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Abstract

Non-equilibrium dynamics determine a wide range of properties of solid structures.

Through phonon dynamics for example thermoelectric processes, as well as the electric

and thermal transport are determined. These properties are important in the develop-

ment of new technologies in a number of industries and for research alike.

In this work Ąrst-principles are used to calculate the structure and phonon thermali-

sation of polar semiconductors, using the time-dependent Boltzmann equation. Con-

sidering out of equilibrium states, excited by infrared absorption sets the need for a

time-dependent description of the dynamics. These ab-initio calculations are set up in

this work with Tungsten-DisulĄde as an example material. The procedure to achieve

ideal results and analyse the phonon scattering and lattice thermalisation is transfer-

able to other composites.

Zusammenfassung

Die Nichtgleichgewichtsdynamik bestimmt eine vielzahl an Eigenschaften von Fest-

körpern. Die dynamischen Prozesse der Phononen zum Beispiel bestimmen unter An-

derem thermoelektrische Prozesse, oder elektrische und thermische Leitfähigkeit. Diese

Eigenschaften sind für die Entwicklung neuer Technologien in einer Reihe von indu-

striellen Branchen, sowie in der Forschung von Bedeutung.

In dieser Arbeit werden Ąrst-principles Berechnungen genutzt, um die Struktur und

Thermalisierung von polaren Halbleitern unter Verwendung der zeitabhängigen Boltzmann-

Gleichung zu berechnen. Eine Betrachtung von Zuständen außerhalb des Gleichge-

wichtszustandes, angeregt durch die Absorption infraroter Strahlung erfordert eine

zeitabhängige Beschreibung der Dynamik im Festkörper. Diese ab-initio-Rechnungen

werden hier mit Wolfram-DisulĄd als Beispielmaterial durchgeführt. Der Prozess, um

zu den idealen Parametern für die Berechnungen zu gelangen und die Analyse der

Phononenstreuung ist auf andere Materialien übertragbar.





1 Introduction

1 Introduction

The phononic system is a well known subject in the Ąeld of solid state physics. Both theory

and experiment have provided a wide variety of data and concepts surrounding it. But there

is still a sizeable amount of unexplored possibilities and opportunities for an expansion of

the theory of vibrational modes and the processes within.

Solid-state technologies often depend on the dynamics of electrons, phonons and excited

states in the underlying systems. Important properties like the electronic transport are lim-

ited by the scattering of charge carriers with phonons and defects [1]. The phonon-phonon

scattering is the key component for heat transport and thermoelectric processes [2, 3]. These

dynamical processes take place on nanosecond timescales and involve complicated experi-

mental setups to realise the time resolution needed to investigate [4, 5, 6] . This underlines

the importance of an elaborate theory of solids and their properties, as this would allow

for experimental outcomes to be predicted, consequentially automatically ruling out experi-

ments that would not lead to good results.

Recently Ąrst principles simulations were evolved to enable an accurate calculation of electron

phonon interactions without heuristic parameters. This opens the door for new approaches

to investigate the properties of solids and provides vast possibilities for research in elec-

tronics, optoelectronics, and renewable energy [7, 8], leading to further development in the

underlying codes and theories.

The material examined in this work belongs to the group of transition metal dichalcogin-

des (TMDs). This group of semiconductors is a popular subject of research due to their

beneĄcial properties for different departments of electronics [9, 10, 11], like the Ąeld effect

transistor, or sensing [12], as replacement for graphene. For most of the possible operation

areas monolayers are needed. In the case of TMDs this monolayer is atomically thin, which

is why they are called 2-dimensional. In this work Tungsten-DisulĄde will be investigated,

which is used for low friction applications, as material for gears, or as a lubricant in motor-

oils [13, 14] .

This work aims to expand the theory of light absorption and the subsequent relaxation of

the lattice in polar semi-conductors via Ąrst principle calculations with Tungsten-DisulĄde

(WS2) as example material. The main subject of research are the relaxation processes of the

phononic system after an excitation through infrared photons. These processes are examined

by performing calculations with multiple simulation codes, setting the crystalline structure,

simulating an infrared excitation and subsequently examining the thermal relaxation. The

crystal structure will be set up and relaxed via Quantum Espresso. Afterwards an excita-

tion by infrared photons will be introduced to the grid, leading to heating of the phonon

modes excited. Subsequently the relaxation of the excitation into other vibrational modes

is calculated with ShengBTE and investigated by post-processing the output data.
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1 Introduction

Using Ąrst principles has only been a real possibility with the rapid rise in computational

power over the last few decades. With this development a rigid structure of restrictions

and rules can be introduced to calculate the physical properties of complex systems, such

as the one investigated here. The simulation in timescales of tens of picoseconds and a time

resolution within the range of femtoseconds was developed rather recently. In this work

Ąrst-principles and electron phonon interactions are combined with a parallel numerical cal-

culation to propagate the Boltzmann equations in time, providing insight into the scattering

mechanisms underlying the thermalisation of the grid. The time dependent Boltzmann equa-

tion is used due to the time dependent nature of the processes. The scattering process due

to infrared excitation drives the lattice out of equilibrium, which is then restored after a

certain time. Other works employ similar techniques to characterise different properties [5],

including the coupled dynamic degrees of freedom for electrons and nucleons [15, 16], the

manipulation of ultrafast structural dynamics [17, 18], or phase transitions [19]. In this work

the lattice experiences decay of phonons only, electrons do not play a part here and can be

assumed to be frozen in place.

In the Ąrst part of this work the computational and theoretical basis will be given, followed

by a detailed description of the methodology used to achieve the results. Here the simulation

codes will be described and the important parameters as well as their possible values will be

addressed. The results presented in the subsequent chapter are obtained by these simula-

tions. Finally a summary will be given, along with an outlook on further possible research

on this topic.
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2 Theory

Atoms, molecules and three-dimensional solids consist of the same building blocks, namely a

Ąnite number of indistinguishable electrons and nucleons. In the Ąrst-principles description

of many-body systems the physical properties are determined without experimental data,

which requires a solid and elaborate theoretical basis in which approximations should be

introduced only if they are justiĄed and do not take away any underlying properties. First-

principles calculations aim to extend the Density Functional Theory (DFT) and the related

excited state methods [20], but are still in an early state of development. In general there

are two main ways of approaching the calculations. First the real-time time-dependent DFT

[21], which uses the Kohn-Sham Hamiltonian to self-consistently achieve a time propagation

of the electronic wavefunction and charge density [22]. Secondly the many-body perturba-

tion theory is used to compute the electron-electron, electron-phonon and phonon-phonon

interaction. In combination with the Boltzmann Transport Equation (BTE) the dynamics

and the transport in solids and the dynamic properties of the crystal can be investigated

and quantiĄed.

2.1 Density Functional Theory

Every system of particles can be described exactly by the corresponding wavefunction Ψs =

Ψs(r,σ,R,Σ,t). This is a function of all the degrees of freedom of the structure, with r and R

as the coordinates of electrons and nucleons respectively, and σ and Σ as their spin values.

In the following the nuclear spin Σ will be neglected, as the effect on the crystal properties

is negligible in this work. The s in the index denotes the eigenstate of the system.

First principles descriptions of the electronic structure of atoms, molecules and solids has

peaked in the formulation of the Density Functional Theory (DFT) [23], as it is the founda-

tion of most modern ab-initio calculations [7, 24]. In order to describe the structures of the

systems in question the Schrödinger Equation is formulated, as solving it would yield the

wavefunction. In the non-relativistic case the following relation is valid [25]:

ĤΨs = iℏ
∂Ψs

∂t
(2.1)

Here Ĥ is the Hamiltonian operator, ℏ is the reduced Planck constant and i is the imaginary

unit. The wavefunction undergoes partial derivation by the time t. The Hamiltonian consists

of the following parts:

Ĥ = T̂n + T̂e + V̂nn + V̂ee + V̂en (2.2)



2 Theory 2.1 Density Functional Theory

In this equation both the electronic and the nuclear kinetic terms T̂ as well as the parts

that consider Coulomb interactions V̂ are included for both the nucleons (index n) and the

electrons (index e). The kinetic parts are deĄned as follows [7]:

T̂n = −
Nn
∑

I=1

ℏ
2∇2

I

2MI

(2.3)

T̂e = −
N
∑

i=1

ℏ
2∇2

I

2me

(2.4)

The indices I and i refer to the coordinates of the nucleon and electron respectively. The

coulomb interaction is deĄned for electron-electron interactions, electron-nucleon interactions

and nucleon-nucleon interactions, in the following way:

V̂nn =
1
2
e2

4πε0

Nn
∑

I=1

Nn
∑

J=1,
J ̸=I

ZIZJ

♣RI − RJ ♣ (2.5)

V̂ee =
1
2
e2

4πε0

Nn
∑

i=1

N
∑

i=1,
j ̸=i

1
♣ri − ri♣

(2.6)

V̂en = − e2

4πε0

N
∑

i=1

Nn
∑

I=1

ZI

♣ri − RI ♣ (2.7)

A solution to the Schrödinger Equation would provide a complete description of the system

over time. However, due to the high number of degrees of freedom, especially when consid-

ering a big number of atoms like in solids, calculating the solution is virtually impossible

as the computational cost rises exponentially with a higher number of degrees of freedom.

Storing the wavefunction is one of the challenges [7].

Decoupling the electronic and nuclear parts of the Hamiltonian, as their dynamics happen

on vastly different timescales, can be introduced. This is the Born Oppenheimer Approxi-

mation (BOA) which splits the SEq into two parts, the electronic and the nuclear SEq. Both

of these can be solved separately by assuming that at each step in time the electrons follow

the nuclear motion adiabatically. This in turn means that no transitions between different

eigenstates of the electronic Hamiltonian can be triggered by the motion of the nucleons.

The BOA is justiĄed by the mass ratio of the nucleons and electrons: mn

me
≈ 1837 [26].

