Unemployment and Labor Productivity Comovement: the Role of Firm Exit

Miroslav Gabrovski Mario Rafael Silva

¹University of Hawaii Manoa

²Hong Kong Baptist University

Introduction

Labor productivity and unemployment

Figure: Unemployment and labor productivity. Each series series ranges from 1951M1-2003M12 and is aggregated to quarterly, logged, and HP-filtered with smoothing parameter $\lambda = 10^5$.

- Mild correlation between unemployment and labor productivity pprox -0.4
- Under smoothing parameter $\lambda = 1600$, correlation is -0.21; under Hamilton filter, it is -0.26

Miroslav Gabrovski, Mario Rafael Silva

Puzzle

- Labor productivity is closely tied to incentive for job creation in canonical Diamond-Mortensen-Pissarides (DMP) model
- Reasonable to expect search-theoretic labor market models to fit comovement of these series
- Yet DMP model implies a nearly perfect correlation between the two series

Contribution

- Develop model with endogenous mechanism that breaks the near-perfect correlation
- Sunk entry costs cause vacancies to be a positively valued, predetermined variable
- Under low destruction rate, then most current vacancies were created in the past

Contribution

- Develop model with endogenous mechanism that breaks the near-perfect correlation
- Sunk entry costs cause vacancies to be a positively valued, predetermined variable
- Under low destruction rate, then most current vacancies were created in the past ⇒ depend relatively more on past productivity than current productivity

Key finding

Provided destruction shock is calibrated to match either

- Image: micro-level evidence on product destruction/firm exits
- 2 values used in growth literature

then model can mostly reproduce the mild correlation between productivity and unemployment while still maintaining the high cross-correlation between labor market variables

Model

Entry

- Fixed measure F > 0 of firms that can create vacancies
- Each period firms can access business opportunity at cost x (R&D, bringing product to production phase)
- *x* ~ *H* (cdf)
- Let Q_t denote value of posting vacancy at time t
- Firms undertake business opportunity if and only if $x \leq Q_t$
- New vacancy creation

$$e_t = FH(Q_t)$$

Matching

- M(u, v) matches given u unemployed, v vacancies
- $M(\cdot)$ is CRS, increasing and concave in each argument
- Tightness $\theta_t = v_t/u_t$ determines matching rates
 - Job finding rate $f(heta_t)\equiv M(u_t,v_t)/u_t=M(1, heta_t)$
 - Vacancy filling rate $q(\theta_t) \equiv M(u_t, v_t)/v_t = M(\theta_t^{-1}, 1)$
- Separation rate s: worker exits but product line continues
- destruction rate δ : product line and match are destroyed

odel Mode

Timing

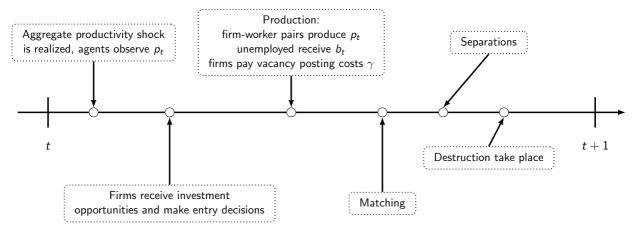


Figure: Labor Market Timing

Value functions

• Vacancy Q_t and filled job J_t

$$Q_t = -\gamma + \beta(1-\delta)\mathbb{E}_t[q(\theta_t)J_{t+1} + (1-q(\theta_t))Q_{t+1}]$$

$$J_t = p_t - w_t + \beta(1-\delta)[(1-s)\mathbb{E}_tJ_{t+1} + s\mathbb{E}_tQ_{t+1}]$$

Value functions

• Vacancy Q_t and filled job J_t

$$\begin{aligned} Q_t &= -\gamma + \beta (1-\delta) \mathbb{E}_t [q(\theta_t) J_{t+1} + (1-q(\theta_t)) Q_{t+1}] \\ J_t &= \rho_t - w_t + \beta (1-\delta) [(1-s) \mathbb{E}_t J_{t+1} + s \mathbb{E}_t Q_{t+1}] \end{aligned}$$

• Unemployed worker U_t and employed worker W_t

$$U_t = b + \beta [(1 - \delta)f(\theta_t)\mathbb{E}_t W_{t+1} + [1 - (1 - \delta)f(\theta_t)]\mathbb{E}_t U_{t+1}]$$
$$W_t = w_t + \beta [(1 - \tau)\mathbb{E}_t W_{t+1} + \tau \mathbb{E}_t U_{t+1}]$$

where $au = 1 - (1 - \delta)(1 - s) pprox \delta + s$ is the aggregate separation rate

