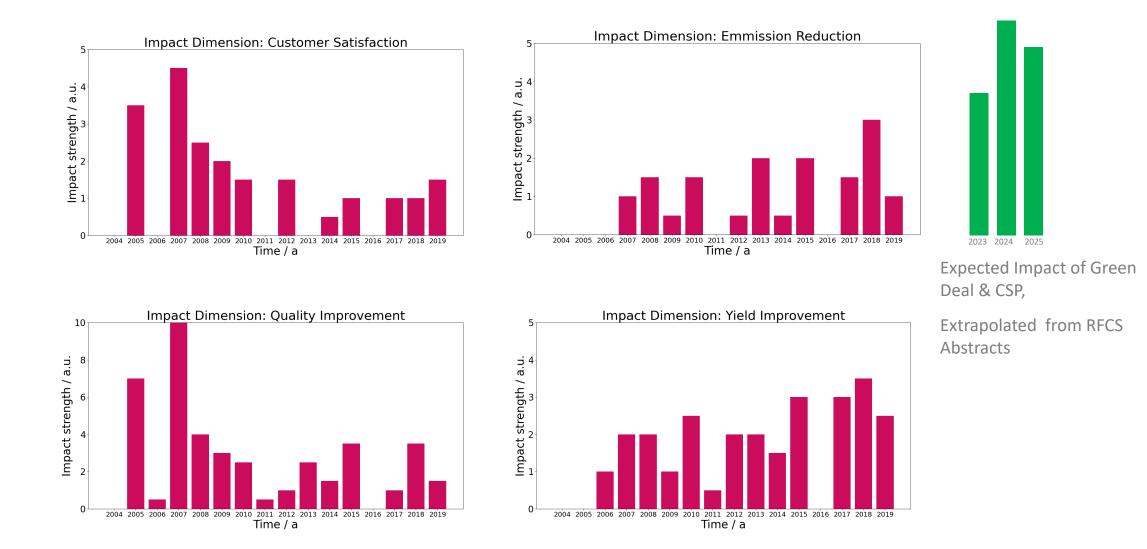
Visualizing mission of project

Impact analysis per project

- Project website: <u>www.controlinsteel.com</u>
- Link to interactive result presentation
- Automatic Python code that runs on top of our assessment
- Full compatibility with former dissemination activities like DissI2M (where DissI2M data is currently merged in the CIS database

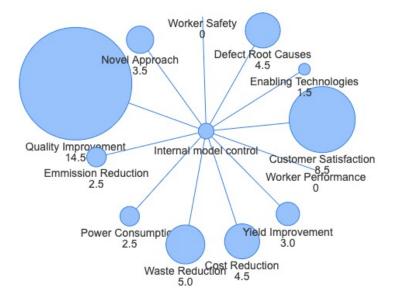


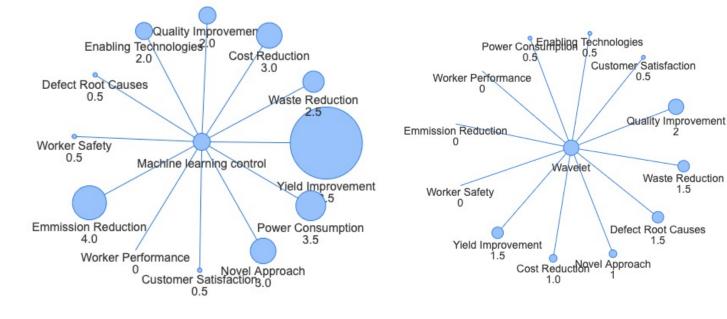
3. Project Results


Result: Impact Categorization and Impact Scores

- Each project could score up to 5 impact points
- Each point could be allocated to either one or multiple impact categories
- Advantage: the analysis is able to fully reproduce the distribution of impact of the considered projects