The approximation also implicates that for each timestep of the electron dynamics the nu-

cleons can be approximated with Ąxed coordinates, which leads to an ansatz for the coupled

electron-nuclear wavefunction in Dirac notation:

♣Ψ⟩ =
∑

ν

♣ψν⟩ ♣χνs⟩ (2.8)
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2 Theory 2.1 Density Functional Theory

Here ψν is the eigenstate of the electronic Hamiltonian and χνs denotes functions of the

nuclear coordinates. The latter depend on the nuclear coordinates R and the state of the

system s as well as the electron quantum number ν. Both ψν and χνs are solutions to

the SEq and satisfy the requirements of orthogonality and normalisation, a probabilistic

interpretation of the wavefunctions is thus possible.

With that the many-body wavefunction can be deĄned as a superposition of the many-

electron and the many nuclei wavefunction [26]:

Ψ(r,R) =
∑

ν

ψν(r;R)χν(R) (2.9)

The electronic Hamiltonian and the electronic SEq are deĄned as follows:

Ĥel Ψν(r;R) = EνΨ(r;R) (2.10)

Ĥel = T̂e + V̂ee + V̂en (2.11)

Here V̂en is the external potential which describes the effect that the nucleons have on the

electrons. The electron-electron interactions described by the Coulomb term V̂ee is deĄned

as follows:

V̂ee =
Nel
∑

i, j=1,
i̸=j

1
♣r̂i − r̂j♣

(2.12)

Due to the dependence of this expression on two coordinates and the need for a double sum

the computational cost to calculate this property increases exponentially with the number

of electrons (Nel). When describing a real system the computational cost exceeds the possi-

bilities.

With a method introduced by Hohenberg, Kohn and Sham [23, 27] the exponential increase

can be reduced to a linear increase with a rising number of electrons. For this a one-to-one

correspondence of the electronic density and the ground-state wavefunction of the system is

found. The electronic density [28] is deĄned as follows:

n̂(r) =
Nel
∑

i=1

δ(r − r̂i) (2.13)

The electrons are located at r̂i. The delta-function reflects the discrete nature of the electron

distribution. Using this term the electron-nucleon interaction can be rewritten:

⟨ψ♣V̂en♣ψ⟩ =
∫

ven(r;R)n(r) dr (2.14)

5



2 Theory 2.1 Density Functional Theory

The electron-nucleon interaction potential is the only parameter that depends on the nuclear

coordinates and therefore holds the information about the properties of the entire system.

The result is the needed one-to-one correspondence between the electronic density and the

ground-state wavefunction. The Ąrst Hohenberg-Kohn Theorem states that for every elec-

tronic density there is exactly one corresponding electron-nucleon interaction potential. Due

to this every quantity expressed by the wavefunction can equally be expressed by the elec-

tronic density. The ground state energy of a system can be written as [27]:

E[n] = F [n] +
∫

ven(r;R)n(r)dr (2.15)

F [n] = ⟨ψ♣T̂e + V̂ee♣ψ⟩ (2.16)

The term F [n] is a density functional, that only depends on electronic properties, it is thus

a functional that can also be expressed by the electron density as indicated by n. The

kinetic energy of the electrons and their ground state wavefunction is unknown, as well

as the external potential [7]. To circumvent this problem Kohn and Sham introduced a

reformulated version of the problem. The many-body Schrödinger Equation is recast to a

set of single particle equations. Here the Kohn-Sham potential [29], which contains all the

unknown parameters of the system, is deĄned as follows:

vKS(r, [n]) = ven(r) + vH(r) + vxc(r, [n]) (2.17)

ven(r) is the single particle electron-nucleon potential, vH(r) is the Hartree-Potential, and

vxc(r, [n]) is the single-particle exchange-correlation potential, deĄned by the following vari-

ation of the exchange-correlation energy due to the electronic density [30, 31]:

vxc(r, [n]) =
dExc[n]
dn

(2.18)

The Hartree potential accounts for the electron-electron interactions. It is deĄned as follows:

vH =
∫

dr′
n(r′)

♣r − r′♣ (2.19)

An indirect term that accounts for all the electron-electron interactions without scattering

events is included in the exchange-correlation potential. Kohn and Sham showed, that the

ground-state electron density of the interacting system coincides with the electron density

of an auxiliary single-particle non-interacting system. With this the Kohn-Sham equation

can be formulated, it is the single particle Schrödinger equation[]:



−∆2

2
+ vKS(r,[n])



ϕKS
i (r) = εKS

i ϕKS
i (r) (2.20)

6



2 Theory 2.1 Density Functional Theory

Here εKS
i and ϕKS

i (r) are the single-particle Kohn-Sham energies and orbitals. The equation

above is solved by iteration. The ground-state electron-density is deĄned as:

nGS(r) =
N
∑

i=1

∣

∣

∣ϕKS
i (r)

∣

∣

∣

2
(2.21)

These equations form a set self consistent equations, with which it is possible to calculate

the exact electron density of a system in the ground-state [7].

However, the exchange-correlation potential is unknown analytically and is therefore ap-

proximated. This can be done through Monte Carlo simulations and is an iterative process,

described in the flowchart underneath.

Figure 1: Flowchart of the approximation of the exchange-correlation potential.

The initial guess is usually deĄned as the electronic density at equilibrium. With this ini-

tial guess the Kohn-Sham potential is calculated and subsequently the Kohn-Sham equation

is solved. With the solution a new density can be calculated, and if the outcome is self-

7



2 Theory 2.1 Density Functional Theory

consistent the current electronic density is returned. If this is not the case, the input for the

electronic density is updated, the newly calculated density is now used in the same process

until self consistency is reached. This is the case, if the initial guess, or the updated density is

the same after an additional run through the procedure. Since a perfect match is connected

to a long calculation time it is useful to set a value of convergence, that states the maximum

variation allowed for the result to be considered self-consistent.

Using the aforementioned methods, systems with a number of electrons and nuclei approach-

ing the Avogadro number can be considered. In the description of extended solids their pe-

riodicity can be used to further reduce the problem, in most cases to a single unit cell. This

is done by taking into account the periodicity of the solid [32]. The Kohn-Sham potential in

each unit cell is the same, resulting in the following description of the potential, using the

lattice vector R:

vKS(r) = vKS(r + R) (2.22)

The eigenfunctions solving the single-particle Schrödinger Equations are Bloch wavefunc-

tions, deĄned in the following way:

ψn,k(r) =
1

√

Np

un,k(r)eikr (2.23)

Here n gives the band index, k is the momentum within the Ąrst Brillouin zone, Np is the

number of the unit cell and un,k(r) is a periodic function with the same periodicity as the

crystal lattice. Considering only one primitive cell of the crystal is sufficient, when also

using Born-von-Karman boundary conditions. Here a supercell is introduced, constructed of

multiple unit cells and a reciprocal volume of the system given by the following expression,

using the reciprocal volume of a single unit cell (Ωp):

Ω = NpΩp (2.24)

The eigenfunction can be written as a Fourier series, with the reciprocal lattice vector G

and the plane-wave coefficients cn,k(G):

ψn,k(r) =
1

√

NpΩp

∑

G

cn,k(G) ei(k+G)·r (2.25)

In the simulations the states are calculated for a Ąnite number of k-points given at the start,

resulting in discrete eigenstates distributed over the unit cell. In the limit of an inĄnite

number of k-points these discrete values turn into a continuum, the eigenvalues εn,k turn

8



2 Theory 2.1 Density Functional Theory

into continuous bands. Computational limitations compel a truncation of the kinetic energies

considered in the calculations. This value is deĄned as follows [33]:

♣k + G♣2
2

≤ Ecut (2.26)

Due to this truncation convergence tests before the calculations are necessary, as any values

of the kinetic energy above the cutoff will be neglected.

Another problem arises in the consideration of the core electrons. Their representation is

not straightforward, as they are bound to the nucleus and therefore do not contribute to the

chemical or physical properties of the material investigated. The core electrons can thus be

described together with the nucleus, resulting in pseudopotentials [34, 35]. These describe

the system with core electrons and the nucleus combined, considering the nuclear potential

to be screened by the Ąxed core electrons. This makes the calculation of the structures less

computationally expensive.

The pseudopotentials are transferable [35], as
they can be used for atoms, molecules and
bulk crystals alike. The goal is to describe
the potential of the structure up to the ionic
cutoff-radius correctly, behind which the pseu-
dopotential coincides with the original po-
tential and the pseudo-wavefunctions coincide
with the original wavefunctions, as seen in the
Ągure on the right. An important character-
istic is the smoothness inside the ionic cutoff-
radius, needed to obtain a good transition to
the original potential. The logarithmic deriva-
tives and the Ąrst energy derivatives of the
wavefunctions must coincide for this goal to be
completed. Pseudopotentials have been calcu-
lated for most atoms, with the norm conserv-
ing and ultrasoft pseudopotentials being the
most common.

Figure 2: Schematic illustration of a
Pseudopotential, taken from [36].

The former enforce two conditions. The Ąrst guarantees that the norm of the wavefunctions

inside the cut-off radius are identical, the second guarantees that the wavefunctions are iden-

tical outside of the cutoff radius. The ultrasoft pseudopotentials relax the norm-conserving

conditions and reduce the necessary basis-set size [37, 38]. The norm-conserving pseudopo-

tentials were used in this work.

The Interaction between electrons and phonons, quasi-particles, that quantise the lattice

vibrations, can be described via the Density Functional Perturbation Theory (DPFT) [7].

Here multiple electronic bands and phonon branches can be included. This theory goes be-

yond the equilibrium state of the system in DFT and introduces terms that drive the state

9



2 Theory 2.2 Infrared Absorption

of the system out of equilibrium using perturbation potentials added to the Hamiltonian.

For each possible interaction a new term is added. In the case of electronic and phononic

systems the interactions between the phonons, the interactions between the electrons as well

as the interaction between the phonons with the electrons and vice versa need to be con-

sidered. With these modiĄcations and the solution of the Schrödinger Equation the system

and its interactions can be described correctly.