Law of motion for vacancies and entry

Vacancies

$$v_t = \overbrace{(1-\delta)[(1-q(\theta_{t-1}))v_{t-1}+s(1-u_{t-1})]}^{\text{Predetermined}} + e_t$$

Law of motion for vacancies and entry

Vacancies

$$v_t = \overbrace{(1-\delta)[(1-q(\theta_{t-1}))v_{t-1}+s(1-u_{t-1})]}^{\text{Predetermined}} + e_t$$

- Vacancies are the sum of three flows
 - (1 δ)(1 $q(\theta_{t-1})$) v_{t-1} : unmatched vacancies surviving destruction shock
 - 2 $(1 \delta)s(1 u_{t-1})$: filled jobs that experienced a separation shock but survived destruction
 - \bigcirc e_t : new entrants

Law of motion for vacancies and entry

Vacancies

$$v_t = \overbrace{(1-\delta)[(1-q(\theta_{t-1}))v_{t-1}+s(1-u_{t-1})]}^{\text{Predetermined}} + e_t$$

- Vacancies are the sum of three flows
 - (1 δ)(1 q(θ_{t-1}))v_{t-1}: unmatched vacancies surviving destruction shock
 (1 δ)s(1 u_{t-1}): filled jobs that experienced a separation shock but survived destruction
 e_t: new entrants
- Set $H(Q) = Q^{\xi}$, similar to Beaudry, Green, and Sand (2018) and Potter (2022)
- New entrants determined by free entry

$$e_t = FH(Q_t) \Rightarrow$$

 $Q_t = (e_t/F)^{1/\xi}$

Law of motion for unemployment and productivity shock

Unemployment

$$u_t = [1 - (1 - \delta)f(\theta_{t-1})]u_{t-1} + \tau(1 - u_{t-1})$$

Technology

$$\log p_t = \rho \log(p_{t-1}) + \varepsilon_t$$
$$\varepsilon_t \sim N(0, \sigma)$$

del Mode

Job creation condition

New congestion effect

$$\widetilde{\frac{\gamma + K_t}{q(\theta_t)}} = \beta(1 - \delta) \mathbb{E}_t \left[p_{t+1} - w_{t+1} - \frac{K_{t+1}}{K_{t+1}} + (1 - s) \frac{\gamma + K_{t+1}}{q(\theta_{t+1})} \right]$$

where

$$\mathcal{K}_t \equiv \mathbb{E}_t [e_t^{1/\xi} - eta(1-\delta)e_{t+1}^{1/\xi}]/\mathcal{F}^{1/\xi}$$

is the expected flow entry cost

- \Rightarrow difference between entry cost firms face today and discounted expected entry cost tomorrow
 - Now incorporates congestion effect: incentive to delay entry if many others enter
 - Smoothing mechanism helps yield a hump-shaped response of vacancies as by Fujita and Ramey (2007)

Alternative parameterization of product development cost

Wage setting

• Nash bargaining yields standard surplus sharing under linearity

$$\alpha(J_t - Q_t) = (1 - \alpha)(W_t - U_t)$$

where α is the worker's bargaining power

Wage setting

• Nash bargaining yields standard surplus sharing under linearity

$$\alpha(J_t - Q_t) = (1 - \alpha)(W_t - U_t)$$

where α is the worker's bargaining power

Implies

$$w_t = \alpha [p_t - K_t + \frac{\theta_t}{1 - \delta} (\gamma + K_t)] + (1 - \alpha)b$$

Wage setting

• Nash bargaining yields standard surplus sharing under linearity

$$\alpha(J_t - Q_t) = (1 - \alpha)(W_t - U_t)$$

where α is the worker's bargaining power

Implies

$$w_t = \alpha [p_t - K_t + \frac{\theta_t}{1 - \delta} (\gamma + K_t)] + (1 - \alpha)b$$

Two effects of flow entry cost K_t :

- **1** (-) lower surplus: $p_t K_t$
- **2** (+) Higher value of current vacancy

Equilibrium

- An equilibrium is an infinite, bounded sequence of productivity, wages, entrants, vacancies, and unemployment $\{p_t, w_t, e_t, v_t, u_t\}_{t=0}^{\infty}$ consistent with
 - Job creation curve: e_t
 - Wage setting rule: w_t
 - Unemployment law of motion: u_t
 - Vacancy law of motion: v_t
 - AR(1) process for productivity: p_t