	Quality improvement	Defect root cause	Cost reduction	Yield improvement	Power consumption	Waste reduction	Emission reduction	Worker safety	Worker performance	Customer satisfaction	Enabling technologies	Novel approach
SOFTDETECT	1	2	1	0.5	0	0	0	0	0	0	0	0.5
IMGALVA	2	0	0.5	0.5	0	0.5	0.5	0	0	0.5	0.5	0
SensoCont	1	0	0	0.5	0.5	0.5	0.5	0	0	1	0	1
Smartfire	1	0	0.5	0.5	0.5	0.5	1	0	0	0	0.5	0.5
FinalPlateFlatness	2	0	0.5	0.5	0	0.5	0.5	0	0	1	0	0
Awicco	1	0.5	1	0.5	0	0.5	0	0	0	1	0	0.5
ніднріск	1	0	0.5	1	1	0.5	0.5	0	0	0.5	0	0
Linecop	1	0.5	0.5	1	0.5	0.5	0	0	0	0.5	0	0.5


Impact Development as Function of Time



Impact as Function of Solution Method

CONTROL^{IN} **STEEL**

1.5

Internal Model Control

Machine Learning Control

Wavelet Transform

Radar chart overview of individual projects

Project idea

- Dissemination and impact maximization of various RFCS projects in the field of advanced automation in the downstream process chain
- Taxonomical approach to structure four distinct vocabularies for problems, solutions, impact and barriers
- Systematic analysis of all projects with respect to these vocabularies
- Project ends in December 2022)

Dissemination

Upcoming workshops are published at www.controlinsteel.com

Transferability Analysis

- 0 no transferability can be expected, not transfer has been reported
- 1 same aggregate, same plant direct transfer was possible
- 2 same aggregate, different plant transfer
- 3 different aggregate, same plant transfer
- 4 different aggregate, different plant
- 5 different Industry, similar aggregate
- 6 different Industry, diverse aggregates
- Each project got an transferability index
- First rigorous assessment of transferability in a quantitative way

	Primary Transfer Channel	Transferability Index	0	1	2	3	4	5	6
CEFLA	Rolling mill	1							
7210-PR/338	Rolling mill	1							
7210-PR/339	Rolling mill	1							
7215-PP/076	Rolling mill	1							
CASTDESMON	Caster	2							
IPCDS	Rolling mill monitoring system	2							
SHAPEHPM	Rolling mill	1							
AUTOCHECK	Zinc layer thickness control	4							
S 5	Strip shape monitoring	2							
GLOBALSHAPECONTROL	Rolling mill	1							
SOFTDETECT	Soft sensor	4							
IMGALVA	Galvanisation	2							
SensoCont	Pickling line operation software	4							
Smartfire	Furnace	3							
FinalPlateFlatness	Rolling mill	2							

Dr. Marcus J. Neuer

Marcus.Neuer@bfi.de

+49 175 2064672

Aknowledgments...

... goto **Dr. Alexander Ebel**, who broadly introduced semantic techniques at the BFI and who was inspirational in continuing work in these topics.

- Taxonomies
 - *T₁* problem space
 - T₂ solution space
 - T_3 impact space

 $\mathbf{f}_{\lambda}(i) = [(f_{\lambda 0}(i), f_{\lambda 1}(i), \ldots] = \mathcal{T}_{\lambda}(i)$

 $f_{\lambda j}(i) = \mathcal{T}_{\lambda}(i,j)$

 Algorithm for retrieving conditional probabilities out of taxonomy entry combinations

$$P(j, T_{\lambda} | m = 1 \text{ with } m \in T_{\rho}) = \sum_{i \in \Pi} \sum_{k \in T_{\lambda}} \sum_{r \in T_{\rho}} f_{\lambda j}(i) \delta_{kj} \delta_{mr}$$

 $\phi_{\lambda} : E_{\lambda}(i) \to \{ (f_{\lambda j}, \lambda) | f_{\lambda j} = \mathcal{T}_{\lambda}(i, j) \}$ $\phi_{T} : E_{T}(i) \to \{ (\lambda, \pi(i)) | \lambda \in (1, 2, 3) \land \pi(i) \in \Pi \}$