2.2 Infrared Absorption

The transition between vibrational states involves inelastic scattering of light. The scattered

light has a component which has a different frequency than the incident beam. The difference

is exactly equal to the frequency of a phonon mode in the solid. This process is called Raman

scattering for optical phonons and Brillouin scattering for acoustic phonons [39]. In optical

experiments the intensity of the incident I0, reflected IR, transmitted IT and absorbed IA

beams are measured. From energy conservation the following expression can be found:

I0 = IR + IT + IA (2.27)

The apparent reflectivity, transmission and absorption can be found by dividing both sides

by I0:

R̃ + T̃ + Ã = 1 (2.28)

The true values can only be found if the sample is sufficiently thick or in the ideal case,

inĄnitely thick. The apparent absorption can be found by a measurement of the heating of

the sample due to absorption of light, in some cases however measuring the thermal emission

of the sample is more convenient. Optical properties like the reflectivity, or the absorption

can be calculated using the complex dielectric function [40]. It can be deĄned as:

ε(ω) = ε1(ω) + iε2(ω) (2.29)

In the case of optically isotropic materials. The complex refractive index is deĄned similarly:

n(ω) = n1(ω) + in2(ω). Here n1 is the refractive index and n2 is the extinction coefficient.

This leads to the following expression for ε1 and ε2:

ε1 = n2
1 − n2

2 (2.30)

ε2 = 2 · n1 · n2 (2.31)

10



2 Theory 2.2 Infrared Absorption

The reflectivity an the absorption can now be expressed via the dielectric function (ε(ω)),

as follows:

R =
1 −

√

ε(ω)

1 +
√

ε(ω)
(2.32)

I(x) = I0e
−α(ω)x, with (2.33)

α(ω) =
2ω
c

Im(
√

ε(ω)) (2.34)

The absorption of infrared light requires energy and momentum conservation. The energy

of the photon (Ephot) needs to be equal to the energy of the phonon (Ephon), the photon

momentum (qphot) Ąxed by the dispersion relation ω = cqphoton, needs to be equal to the

momentum of the phonon excited (qphon). Additionally the values of qphon need to be

compatible with the periodic boundary conditions, which leads to the following limitation in

the case of a cubic unit cell with sidelength a: −π
a
< q ≤ π

a
. This puts the possible phonon

frequencies for direct coupling of light to the phonon modes in the range of infrared light

[1, 40].

The light-phonon interaction can be split up into two cases. For both an external electric

Ąeld is applied in the form of E = Ecos(ωt). In the Ąrst case the unit cells consist of two

or more atoms, with vanishing effective charges Z∗1 = Z∗2 = Z∗ = 0, as the electronic charge

compensates the nucleon charge. In this case very weak to no coupling to the electromagnetic

Ąeld can be observed [41, 29]. The effective charges are called Born Effective Charges (BEC).

In the second case the BEC do not vanish. Due to sum rule the following relation needs to

be obeyed: Z∗1 = −Z∗2. The electromagnetic Ąeld couples to the effective nuclear charges.

This case can be described by the Lorentz-Oscillator with the following motion equation:

ẍ+ Ω2
TOx = Z∗

I

µ
ε(t), where µ stands for the mass, Z∗ as before represents the effective charge

and ΩTO represents the phonon frequency of transverse optical phonons.

Infrared active phonons are the phonons in a system that absorb infrared light in a way that

leads to a change of the polarisation in the system [41]. This does not apply to all phonon

modes of the system however. In polar materials such as the one discussed in this work a

unit cell is made up of multiple different atoms that do not have the same effective charge.

As usual the effective charge in general is zero,
∑

I ZI = 0. In the long-wavelength limit only

q = 0 phonons can be absorbed, due to momentum conservation. The complex dielectric

function, or rather the contribution of polar phonons to the optical response can be deĄned

as follows:

εR = 1 +

√

ε(ω)Z∗2I

ε0µ

1
Ω2

TO − ω2
(2.35)

11



2 Theory 2.2 Infrared Absorption

The frequency that solves the equation εR(ω) = 0 grants a total charge of zero, meaning that

the following relation is also valid: kE = 0. The electric Ąeld is transverse to the direction of

propagation. The frequency of the transverse optical phonon modes are denoted as ωT=, for a

longitudinal Ąeld propagation the frequencies are denoted as ωLO. The O denotes an optical

phonon mode, as these are the modes that couple to the radiation, as the name suggests.

For these frequencies a relation can be found, called Lyddane-Sachs-Teller Relation [29, 41]:

ε(ω)
ε∞

=
ω2

LO

Ω2
TO

(2.36)

Through reflectivity experiments information on the LO-TO splitting can be extracted. This

gives implications on infrared dielectric properties of polar semiconductors and insulators,

which strongly reflect in the frequency region of ωTO < ω < ωLO [29]. This can be derived

by evaluating the the response of a system to a time dependent driving electrical Ąeld. The

dielectric function of the polar crystal exhibits a pole for ω = ω0 = ωTO and equals 0 for ωLO.

Outside the interval between the LO and the TO frequencies the real part of the dielectric

function is positive, while the imaginary part vanishes [40].

The real and imaginary part of the dielectric function can be expressed as a dispersion

relation. These integrals relate an absorption process to a dispersion process. For ε1(ω) and

ε2(ω) can be expressed as follows:

ε1(ω) =
2
π
P

∫ ∞

0

ω′ε2(ω′)
ω′2 − ω2

dω′ + 1 (2.37)

ε1(ω) = −2ω
π
P

∫ ∞

0

ε2(ω′) − 1
ω′2 − ω2

dω′ (2.38)

Here P is the Cauchy Principle value. In consideration of interaction of lattice vibrations

with infrared light the following Hamiltonian can be found:

H = H0 +H ′ , where (2.39)

H0 = Hh +Hanh (2.40)

The Hamiltonian contains both a harmonic and an anharmonic as well as a harmonic con-

tribution. H ′ stands for an external perturbation caused by interactions between the lattice

and light. The perturbation is given by H ′ = −E · M, E being the electric Ąeld of the light

and M being the total dipole moment of the crystal. The electric Ąeld can be described as

follows:

E = E0 exp[i · (k · r − ωt)] (2.41)
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2 Theory 2.2 Infrared Absorption

The wavelength λ is much larger in the infrared than the lattice parameter, since k = 2π
λ

, k

is negligible. This means that k = 0 and in Ąrst order processes the light-matter interaction

involves only phonons with a wave vector q = 0, which is at the Γ-point of the lattice.

In ionic crystals at k ≈ 0 the optical modes split into longitudinal (LO) and transversal (TO)

optical branches. The TO branches are present due to the ions experiencing an additional

restoring force arising from the charge polarisation. As a consequence the frequency of the

LO branch has to be derived in different ways, since only the TO modes can participate in

the absorption process. Here the Lyddane, Sachs and Teller relation is used [41, 29]:

ω2
LO(k ≈ 0) =

εs

ε∞
ω2

TO(k ≈ 0) (2.42)

εs is the static dielectric constant and ε∞ is the high frequency dielectric constant. In the two

phonon absorption processes the two modes participating may have wave vectors different

from zero. This in turn means that they do not transform according to representations of

the space group G [39].

Under normal experimental circumstances only TO phonons can be excited in these processes

[40], as follows from the deĄnition of the perturbational Hamiltonian H ′, which it involves

the scalar product of the electric Ąeld vector as well as the dipole moment of the crystal. The

light is transversal, so the electric Ąeld vector (E) is perpendicular to k. For TO phonons

the ionic displacement, and with it M is perpendicular to q, which is parallel to k, due to

momentum conservation.

The dipole moment of the crystal can be expanded in a Taylor series with respect to ionic

displacements [29, 42]:

M = M(0) + M(1) + M(2) + ... (2.43)

Here M(0) is the static dipole moment of the crystal, which is usually equal to zero and is of

no relevance for absorption. M(1) however is linear in the ionic displacements and gives rise

to one-phonon processes. M(2) is quadratic in the displacements and leads to two-phonon

absorption.

Both the absorption and the imaginary part of the dielectric constant depend on the matrix

elements ⟨n′♣M♣n⟩ for transitions from an initial state ⟨n♣ to a Ąnal state ♣n′⟩. Calculating the

eigenfunctions of the Hamiltonian shows, that the Φ(3) mechanism and the M(2) mechanisms,

the two-phonon mechanisms, cannot be separated in ionic crystals due to cross-terms arising

from the coupling of the two mechanisms. A discussion of the processes by neglecting one is

possible by neglecting either M(2), or Hanh [40].
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2 Theory 2.2 Infrared Absorption

Neglecting both M(2) and Hanh leads to the discussion of the one-phonon-processes. In this

approximation the Hamiltonian is deĄned as follows:

H = Hh − E · M(1) (2.44)

A phonon is annihilated and a TO phonon with q ≈ 0 is created. In the phonon-photon

conversion this process works in reverse, a phonon is annihilated and an induced photon is

emitted. In the calculation of ε(ω) both these processes must be considered. Energy and

momentum conservation requires:

ω(k) = ωTO (2.45)

k = q ≈ 0 (2.46)

This approximation has its shortcomings. As an example it predicts an inĄnitely sharp ab-

sorption line at ω = ωTO, when in experiments a rather broad line is found [40].

Two phonon processes due to the Φ(3) mechanism are considered with a Hamiltonian ap-

proximated as follows:

H = H0 − E · M(0) (2.47)

This describes a mechanism in which a phonon can decay and experience a Ąnite lifetime.

The matrix elements ⟨n′♣M(1)♣n⟩ need to be solved by many-body techniques, as conventional

perturbational techniques fail to describe these processes. The photon couples with an

infrared TO phonon, the anharmonicity then couples the TO phonon with two other phonons,

in summary three phonons are included in this process, with two phonons as an outcome.

The mechanism conserves the overall energy, the momentum is conserved at each vertex,

and the process satisĄes the following conditions [40]:

k = q = ±q′ ± q′′ ≈ 0 (2.48)

ω(k) = ±ωj′(q′) ± ωj′′(q′′) (2.49)

Positive signs mean the creation of a phonon, negative signs mean the annihilation. Due

to energy conservation the annihilation of two phonons is not possible, the creation of two

phonons however is. In that case the vectors are of equal magnitude, but opposing signs.