Equilibrium

- An equilibrium is an infinite, bounded sequence of productivity, wages, entrants, vacancies, and unemployment $\{p_t, w_t, e_t, v_t, u_t\}_{t=0}^{\infty}$ consistent with
 - Job creation curve: e_t
 - Wage setting rule: w_t
 - Unemployment law of motion: u_t
 - Vacancy law of motion: v_t
 - AR(1) process for productivity: p_t
- Q_t follows from free entry and $heta_t = v_t/u_t$

del Model

Steady state

Let $ho = (1 - \beta)/\beta$ denote discount rate

$$u = \frac{\tau}{\tau + (1 - \delta)f(\theta)}$$
$$v = \frac{(1 - \delta)s(1 - u) + e}{1 - (1 - \delta)(1 - q(\theta))}$$
$$p - w - K = \frac{\gamma + K}{q(\theta)}\frac{\rho + \tau}{1 - \delta}$$
$$Q = \left(\frac{e}{F}\right)^{1/\xi} = K\frac{1 + \rho}{\rho + \delta}$$

Quantitative analysis

Calibration

Table:	Calibration

Preferences/Technology	Parameter	Value	Calibration Strategy
Vacancy posting cost	γ	0	Coles and Moghaddasi Kelishomi (2018)
Bargaining power	α	0.6	Coles and Moghaddasi Kelishomi (2018)
Unemployment benefits	Ь	0.7	Coles and Moghaddasi Kelishomi (2018)
Matching function elasticity	u	1.575	Job-finding rate
Discount factor	eta	0.997	4% annual discount rate
Separation rate	S	0.0258	3.4% monthly match dissolution probability
Destruction rate	δ	0.0051	6% annual destruction rate
Population of firms	F	0.000235	Job-filling rate
Cost distribution parameter	ξ	1	Coles and Moghaddasi Kelishomi (2018)

 \Rightarrow Implies steady-state u = 0.07

Empirical evidence on product/firm destruction rate

- Broda and Weinstein (2010): 3% product destruction rate
- Comin and Gertler (2006): 3% obsolescence using balance growth restrictions
- \bullet Estimates from Bernard, Redding, and Schott (2010): 5-6%
- Broda and Weinstein (2010) estimate firm exit to be 10% annually
- \Rightarrow We calibrate benchmark to be consistent with 6% annual rate and use 10% as robustness check

Quantitative analysis

Impulse responses: baseline

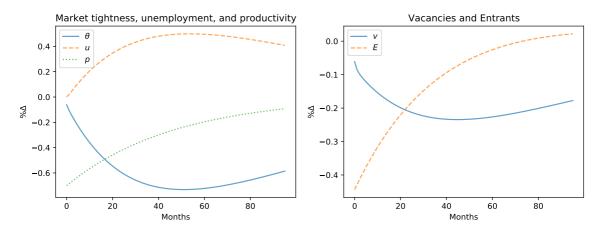


Figure: Impulse response functions in the benchmark calibration with $\delta = 0.0051$. Percentage deviations in response to a unit negative standard deviation technology shock.

Miroslav Gabrovski, Mario Rafael Silva

Impulse responses: all job losses from firm destruction

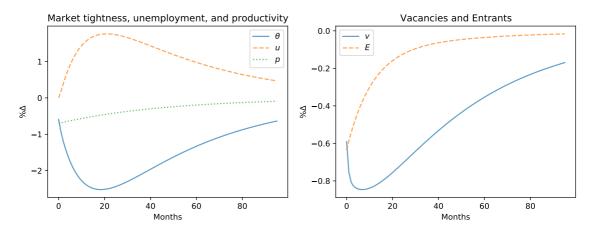


Figure: Impulse response functions in the benchmark calibration with s = 0 and $\delta = 0.0342$. Percentage deviations in response to a negative unit standard deviation technology shock.

Quantitative analysis

Contemporaneous correlations

				Corr(X, p)		
Var X	Data	Benchmark (6% dest.)	10% dest.	CM (34% dest.)	FR/MS (24% dest.)	SS (20% dest.)
var A	var A Data	$(\delta=0.0051)$	$(\delta = 0.00874)$	$(\delta = 0.0342)$	$(\delta = 0.0222)$	$(\delta = 0.018)$
и	-0.408	-0.329	-0.462	-0.77	-0.686	-0.648
θ	0.396	0.419	0.554	0.861	0.78	0.736
V	0.364	0.593	0.721	0.975	0.924	0.887

Table: Correlations between unemployment and productivity under different specifications of the destruction rate δ . The remaining parameters are recalibrated. Moments are based on quarterly averages of 100,000 monthly observations. Each observable series ranges from 1951M1-2003M12 and is logged and HP-filtered with smoothing parameter $\lambda = 10^5$.