This is also the root of summation bands. Equally a creation of a phonon with (q′, j′)

and another phonon with (q′′, j′′) is annihilated. This gives rise to difference bands. These

processes can be summed up in the following equation:

ω(k) = ωj′(q′) ± ωj′′(q′′) (2.50)
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2 Theory 2.2 Infrared Absorption

For summation bands the (±) is a plus, for difference bands it is a minus. The vectors are

of equal magnitude, the branches may either be optical or acoustic. Anharmonic coupling

between phonons is responsible for the broadening of the absorption line at ω = ωTO. The

dampening depends both on the temperature and the frequency of the probing radiation

[40].

This process can only be activated if a corresponding phonon is available. This phonon

is an infrared active TO phonon, it induces a non-vanishing dipole Moment M(1). This is

however not the case for all crystals, as for example simple covalent crystals do not exhibit

such behaviour.

Two-phonon processes can however also be triggered by the M(2) mechanism, with the Hamil-

tonian:

H = Hh − E · M(2) (2.51)

The matrix elements ⟨n′♣M(2)♣n⟩ are evaluated via the eigenfunction of the harmonic Hamil-

tonian. The products of two atomic displacements are contained in the second-order moment

M(2), therefore the M(2)-mechanism lets a photon couple to two phonons. The energy and

momentum are conserved here as well.

The absorption of infrared radiation by a solid can be approached through the dipole ap-

proximation. In the presence of a vector potential A(r, t) the kinetic energy of electrons and

nucleons can be written as:

T̂e =
∑

i



p̂
2
i

2me

+
e

me

A(r, t) · p̂i

]

(2.52)

T̂n =
∑

κp



P̂
2

κp

2Mκ

+
Zκe

Mκ

A(r, t) · P̂
2

κp

]

(2.53)

κ runs over the atoms in the unit cells, p runs over all cells in the Born-von-Karman supercell,

i runs over the electrons in the system. Zκ and Mκ denote the atomic number and nuclear

mass of the κ-th nucleus. P̂κp is the momentum operator of the κ-th nucleus in the p-th cell.

p̂i is the electron momentum operator [40].

The vectorpotential in a classical monochromatic electromagnetic Ąeld, such as the one

introducing the excitation in the system for this work, can be expressed by the following

expression:

A(r,t) = A0π
[

eikr−iωt + e−ikr+iωt
]

(2.54)

With π as the light polarisation vector, k and ω as the photon momentum and frequency

respectively. The second term is responsible for stimulated emission, the Ąrst term is respon-
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sible for the absorption. At linear order the perturbation induced by the vectorpotential can

be expressed as follows:

Ĥint =
∑

i

e

me

Ap̂i −
∑

κp

Zκe

Mκ

AP̂κp (2.55)

The matrix elements of Ĥint give access to Ąrst-order perturbative corrections. The transi-

tions between eigenstates are given by FermiŠs Golden Rule:

Γf←i =
2π
ℏ

∣

∣

∣⟨Ψf ♣Ĥint♣Ψi⟩
∣

∣

∣

2
δ(Ef − Ei − ℏω) (2.56)

Here the index i denotes the initial state and Energy of the system and f denotes the

Ąnal state and Energy. ℏω is the photon energy and the transition matrix element can be

decomposed into an electric and a nuclear part, both parts contribute to the absorption of

infrared radiation:

⟨Ψf ♣Ĥint♣Ψi⟩ = ⟨Ψf ♣Ĥel
int♣Ψi⟩ + ⟨Ψf ♣Ĥph

int♣Ψi⟩ (2.57)

Using the Born Oppenheimer Approximation and focusing on the resonant absorption of

infrared radiation in polar semiconductors the photon energy is smaller than the optical gap

and no electronic transitions satisfy energy conservation. Thus the initial and Ąnal states

coincide. In the following the matrix elements of the phononic term are evaluated.

Using ∆τ̂κp, the derivation of the coordinate of the κ-th nucleus in the p-th cell from equi-

librium due to lattice vibration the following expression is found [40]:

⟨Ψf ♣Ĥph
int♣Ψi⟩ = −iω

∑

κp

ZκeA · ⟨χf ♣∆τ̂κp♣χi⟩ (2.58)

Evaluating the last braket in this term and taking into account that the optical limit can

be used due to the limitation to infrared radiation k is much smaller than the size of the

Brillouin Zone, the following expression is valid:

⟨Ψf ♣Ĥph
int♣Ψi⟩ = −ieA0N

1

2
p (ℏω)

1

2 (nν + 1)
1

2 e−iωtFph
ν · π (2.59)

The following deĄnition was used: Fph
ν =

∑

κ
Zκeκ

ν√
2Mκ

. The electronic term can be rewritten

using FermiŠs Golden Rule, and v̂ = − i
ℏ
[r̂, Ĥ]. Leading to the following expression:

⟨Ψf ♣Ĥel
int♣Ψi⟩ = i

∑

j

eωA · ⟨Ψf ♣r̂j♣Ψi⟩ (2.60)
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2 Theory 2.3 Time-Dependent Boltzmann Equation

Now ⟨Ψf ♣r̂j♣Ψi⟩ needs to be evaluated:

∑

j

⟨Ψf ♣r̂j♣Ψi⟩ =
∑

κp

⟨χf ♣∆τκp♣χi⟩ · Z∗,el
κ (2.61)

With the last term (Z∗,el
κ ) being the Born-Effective-Charge tensor, deĄned as:

Z
∗,el
κ,αβ =

ℏ

Np

occ.
∑

nk

2Im ⟨∂κpαunk♣T̂nkv̂k
♣unk⟩ (2.62)

This is identical in all cells, since unk is cell periodic. The Ąnal expression for the electronic

term can be given as:

⟨Ψf ♣Ĥel
int♣Ψi⟩ = iN

1

2
p eA0(ℏω)

1

2 (nω + 1)
1

2 e−iωtFel
ν · π (2.63)

With FermiŠs Golden Rule the following expression for the rate of phonon emission per unit

cell, the scattering rate, which is of interest in this work, can be deĄned as follows [43]:

Γν =
2π
ℏ

(eA0)2♣Fν · π♣2(nν + 1)ℏωνδ(ℏω − ℏων) (2.64)

With this quantity the scattering of phonons excited by infrared radiation into other phonon

modes can be traced. Thus the preferred thermalisation paths can be determined.

2.3 Time-Dependent Boltzmann Equation

The interactions of electrons and phonons is one of the fundamental interaction mechanisms

in solids [30]. A variety of properties of the solids are determined or affected by it, such

as the band effective mass, the fundamental gap or the charge transport. Phonon assisted

scattering processes further hold an important role in ultrafast dynamics of electrons and

phonons and determine the thermalization timescale [24].

The Time-Dependent Boltzmann Equation (TDBE) provides an approach to a description

of electron-phonon coupling and its influence on dynamics 33. The Boltzmann Transport

Equation (BTE) is the underlying theoretical approach of the Ąrst-principles work in carrier

and phonon dynamics. It describes the dynamics in phase-space and through electron and

phonon occupations. This is a semi-classical approach since both the crystal position and

momentum are speciĄed at the same time [7].

The dynamics described by the BTE are split into two parts. One is a slowly varying flow,

induced by external Ąelds called drift. This will not be of any particular interest in this

work. The other part includes collision dynamics of electrons and phonons. The BTE is

adequate to describe a timescale of multiple scattering events.

With the TDBE the phase-space constraints in the phonon-assisted scattering processes
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2 Theory 2.3 Time-Dependent Boltzmann Equation

and the anisotropies of the electron-phonon coupling are accounted for. The TDBE was

successfully applied to a variety of problems in two and three dimensions for semiconductors

and metals, as well as in the investigation of ultrafast magnetisation dynamics in photo-

excited ferromagnets [24, 44, 8]. One of the advantages over other, simpliĄed models is the

ability to investigate coupled non-equilibrium dynamics of electrons and phonon populations

while having full momentum resolution, which allows the investigation of the anisotropic

population of the electronic and vibrational states in reciprocal space.

The TDBE is a compromise between accuracy and efficiency, without neglecting either.

The properties used to describe the dynamics in the crystal are the electronic and phonon

distribution functions nqν(t) and fnk(t), without a change in the energies for either of the

systems. At equilibrium the distribution functions are equal to the Fermi-Dirac and the

Bose-Einstein distribution:

f 0
nk(t) =

[

e(εnk−εF )/kBT + 1
]−1

(2.65)

n0
qν(t) =

[

eℏωqν/kBT − 1
]−1

(2.66)

εF is the Fermi energy, εnk is the single particle energy of a Bloch electron and ℏωqν is

the phonon energy. In a non-equilibrium state either nqν(t), fnk(t), or both differ from the

equilibrium state and change over time:

∂tfnk(t) = Γnk(t) (2.67)

∂tnqν(t) = Γqν(t) (2.68)

Γnk and Γqν are the collision integrals for the electrons and the phonons respectively. These

account for the scattering mechanisms which may lead to changes of the distributions. These

mechanisms can be scattering among the electrons and the phonons among themselves as

well as with each other, impurity scattering is also possible, as is coupling to external Ąelds.

With the development in the electronic structure codes the calculation of these processes is

possible, enabling the investigation of coupled dynamics from Ąrst principles [7].

The derivation of the expressions for the electron-phonon and phonon-phonon collision in-

tegrals are built upon FermiŠs golden rule. It is used to calculate rates and timescales of

electron-phonon scattering processes. The scattering is described by matrices containing

elements of the perturbation potential and the phase space of available states [1]:

Γαi
=

2π
ℏ

∑

αf

∣

∣

∣Mαi,αf

∣

∣

∣

2
δ(Eαi

− Eαf
) (2.69)
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Here Γαi
is the scattering rate. Considering the initial state αi after a scattering process

the Ąnal state αf is found. The Hamiltonian in a system with electron-phonon and phonon-

phonon interactions can be written as:

Ĥ = Ĥe + Ĥp + Ĥep + Ĥpp (2.70)

Ĥe is the electronic Hamiltonian, Ĥp describes the Hamiltonian of the lattice in the harmonic

approximation. ♣χs⟩ = Πqν ♣n⟩s
qν are the eigenstates of Ĥp. Here ♣n⟩s

qν are the eigenstates

of the number operator with eigenvalue ns
qν , which in turn is the occupation number of the

bosonic mode. ν and q denote the quantum numbers and s denotes the number of the

eigenstate. The energy of the harmonic lattice can be expressed as follows [7, 29]:

Ĥpp =
1
3!

∑

qq′q′′

∑

νν′ν′′

Ψqq′q′′

νν′ν′′

[âqν + â
†
−qν ][âqν + â

†
−q′ν′ ][âq′′ν′′ + â

†
−q′′ν′′ ] (2.71)

In this equation Ψ denotes the phonon-phonon scattering matrix related to the three phonon

scattering process probability amplitude. To derive the collision integrals the weak nature

of the electron-phonon and the phonon-phonon interactions in solids are considered. Thus

the corresponding terms in the Hamiltonian can be treated as perturbations. Via FermiŠs

golden rule the transition rate from initial state ♣i⟩ to Ąnal state ♣f⟩ can be obtained:

Γi→f =
2π
ℏ

♣ ⟨f ♣V̂ ♣i⟩ ♣2δ(Etot
f − Etot

i ) (2.72)

Here V̂ is an arbitrary perturbation. The initial and Ąnal state are formulated in a Born-

Oppenheimer Ansatz:

♣i⟩ = ♣Ψi⟩ ♣χi⟩ (2.73)

♣Ψi⟩ and ♣χi⟩ are the eigenstates of the harmonic Hamiltonian and the electronic Hamil-

tonian respectively. The following is an expression of the matrix elements of the electron-

phonon coupling Hamiltonian [7]:

⟨f ♣Ĥep♣i⟩ = N
− 1

2
p

∑

nmν

∑

kq

gν
nm(k,q) ⟨Ψf ♣ĉ†mk+qĉnq♣Ψi⟩ ⟨χi♣âqν + â†aqν ♣χi⟩ (2.74)

The matrix elements of the fermionic operator yield a value different from zero if ♣Ψi⟩ and

♣Psif⟩ differ only in the occupation of the nq and mq + k states. If that is the case the

following correlation applies:

⟨Ψf ♣ĉ†mk+qĉnk♣Ψi⟩ =
[

fnk(1 − fmk+q)
]

1

2 (2.75)

19



2 Theory 2.3 Time-Dependent Boltzmann Equation

A similar correlation can be found in the case of the bosonic operators and the vibrational

states. The total absorption rate of a phonon with the quantum numbers qν can be written

as follows:

Γabs
qν =

4π
ℏNp

∑

mnk

♣gν
mn(k,q)♣2 fnk(1 − fmk+q) δ(εnk + ℏωqν − εmk+q)nqν (2.76)

The expression in the δ function denotes the total energy difference between the initial and

Ąnal state. Using the same procedure and considering phonon emission processes yields [39]:

Γem
qν =

4π
ℏNp

∑

mnk

♣gν
mn(k,q)♣2 fnk(1 − fmk+q) δ(εnk − ℏωqν − εmk+q)(nqν + 1) (2.77)

The total rate of change in phonon occupation due to electron-phonon processes can be

deĄned as the difference between the aforementioned processes:

Γpe
qν =

4π
ℏNp

∑

mnk

♣gν
mn(k,q)♣2 fnk(1 − fmk+q)

× [δ(εnk − ℏωqν − εmk+q)(nqν + 1) − δ(εnk + ℏωqν − εmk+q)nqν (2.78)

The time dependence in the expression above arises from the changes in both the electron

and the phonon distribution functions. In the case of thermal equilibrium the occupation

relations are equal to the Fermi-Dirac and the Bose-Einstein distribution functions for the

electrons and the phonons respectively [1].

With similar steps the electronic collision integral due to the electron-phonon interaction

can be found in the following form:

Γep
nk(t) =

4π
ℏNp

∑

mνk

♣gν
mn(k,q)♣2 (2.79)

×
[

(1 − fnk)fmk+qδ(εnk − εmk+q + ℏωqν)(1 + nqν)

+(1 − fnk)fmk+qδ(εnk − εmk+q − ℏωqν)nqν

−fnk(1 − fmk+q)δ(εnk − εmk+q − ℏωqν)(1 + nqν)

−fnk (1 − fmk+q)δ(εnk − εmk+q + ℏωqν)nqν

]

The Ąrst two parts of this equation denote the scattering of an electron from mk+q to nk via

the emission or absorption of a phonon while the latter two parts represent the scattering

from nh to mk + q due to phonon emission or absorption. If a thermal equilibrium is

established in the system Γ ep
nk = 0. Deriving the scattering rate due to phonon-phonon
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processes involves the evaluation of matrix elements of bosonic operators resulting in the

following expression:

Γpp
qν(t) =

2π
ℏ

∑

ν′ν′′

∫

dq′

ΩBZ

∣

∣

∣Ψνν′ν′′

qq′q′′

∣

∣

∣

2
(2.80)

× [[ (nqν + 1)(nq′ν′ + 1)nq′′ν′′ − nqνnq′ν′(nq′′ν′′ + 1)]δ(ωqν + ωq′ν′ − ωq′′ν′′)δG
qq′−q′′

+
1
2

[ (nqν + 1)nq′ν′nq′′ν′′ − nqν(nq′ν′ + 1)(nq′′ν′′ + 1)]δ(ωqν − ωq′ν′ − ωq′′ν′′)δG
q−q′−q′′ ]

Here the Kronecker Delta equals unity if q = 0 or q = G. G denotes a reciprocal lattice-

vector. If neither is the case the delta function equals 0. With these expressions the Boltz-

mann equation can be rewritten using the collision integrals:

∂tfnk(t) = Γep
nk[fnk(t), nqν(t)] (2.81)

∂tnqν(t) = Γpe
qν [fnk(t), nqν(t)] + Γpp

qν [nqν(t)] (2.82)

Finding a solution to the last two equations requires a deĄnition of an initial excited state

characterised by the occupation function differing from equilibrium, either the electronic, or

the phononic occupations. In the next step a solution to the differential equation needs to

be found. This is an iterative process, the collision integrals are updated at each time step.

Phonon emission processes are constrained by energy and momentum conservation laws

which reduce the phase-space available for the phonon assisted electronic transitions. In the

case of graphene carriers in the vicinity of the Fermi level at K can scatter within the same

Dirac cone with q ≈ Γ, or to the second Dirac cone at −K, emitting phonons with crystal

momentum around K, or −K. This results in the emergence of hot spots in the BZ. These

regions are deĄned by higher vibrational temperatures.

Without driving external Ąelds solving the coupled Boltzmann Transport Equations involves

a large number of differential equations, making the calculation computationally expensive.

The number of differential equations equates to Nb × Nk × Nν × Nq. Nb is the number of

bands, Nk is the number of k-points, Nν is the number of phonon branches and Nq is the

number of q-points [5].
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3 Methods

The codes and structures, as well as the parameters used in this work are of special interest.

Starting with the codes that are used to calculate the structure, Quantum Espresso is used

for the setup of the structure, with ShengBTE calculating the thermalisation of a lattice

excited by infrared light. This excitation is exempliĄed by a depiction of the population

increase due to infrared absorption. The lattice, or more precisely the crystal examined in

this work and the relaxation and thermalisation of the grid will also be discussed here.

3.1 Transition Metal Dichalcogenide Monolayers

Transition Metal Dichalcogenide Monolayers (TMDs) are a group of atomically thin semi-

conductors. They are of the type MX2, where M is a transition metal such as Molybdenum

(Mo), or Tungsten (W) and X is a chalcogen atom such as Selenium (Se) or Sulphur (S).

44 TMD compounds can form stable two-dimensional structures exhibiting polymorphism,

a unique feature of TMDs in bulk conĄguration [45]. The layered structure consists of two

chalcogen layers enveloping a layer of the transition metal. Although the TMDs are techni-

cally not two-dimensional, they belong to the group of so-called 2D materials due to their

thinness. A monolayer MoS2 has a thickness of 6.5Å for example. This group of semicon-

ductors exhibits superconductivity [46] and are the subject of a lot of research surrounding

for example renewable energies [11].

The materials can be found in the pseudo two dimensional conĄguration, as well as in a

bulk. The bulk consists of a number of layers of the monolayer. These are bound to each

other with by van-der-Waals interaction. In comparison with graphene, a material that has

opened the door for new experiments with monolayers showing different properties than the

bulk crystal, a number of differences can be spotted. One of which is a tunable direct band

gap, which means that the TMDs can be used in electronics as transistors [10]. The absence

of an inversion centre in the case of a monolayer (or an uneven number of layers) means

that the crystal is subject to valleytronics [47], a rather new Ąeld of physics. The hexagonal

lattice has threefold symmetry and due to its layered structure it forms nanotubes, which

are subject to research and a promising topic in the context of energy storage. It is currently

used in catalysts, lasers, lubricants or photodetectors as well as batteries [13, 14].

For the bulk material 18 phonon modes are available, which is cut down to 9 in a monolayer.

Although present, the frequency splitting between the monolayer and the bulk material is

rather small, due to the layer interaction via van der Walls forces [48].

In this work Tungsten DisulĄde (WS2) will be investigated, more speciĄcally a monolayer.

Like other TMDs, WS2 has a hexagonal, honeycomb structure. It can occur naturally as

the mineral tungstenite, although it is rather rare. In experiments WS2 is synthesised via

chemical vapour deposition, physical vapour deposition or other methods [49]. In the con-
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Ąguration of an atomically thin sheet photo-luminescence can be observed [45]. In Fig. 3

the unit cell that is used in this work can be found. The crystallisation is realised in the

hexagonal P63/mmc space group. The two WS2 sheets are oriented in the (0,0,1) direction.

The W4+ atom is bonded to two S2− atoms forming distorted edge-sharing WS6 pentagonal

pyramids.

In the case of a monolayer WS2 indirect-to-direct bandgap transitions will occur due to the

stability of the valence band state of Γ. The direct band gap at the K-point however does

not change with the thickness of the crystal, due to the valence and conduction band states

at K not being affected by interlayer interactions.

Figure 3: Side- and top-view of the structure of WS2 in the two-dimensional form. Data
retrieved from the Materials Project for WS2 (mp-224) from database version v2021.11.10.
The Sulphur atoms depicted in yellow, Tungsten atoms depicted in blue.

A wide variety of applications for WS2 can be found [45]. Layered WS2 for example can be

used as photocatalyst in the production of clean energy, especially in photovoltaic systems.

The electrocatalyst properties on the other hand facilitate hydrogen evolution reactions. Ad-

ditionally in recent research a use in Ąbre, and solid-state laser saturable absorbers is found,

as the tunabale bandgap is useful. These properties of WS2 make it a useful option to replace

graphene, as the graphene nanotubes show less beneĄcial saturation absorption character-

istics. Other uses include lithium-ion batteries, photodetectors, lubricants for mechanical

manufacturing, gas sensors and Ąeld-effect transistors.

3.2 Quantum Espresso

Quantum Espresso (QE) is an open-source suite of computer codes for electronic-structure

calculations and materials modelling. Its basis is the Density Functional Theory (DFT),

plane waves, and pseudopotentials. The codes included are capable of performing a variety

of tasks. The WANNIER90 package for example is used in the calculation of maximally

localised Wannier functions. QE also plays a key role in the setup of the calculations done in

this work as some of the outputs of the QE calculations are inputs to the ShengBTE code.
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SpeciĄcally the setup of the grid is done here.

In order to achieve optimal inputs a couple of steps in the QE calculation are needed. First

the crystal needs to be deĄned via the materialsproject, a website from which the input data

for QE can be obtained. This will be used to perform the calculations with QE.

In the Ąrst step the crystal structure and the unit cell will be relaxed. The goal of this

calculation is to bring the forces acting inside the crystal to a minimum, ideally to zero.

In QE simulations that involve phonons it is common that imaginary phonon frequencies

arise in the calculations, this is nonphysical and thus needs to be avoided. The next step

is to perform a self consistent Ąeld calculation with the relaxed atomic positions. The scf

calculation solves the Kohn-Sham equation of the crystal self-consistently. As the third step

a calculation of the phonons in the crystal is done for a single q-point, which in this case is

the Γ-point, where the phonon momentum q = 0. The calculations of the interatomic force

constants are passed on to calculate input Ąles for ShengBTE, which will be addressed later.

3.3 The scattering rate for IR Absorption

The calculation of the scattering rate for infrared absorption is done through post-processing

of the output data of the QE calculations. First the atomic masses and the Born Effective

Charges (BEC) are taken from the output. The BEC (Z∗κ) are the charges that occur due

to the interaction of the tungsten and sulphur atoms in the material, when the atoms move

relative to each other. This is vital in the consideration of infrared absorption, as only the

infrared active modes contribute to the absorption process. These modes are the only ones

with a non-vanishing dipole. The BEC are deĄned as follows:

Z∗κ =
∂P

∂∆τκp

(3.1)

Here P is the electric dipole momentum and ∆κp is the displacement of the charges. The

Ąrst step in the calculation of the impact of the infrared absorption is the calculation of Fν ,

an intermediate quantity, deĄned as: Fν =
∑

κ
eκ·Z∗

κ√
wMκ

. This quantity is only non-zero if the

respective phonon mode, denoted by the ν in the index, is infrared active, as it includes the

BEC. The vector eκ stores the phonon eigenvectors. This allows for an evaluation of the

scattering rate. The collision integral from FermiŠs Golden Rule is given by:

Γν =
2π
ℏ

(eA0)2♣Fν · π♣2(nν + 1)δ


1 − ων

ω



(3.2)

Here π is the light polarisation vector, (eA0)2 is the Ąeld intensity of the electromagnetic

radiation, nν describes the phonon population in the mode ν and ων describes the corre-

sponding phonon frequency. With this property the rate of the increase of phonon population

in a solid due to infrared light is described. This is implemented without the Ąeld intensity
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Figure 4: Effect of the IR pump on the phonon population with a pump duration of 1ps.
The reflected Ąeld intensity is at 60% with the transmitted Ąeld intensity at 20% and fluence
of 55[mJ/cm2]. The time-integrated absorbed fluence is 11 [mJ/cm2]. In black the pump has
the form of a Heaviside function, in the blue graph a realistic pump in form of a gaussian
function is calculated.

and without the delta-function δ(1 − ων

ω
). The Ąeld intensity is included by other means and

can be changed if needed.

After this consideration an evaluation of the effect of the pump process after a certain time

on the phonon population in the material is needed. First the grid for the time propagation

has to be set. This is done by setting a starting time, which in this case is −100fs, an

ending time, 1200fs in this case, as well as a length for the steps in time (0.01fs). The overall

duration of the pulse in the example below is set to 1300fs with a pulse duration of 1000fs.

Subsequently the time propagation is performed. With every step in time the phonon pop-

ulation is updated. A reflectivity of 0.6 and a transmission of 0.2 is assumed. In Fig. 4 the

effect of the IR pump on the phonon population in WS2 can be seen. An increase of the

phonon population of the phonon mode that is active in this case is observed in the time the

IR pump is active. After the electromagnetic radiation is cut off no further increase is seen.

In this Ągure after the end of the pump process the population is constant. In a real system

this would not be the case, as the population of the excited phonon mode would decrease

and scatter into other modes. The horizontal line after the pump process is used to clarify,

that the population does not increase without a the infrared radiation.

In general the transverse optical phonon modes couple strongly to infrared radiation, as the

radiation waves are transverse as well. The LO phonon modes however also play an impor-

tant role in the infrared properties of crystals [41]. The energy of the grid is calculated. The

energy gained by the lattice is 0.002[eV] and the total energy of the pulse is 189.7[eV].
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3.4 ShengBTE

ShengBTE is the code used for the time evolution of the system. As the name suggests it

evaluates the Boltzmann Transport Equation for Phonons, from an equilibrium state. The

code relies on the output Ąles of Quantum Espresso, namely the second and third order force

constants. The third order force constant (3FC) is obtained via the thirdorder_espresso.py

code, a script available with the ShengBTE code.

In the CONTROL Ąle the system to be studied is described by a set of flags and crystal

parameters. This Ąle is Ąlled by the user. New parameters can be introduced, as ShengBTE

allows the user to alter the code, as well as the calculation itself. This has been done in this

case, to suit the requirements of the planned simulation.

In this work the code is altered in order to enable the calculation to run as wished. Most

importantly a possibility is introduced to excite one phonon mode at a speciĄc point in the

Brillouin Zone, like the Γ-point. The temperature as well as the grid density of the current

calculation, the broadening parameter, the number of time steps and their length can be set

manually.

Another change in the code is needed to guarantee comparability between different grid

densities. In the original version of the code the different densities were not comparable,

due to the energy of the crystal varying with different grid densities, which is to be avoided.

The reason behind this is, that by setting a grid density the simulated cell is divided up

in as many parts. As an example, a 200 × 200 × 1 grid divides the cell into 40000 parts, a

40×40×1 grid yields 1600 parts. By increasing the temperature of the phonon mode at the

Γ-point only one of these parts is heated. The denser the grid, the smaller the area heated.

The energy of the lattice is thus different for every density. By setting a default value for

the grid density and rescaling the number of phonons excited this issue is solved. In the

ShengBTE calculation the following expression gives the number of excited phonons in the

excited mode:

ñqν = nqν · Ñq

Nq

(3.3)

The phonons excited in the calculation is given as ñqν , which is equal to the number of

phonons calculated without the rescaling multiplied with the fraction of the current number

of grid points per axis (Ñq) and the default value for the grid points per axis (Nq), which

in this case is set to 200. The energies were found to be in much better agreement with

each other, a small energy difference between the grid densities is still found at a scale of

0.00004%, which can be attributed to numerical noise.
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Figure 5: Lattice energies for different grid densities, before and after code modiĄcation.

In this work a number of properties is needed for the post-processing and analysis of the

data. One output is not given with the original code, as the scattering rates of the phonon

modes is calculated but not given out. This adjustment to the code is the last, and Ąles

containing the scattering rates at the last time step calculated are given out.

3.5 Broadening Parameter & Gaussian Smearing

The broadening parameter is a built-in variable of ShengBTE calculations. It has a default

value of 1.0 and is the scale parameter for the Gaussian smearing of the data. This is

required to approximate the delta function, by overlaying it with a Gaussian. The goal of

the Gaussian smearing is to Ąll the data with noise in order to estimate the space between

the calculated values without knowledge of the general shape of the values. The assumption

that allows this treatment is a slowly varying density function. In the case of ShengBTE

the calculations that use a small broadening ≤ 1.0 are signiĄcantly faster than calculations

with a higher broadening parameter [50].

Smearing in ShengBTE is used to regulate the Dirac delta function through substitution by

a Ąnite-width approximation like the Gaussian function. This relaxes the strict restriction

due to energy conservation. The wider the Gaussian function, the less strict the energy

conservation is obeyed. Gaussian smearing can be seen as overlaying the calculated data-
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points with a Gaussian distribution, thus creating a continuous data set. The distribution

in general is deĄned as:

g(x) =
1

σ
√
wπ

exp



−(x− µ)2

2σ2



(3.4)

The effect of the smearing can be tuned. The higher the smearing the more noise is brought

into the data. In the case of ShengBTE the smearing can be controlled, by adjusting the

parameter σ in Eq. 3.4. The smearing in ShengBTE is a special form of Gaussian smearing,

as adaptive smearing is used here. If σ is too small there would not be enough phonon

scattering channels. In the case of a value that is too large nonphysical scattering channels

would be included in the calculation. This means that σ needs to be automatically changed

to a desirable value for each part of reciprocal space around each q-point. The expression

for σ used in the ShengBTE code is the following:

σW ≈
√

√

√

√

∑

µ



∂W

∂q′µ
∆q′µ√

12

2

(3.5)

This is used to calculate σ in ShengBTE. For this it is multiplied by an input given variable

scalebroad. The lower this variable, the fewer three-phonon processes need to be considered.

In the equation above q′µ is the projection of the vector qŠ over the reciprocal-space vector

Qµ. W stands for the energy, that needs to be conserved in the calculations.

3.6 Convergence Tests

The challenge regarding the calculations is Ąnding a compromise between the computational

cost and the quality of the data calculated. Ideally a continuous grid would be introduced in

the calculation, connecting each point in the simulated cell to a corresponding point in the

simulation. This is virtually impossible to calculate however, so certain convergence tests

need to be conducted in order to Ąnd the ideal parameters. First the quality of the data

for different numbers of q-points used in the calculation is evaluated. The simulated cell is

divided up into smaller cells, in the case of a 100×100×1 grid the unit cell is cut into 10000

parts of equal size. The grid put onto the unit cell will be given as a single number, the grid

mentioned before would be given as q100-grid. The smallest grid-size used is q40, the q60,

q80 and q100 grids were also considered. In the later stages of the thesis a q200 grid is used

for the full calculation, the calculation time needed is acceptable, given that the results were

promising.

A Ąrst indicator for the quality of the calculation parameters is the temperature map of

the unit cell. During the relaxation of the lattice certain patterns should emerge on these

maps, highlighting the regions of higher or lower phonon scattering. In order to correctly
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observe and subsequently describe and explain these patterns they need to have as high a

resolution as possible. In Fig. 6 such a plot can be seen, in this case a q40-grid is used for

the calculation. There are certain parts in the plot where no value for a temperature can

be taken, thus this grid density is not sufficient to describe the processes considered in the

relaxation of the lattice, since the relevant patterns can not be evaluated with this resolution.

Figure 6: Temperature map for the q40 grid density, for the eighth phonon mode, after a
time of 500fs.

A parameter that needs optimisation as well is the scalebroad-parameter, which - as ex-

plained in a subsection above - is a scaling parameter for the Gaussian smearing in Sheng-

BTE. Optimising this parameter to balance the quality of the data and the calculation time

yields the ideal value for this parameter in these calculations.

The higher the broadening parameter the smoother the data-set will appear when plotted.

Nonetheless there is a limit to the value, as after a certain point the smearing will lead to

a wrong representation of the data, due to the inclusion of nonphysical scattering channels.

This scenario is to be avoided. Additionally the computational cost of a calculation with a

higher broadening value increases rapidly above the default value of 1 [50].

The convergence tests for the broadening parameter start at the value of 0.5. For each value

only one time-point will be calculated in order to enable a quick evaluation of the data.

After the ideal set of parameters for the grid density and the broadening factor is found, a

full calculation over 5ps can be started with a time-step of 0.001fs and a total of 5000 steps.

3.7 Phonon Relaxation & Grid Thermalisation

In order to be able to evaluate the phonon relaxation and grid thermalisation the output

Ąles of ShengBTE need to be post-processed. This is done via python scripts in jupyter. All

of the plots in the this work were made through post-processing, if no source is mentioned.

The Ąrst Ągure is the visualisation of the phonon dispersion. A successful Quantum Espresso
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calculation with converged phonon frequencies does not include any imaginary phonon fre-

quencies, which would be visible as a negative frequency at the Γ-point in the phonon

dispersion. If that is not the case the calculation has reached convergence and the phonon

frequencies are correct. The frequencies are plotted over a path in reciprocal space, in this

case the path is M-K-Γ-KŠ.

In order to evaluate the quality of the data the convergence tests are executed. In these

mainly two plots are needed. One is the plot of the scattering rate over a certain path,

which in this case is the Γ-K-M-KŠ-Γ path. As mentioned before, the smoother the graphs

are, the better the data. The other is the plot of the temperature over a map of the simu-

lated Brillouin zone. Here a distribution of the temperature that is as close to continuous

as possible is looked for, this is a sign that the grid is sufficiently dense.

In order to evaluate the the scattering paths as well as the lattice thermalisation the phonon

temperature superimposed to the phonon dispersion will be given. Here regions with a rising

phonon population are visible by a heating of the speciĄc point.
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4 Results

In this section all the results of the work are presented. Starting with the basic equilibrium

calculations of Quantum Espresso, to the simulation of the infrared Pump and the Sheng-

BTE calculations. The numerical tests that lead to the ideal parameters of the ShengBTE

calculations will also be presented, as well as the full scale calculation of phonon dynamics

over a time of 5ps.

4.1 QE Results & IR Pump

The goal of the QE calculations is to set up the WS2 structure for the subsequent calculations.

To achieve this a self-consistent calculation of the relaxed solid structure is performed. The

goal is achieved, if the calculation of the phonon dispersion showed no imaginary phonon

frequencies, which is a common issue in QE calculations. Negative frequencies in the output

imply imaginary phonon frequencies at the Γ-point, and this is not physical.
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Figure 7: Phonon Dispersion of WS2. At the Γ-point no negative phonon frequencies can be
seen, the grid is converged.

In this case no imaginary phonon frequencies were found. This grid is the basis for all

following calculations. First the effect of the IR pump needs to be investigated. As mentioned

above an excitation through electromagnetic radiation in the infrared frequency range is used

and the behaviour seen in Fig. 8 is expected.
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(a) (b)

Figure 8: Impact of the fluence on the phonon population. Panel (a) shows a fluence of
55[J/cm2], in panel (b) the fluence was set to 65[J/cm2].

The fluence has an impact on the increase in phonon population, as seen in the Ągure above.

With a higher fluence the phonon population increases faster. Comparing the sides in Fig.

8, it can be seen that a higher phonon population is reached, within the same time for a

higher fluence, for both the pump in a form of a Heaviside function in black and for the

pump in form of a Gaussian in blue.

With the grid set up and the highest IR-active phonon mode excited the thermalisation can

be calculated. Before this calculation can be started, a number of numerical tests needs to

be performed in order to Ąnd the ideal set of parameters.

4.2 Numerical Tests

In the evaluation of the data from the calculations with different grid densities the smaller

ones, from q40 up to q80 proved to have a very short calculation time of under seven hours

for 1000 time steps with a step-length of 0.01fs. The data however is not convincing, as the

grid is too loose, which can be seen by the plot of temperature of each grid section.

Figure 9: Plots of the temperature maps for different grid densities. In panel (a) the map
for the q40 grid is shown. In panel (b) the map of the q100 grid is plotted, which already
shows important features of the map, however in panel (c) for the q200 grid, these features
are even clearer.
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Smaller grid densities do not provide the best possibility to evaluate the thermalisation

patterns. The patterns of relaxation can not be seen in detail, as no continuous temperature

distribution is given. q100 is the Ąrst grid density with which the patterns can be evaluated.

The denser the grid, the clearer the data, but a q200 grid is detailed enough to spot the

relevant features, while also retaining a reasonable calculation time.

The calculations for the q100 and the q200 grids took approximately 12 hours, and 24 hours

respectively. This number varies with the broadening parameter however. The higher the

broadening is, the longer the calculations take. For a quick evaluation of the ideal grid

density the broadening parameter is chosen to be rather low and the same for all the grid

densities, at 0.5 broadening.

From the plots of the scattering rate in Fig. 9 it can be seen, that the denser grids provide

a better scan of the path taken, which in this case is the Γ-K-M-KŠ-Γ path. A negative

scattering rate suggests, that the phonon population decreases in the respective mode. In

the case of an inĄnitely dense grid the plot of the scattering rate would have smooth curves

without any harsh drops or spikes. This is due to the assumption, that the density function

varies slowly, ruling out any sudden and extreme change in the scattering rate.

Figure 10: Comparison of the scattering rate for different grid densities. The Ągure reveals
that the higher grid-densities move towards well deĄned graphs. In panel (a) the q40-grid is
used, panel (b) shows the q100-grid, and panel (c) shows the q200-grid.

In Fig. 10 sharp spikes can be seen for all grid densities, for a selected number of phonon

modes. Nonetheless the highest densities are acceptable, since the general shape of the scat-

tering rate can be recognised. Another source of the rapid changes in scattering rate is the

short time after the start of the thermalisation process calculated, which does not beneĄt

the smoothness of the data, as for example in the case of the Γ-point an extremely negative

scattering rate is expected, due to the excitation of the 9th phonon mode at q = 0.

The plots are not ideal, which will be improved upon with the adjusted broadening parame-

ter. This has been constant in the calculations up to now, at a value of 0.5. The broadening

is the second and Ąnal value that will be optimised. As mentioned before the broadening is

used for Gaussian smearing of the data in order to estimate the distribution of a continuous
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grid without knowledge about the general shape of it.

The higher the broadening parameter, the more noise Ąlls the gaps between the grid points.

The default value in ShengBTE is 1.0. In the following the values 0.5, 1.0, 1.5 and 2.0 as

well as 5.0 will be investigated. The goal is to represent the data as smooth as possible

without misrepresenting it. Like before only one timestep is calculated. This is done for two

reasons: the Ąrst is like before, the short time needed for this calculation. The second reason

is that the important changes can already be seen after one timestep, which is important, as

the higher broadening values increase the calculation time exponentially. The effect of the

higher broadening can be seen in the following Ągures.

Figure 11: Effect of the broadening parameter. The case of broadening set to 0.5 is repre-
sented in the data before. Panel (a) shows a broadening factor 1.0. In panel (b) the plot for
a broadening of 1.5 is shown. The simulation time increased by a factor of ∼ 1.5.

The higher broadening shows smaller disturbances from the smooth curves. The change is

signiĄcant with the broadening at 1.0. The best result however is seen for a broadening

parameter of 1.5. Investigating the blue graph around the M -Point of the Ągure it can be

seen, that the smoothness of the data could still be improved. Increasing the broadening

parameter even more however is not beneĄcial, as the following plots for broadening factors

of 2.0 and 5.0 show.

Figure 12: Impact of higher values for the broadening, seen by a shift in the scattering rates,
which can be attributed to the inclusion of nonphysical scattering channels in the calculation.
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An interesting effect can be seen in the Ągure above, especially in the transition from 2.0 to

5.0 the difference to the previous increase of the parameter is clearer. The same effect is also

visible in the transition between 1.5 and 2.0, although it is of rather small magnitude here.

In order to show the effect the calculation is done with 5.0 as well. What can be observed is

a shift in the scattering rates with higher values for the broadening. This shift is not equal

for all the phonon modes, as of the selected modes two experience a shift towards higher

values while the remaining one is shifted towards lower values. Due to this the broadening

values over 1.5 are not sensible options.

These Ąndings set the Ąnal set of parameters at a grid density of 200 × 200 × 1 k-points and

a broadening of 1.5. With these inputs a new calculation is carried out, over 5000 time-steps

with a length of 0.001fs each, resulting in a total simulated time of 5ps. This calculation

takes ∼ 11 days to complete. The results will be discussed below.

4.3 ShengBTE Results: Time Evolution

The time evolution of the excited system will be presented by the phonon temperature

superimposed to the phonon dispersion seen before. With this representation the decay paths

will be visible. The further into the red spectrum a colour is, the higher the temperature

and the deeper into the blue hue, the lower the temperature of the phonon. In these Ągures

a narrow range of temperature from 300.0K to 300.5K is chosen. The excited mode is set

to a temperature of 6000K, but if the maximum temperature represented here would be the

same, small variations which are be expected to occur especially early in the time evolution

would not be observable. Apart from the excited mode in the highest available phonon

branch at the Γ-point the phonon temperatures are set to 300K. The excited mode is set to

a much higher temperature, the factor of 20 was chosen arbitrarily.

Fig. 13 shows the grid at the starting point. The highest available phonon mode is excited,

as it is also the highest infrared active mode. This Ągure does not show the full grid, but

an enlarged view of the excited phonon mode at the Γ-point. The excitation is visible by

the dark red colour of the marker, which is placed to clarify the excitation. In general

two principles need to be obeyed, the energy and the momentum need to be conserved.

The path on which the data is calculated and visualised is the M-K-Γ-KŠ-MŠ path. Due to

momentum conservation the phonons may only decay into states that obey the following

equation: q0 = q1 ± q2, with q0 being the decaying phonon, q1 and q2 the newly created

phonons. With this it is clear that a symmetric phonon relaxation around the excited mode

will be seen. The symmetry in the case of this work is given due to the q = 0 point of

the lattice being excited. The phonons have a momentum equal to 0, which in turn means

that the two created phonons need to have the same momentum, with opposing signs. The

symmetric patterns are expected over the whole simulation time.

In addition to the momentum conservation the energy of the decayed phonon needs to be
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Figure 13: Phonon temperature superimposed to phonon dispersion, at the start of the
calculation. The Excited mode is pointed out.

conserved. In general due to an excitation process phonons of a speciĄc energy are excited,

E0. This energy needs to be conserved. If an optical phonon decays into two acoustic

phonons by anharmonic interactions, the two energies combined need to be equal to E0.

The Ąrst signs of scattering can be observed after around 250fs. Close to the Γ-point the

population of the highest phonon mode relaxes symmetrically inside the mode into states

with a q close to zero, obeying the momentum conservation. Additionally in the lowest

optical mode a population increase in the region between the Γ and the K, and K ′ high-

symmetry points can be observed. The phonon temperature is higher around the Γ-point

than in the rest of the mode. A proof of energy conservation can not be seen in this Ągure.

This is due to the limited choice of high symmetry points. In case of a consideration of

the full Brillouin Zone and thus all high-symmetry points the heating of the corresponding

phonon modes would be seen. In the case of the phonons close to the Γ-point of the lattice

this will be seen after a longer simulated time period. Although not visible yet, the energy

is conserved.

After 500fs a feature becomes more dominant. The LO1 and TO1 phonon branches are

populated between the high symmetry points K and Γ, symmetrically also between KŠ and

Γ. The heating of the mode in this speciĄc point of the grid can be attributed to energetically

preferred and available states, that the phonons scatter to. As a phonon of the population
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Figure 14: Phonon temperature superimposed to phonon dispersion. In (a), 250fs have
passed, panel (b) depicts the lattice after 0.5ps.

excited before the start of the ShengBTE calculation decays the two resulting phonons split

up the energy asymmetrically. One of the phonons has a higher energy and thus a higher

frequency, appearing into an optical branch of the lattice. The other will be scattered into

an acoustic branch.

This can be seen by the beginning heating of the ZA1 mode, which is more easily visible in the

Ągure that shows the lattice and temperature after 1fs. Close to the Γ-point a rising phonon

population in the ZA1 mode can be observed. Considering the Scattering process from the

Ąrst step, this behaviour can be explained through energy conservation. The phonons from

the originally excited mode decay, one phonon stays inside the same branch, with a different

momentum. The other phonon therefore needs to be of a small energy. Thus a higher

population around the Γ-point for the acoustic branches is expected. This is exactly what

can be observed. An important factor that needs consideration are the opposing signs of the

momenta. If for example a phonon decays and one of the resulting phonons scatters to the

K-point of the lattice, the associated second phonon needs to scatter to the KŠ-point of the

lattice.

The heating of the lowest acoustic phonon mode means the emergence of flexural phonons

(FP) [51]. In graphene for example these phonons dominate the thermal conductivity. FP

can be seen in the heating of the ZA acoustic mode. The presence of flexural phonons implies

the vibration of the solid in the out of plane direction. Their influence on the properties of

the crystal are subject to research [52, 53].

The flexural phonons are more easily visible in the next steps. The Ągure below shows a
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new region of heating. The LO2 phonon branch heats at the intersection with the originally

excited branch. This feature is more clearly visible after 2ps. Additionally a heating of the

ZO2 phonon branch can be observed around the intersection with the ZO1 phonon branch.

In the following time the aforementioned active regions still experience phonon scattering.

The population of the branches increases and spreads symmetrically around the Γ-point.

Figure 15: Phonon temperature superimposed to phonon dispersion. In (a), 1ps has passed,
panel (b) depicts the lattice after 2ps.

Another process that begins to take shape is the heating of the phonons at the K and KŠ

high-symmetry points of the lattice. This behaviour shows the momentum conservation.

The energy conservation can not be veriĄed, as the phonons may scatter to other points in

the lattice, not depicted in these Ągures.

In the next steps a continuation of the already mentioned processes can be observed. A new

feature is seen in the heating of the LA phonon mode between the Γ and the K point, or

the KŠ point respectively, as seen in Fig. 16. Additionally the regions around the M and MŠ

point are populated, for the highest optical and acoustic phonon branch at the M and MŠ

points.

The 5000fs mark is the endpoint of the calculation. After 5ps the heating processes described

above are still not complete. The Γ-point of the highest phonon mode is still highly popu-

lated, especially compared to the majority of the lattice. All phonon branches experience a

rising phonon population at this point.

Fig. 16 depicts the Ąnal state of the phononic system. It is clear that the system is not

completely thermalised. This would be the case if all phonon modes were equally populated,

and thus thermal equilibrium would be found. In order to achieve this a calculation over a
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longer time period is needed. The Ąrst branch populated is the ZA1 branch, which is the

preferred mode of scattering from the originally excited mode at Γ-point.

Figure 16: The lattice after 5ps, at the end of the calculation. Thermalisation is not achieved.

The preferred decay paths of the modes - especially at the start of the process - were clearly

visible. A longer simulated time would be needed to achieve a fully thermalised lattice. The

momentum conservation was veriĄed over the whole calculation and the energy conservation

is seen in an example. In order to verify the energy conservation completely a view over the

whole Brillouin Zone would be needed.

Figure 17: Average momentum resolved phonon temperature. In panel (a) the distribution
after 1.25fs is shown, with high-symmetry points in green. (b) shows the lattice after 2.5fs,
in (c) 3.75fs have passed. Panel (d) shows the Ąnal state, after 5ps.
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Additionally to the previous Ągures a momentum-resolved temperature distribution over all

phonon modes can be given. In the Ągure below the average phonon temperature of the

lattice for different points in time is given.

In panel (a) in Fig. 17 the high-symmetry points Γ and M are given. Γ is shown twice, at the

corners of the Ągure, M is the middle point. These visualisations are a possibility to access

the tightly bonded high-symmetry points of the phonon scattering. If needed, this depiction

can be altered to show all phonon modes individually. Additionally every step in the time-

propagation can be visualised, leading to the possibility of representing the thermalisation of

a given phonon mode in a variable time grid. This facilitates a variable data representation,

with a modiĄable density in time steps.
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5 Conclusion & Outlook

In this thesis Ąrst principles calculations of THz driven polar semiconductors were carried

out. In order to achieve this a variety of preliminary tests and calculations were carried

out to achieve results that bear sufficient accuracy while also emphasising the efficiency of

the calculation. In order to Ąnd the balance the codes were altered in speciĄc important

points and a number of convergence tests were performed, to Ąnd the ideal parameters for

the calculation.

First the structure of Tungsten-Di-sulphide was calculated using Quantum Espresso. The

structure was relaxed and the phonon dispersion was calculated. A common issue with Quan-

tum Espresso calculations was avoided, as the phonon frequencies of the acoustic branches

at the Γ-point did not take on negative values, indicating imaginary frequencies.

As a second step the ShengBTE calculations were altered to suit the needs for this calcu-

lation. Originally the code is used to calculate equilibrium states. Here a non-equilibrium

state was needed. Additionally a correction of the number of excited phonons was intro-

duced, to compare the quality of different setups. The calculations in this work were a result

of the process of adjusting the simulation codes to facilitate the calculations as wished. After

completing this process the evaluation of the time propagation of the phonon temperatures

superimposed to the previously calculated phonon dispersion was possible.

In the evaluation of the data the dominant paths of thermalisation of WS2 were found and

the relaxation of the lattice was observed, with the principles of energy and momentum

conservation in mind. The latter of which was clearly observable. Concerning the energy

conservation further simulation is needed, especially the inclusion of more high symmetry

points would lead to a better possibility for conĄrmation.

A procedure was deĄned with which the set up for calculations like the ones in this work

can be carried out. For this the simulation code was altered to Ąt the requirements. One

procedure of major importance is the evaluation of the ideal simulation parameters. The

process is transferable for other crystalline solids.

The thermalisation of a previously excited lattice was calculated and analysed with a vari-

ety of visualisation possibilities providing insight into the processes at hand. Temperature

distributions over the phonon dispersion paint a detailed picture of the thermalisation of the

lattice. The momentum resolved temperature maps show the distribution of the temperature

and with it the lattice energy in q-space, enabling the investigation of preferred scattering

paths.

This is one of the possible directions for future research on this topic. A wide variety of sys-

tems can be calculated using the same procedure and with a longer timescale of simulation

a full thermalisation from a non-equilibrium state can be carried out.
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