Robustness to ξ

Dynamic correlations

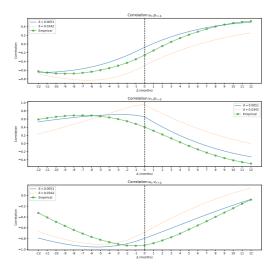


Figure: Dynamic correlations. The horizontal axis in each period depicts the time-shift Δ , measured in months, the vertical axis the correlation coefficient.

Miroslav Gabrovski, Mario Rafael Silva

Conclusion

- DMP model produces a near perfect correlation between unemployment and productivity, whereas it is mild in the data
- Sunk entry costs and congestion in entry with a mild destruction shock can approximately fit data
- Key
 - **(**) only vacancies from new entrants are determined by current productivity shocks
 - 2 congestion in entry induces firms to to smooth out entry in response to a shock

Appendix

Solution method

- Algorithm for solving the model is an Euler-equation based method described in detail by Coleman, Lyon, Maliar, and Maliar (2021)
- $\bullet\,$ Unknown policy functions are approximated using complete quadratic monomials of the state variables with coefficients $\Theta\,$
- One exogenous state variable p_t and two endogenous states: u_t and predetermined vacancies $v_{pret,t} = (1 \delta)[(1 q(\theta_{t-1}))v_{t-1} + s(1 u_{t-1})]$
- Use a quasi-random grid (Sobol) on a fixed hypercube to discretize the state space
- Approximate the flow entry cost K_t and entrants e_t
- Update Θ using ordinary least squares

Table of dynamic correlations

Table: Moments

$Corr(v_t, p_{t-i})$						
Lagged	Benchmark	10% Destruction Rate	СМ	FR/MS	SS	
Productivity	$(\delta = 0.0051)$	$(\delta=0.00874)$	$(\delta = 0.0342)$	$(\delta = 0.0222)$	$(\delta = 0.018)$	
p_{t-1}	0.667	0.784	0.95	0.933	0.917	
p_{t-2}	0.709	0.809	0.87	0.902	0.898	
p_{t-3}	0.735	0.816	0.78	0.849	0.861	
p_{t-4}	0.749	0.81	0.69	0.785	0.812	

Back to dynamic correlations

Appendi

Robustness to values of ξ

Table: Alternative values of ξ

Value of ξ	0.25	0.5	1	2	4	8
$Corr(u_t, p_t)$	-0.515	-0.411	-0.329	-0.255	-0.196	-0.151

Back to moments

Appendi:

Alternate parameterization

- Assume firm can develop product line at sunk entry cost ke_t^{ϕ}
- Value of a vacant firm with a product line is $Q_t = k e_t^{\phi}$
- Then flow entry cost K_t becomes

$$K_t = k\mathbb{E}_t \left(e_t^{\phi} - \beta(1-\delta)e_{t+1}^{\phi}
ight)$$

• Parameter mapping

$$k = 1/F^{1/\xi}$$

 $\phi = 1/\xi$

• Nest DMP by setting $\delta \to 0$ and $k \to 0$ (which implies $F \to \infty$)

Back to job creation condition

Appendia

BEAUDRY, P., D. A. GREEN, AND B. M. SAND (2018): "In search of labor demand," American Economic Review, 108(9), 2714–57.

- BERNARD, A. B., S. J. REDDING, AND P. K. SCHOTT (2010): "Multiple-product firms and product switching," *American Economic Review*, 100(1), 70–97.
- BRODA, C., AND D. E. WEINSTEIN (2010): "Product creation and destruction: Evidence and price implications," *American Economic Review*, 100(3), 691–723.
- COLEMAN, C., S. LYON, L. MALIAR, AND S. MALIAR (2021): "Matlab, Python, Julia: What to Choose in Economics?," *Computational Economics*, 58(4), 1263–1288.
- COLES, M. G., AND A. MOGHADDASI KELISHOMI (2018): "Do job destruction shocks matter in the theory of unemployment?," *American Economic Journal: Macroeconomics*, 10(3), 118–36.
- COMIN, D., AND M. GERTLER (2006): "Medium-Term Business Cycles," The American Economic Review, 96(3), 523.
- FUJITA, S., AND G. RAMEY (2007): "Job matching and propagation," Journal of Economic dynamics and control, 31(11), 3671–3698.

POTTER, T. (2022): "Destabilizing Search Technology," .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □