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CONTROL STEELINAbout the project

§ ControlInSteel is a dissemination activity focusing advanced automation and control 

§ We selected around 45(+5) former RFCS research projects for a scientific analysis

§ Mission goals were

§ 1. Analyze and understand dynamics of the problem-, solution- and impact space 
which also includes barriers and issues, as well as physical interaction channels

§ 2. Perform dissemination events, e.g. conference sessions and workshops to 
effectively distribute knowledge from and about these former projects

§ 3. Provide a roadmap for future research
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Part 1. Digitalisation & Digital Data

Part 2. The Relation between Physical Information and 
Reliable Secondary Digitalisation

Part 3. Assorted Application Examples in Steel Production
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Part 1. Digitalisation & Digital Data



CONTROL STEELINData was never a new concept



CONTROL STEELINRelevance of data storage

Innovation arises from the methodology we use to evaluate data.



CONTROL STEELINEven digital data is not new...

• Inca Quipu

• Simple, digital instructions

• Fully functional information 
storage and transfer

• Quipus even store semantic 
context information in 
different coloring



CONTROL STEELINDigital Data originates from Digital Sampling

Physically, digitalisation means to sample a signal. 

Such signals are often falsely believed to be analogue.

∆t = 5.391*10-44 s
Nature is discrete and digital. The smallest 
time is the Planck time



CONTROL STEELINDigitalisation in Industry (and in Steel Industry)

• Primary digitalisation
• Sampling of time series (length series)
• Sampling of parameters and variables

• Secondary digitalisation
• Factory wide automatic availability of digital information
• Computer models that represent process chains
• Enabling or improving the flow of data across chain 

aggregates (horizontal integration, I4.0)
• Application of semantic tools



CONTROL STEELIN

Part 2. The Relation between Physical Information and 
Reliable Secondary Digitalisation



CONTROL STEELINHow can we formalize digitalisation...

Consider time series data



CONTROL STEELINData as Signal Matrix 
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16 Lecture 2. Data Preprocessing

Figure �.�: Real values of some process variable (green), measured
data points (black triangles) with example of measurement uncer-
tainty (red).

here for completeness. It will not play any role in our considerations.
In Fig. 2.1 we illustrate the difference between real process ⇠(t) (green),

the measurement points xi (black) and the measurement uncertainty "
(red).

Signal Matrix for Multiple Measurements of the Same Variable
The set of points xi can be assembled into a vector x, where

x = (x0, x1, x2, ..., xM−1), (2.2)

and M ∈ N is the length of x. Our notation uses again indices that
start at 0, which helps in transferring to a programming language (where
also 0-based indexing is common). In many cases, there will be multiple
instances j ∈ N of measurements leading to a set of N ∈ N different vectors
xj , which can be allocated in a matrix,

X =
�����

x0

x1

...
xM−1

�����
=
�����

x0,0 x1,0 ... xM−1,0
x0,1 x1,1 ... xM−1,1
... ... ... ...

x0,N−1 xM−1,1 ... xM−1,N−1

�����
. (2.3)

Sometimes it is necessary to switch roles of rows and columns in such
a matrix, which can be achieved by transposing the matrix,

XT = (x0,x1, ...,xN) =
�����

x0,0 x0,1 ... x0,N−1
x1,0 x1,1 ... x1,N−1
... ... ... ...

xM−1,0 xM−1,1 ... xM−1,N−1

�����
. (2.4)

Summarising, these matrices represent N measurements of the (same)
variable x, with M data points for each measurement. Sometimes we will
also refer to this matrix X as the signal matrix, because it is the starting
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2.3. Data Cleansing 19

The expectation value is defined as

µ = �x� = E(x) = M�
i=0xiP (xi), (2.10)

which transforms to the usual formula for the arithmetic average

µ = �x� = 1

M

M�
i=0xi, (2.11)

by exploiting the fact that each of the M measurements is equally prob-
able with P = 1�M where P is no longer dependent on x.

Median
The median m(x) of a vector x with sample data points is defined as

the value x that separates the sample such that 50% of all points are below
x and that the other 50% of all points are above x. Formally, one can write
the median as

m(x) =
�����������
x(n+1)�2, if n is odd,

xn�2+x(n�2)+1
2 if n is even.

(2.12)

where n is the length of the vector x.
Let us consider a very important feature of applying the median, its

ability to remove spiking from data sets. Consider the following exam-
ple:

µ([1,1,5,1,1]) = 2.6,
m([1,1,5,1,1]) = 1.0.

Given the peculiar vector x = [1,1,5,1,1], the median m apparently
neglects the influence of the highest number 5 completely.

Var(x) = �2 = �(x − �x�)2� (2.13)

2.3 Data Cleansing
Data Quality
Interpolation
Detection of Duplicates

2.4 Normalisation
� Normalisation to Maximum. Data is altered, so that the maximum

x̃ = x

max(�xi�) (2.14)

� Min-Max Normalization. Data can be mapped onto the values [0,1]
by

x̃ = x − min(x)
max(x) −min(x) (2.15)

Machine LearningInductive Statistics



CONTROL STEELINFamous Principal Component Analysis (PCA)

• Principal component 
analysis

• Unsupervised technique

• Eigenspace of covariance 
matrix

How can we use human 
rationalism and know-
how to improve this well-
known method?



CONTROL STEELINData preparation Example Wavelet Transformation 
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28 Lecture 2. Data Preprocessing

Median Filter

Listing �.�: Modi�cation to include median �lter

1 %pylab
2 import matplotlib
3 import numpy as np
4

5 x = 3+0.2*np.random.randn(500)
6 x[100]=6
7 x[200]=5
8 x[300]=1
9 x[400]=4

10 filtered_x = []
11 for i in range(0,len(x)-5):
12 filtered_x.append(np.median(x[i:i+5]))
13

14 plt.plot(x, ’k’, linewidth=2.0)
15 plt.plot(filtered_x,’-’,color=[0.1,0.65,0.6],linewidth=3.0,

alpha=0.9)
16

17 plt.xticks(fontsize=18)
18 plt.yticks(fontsize=18)
19 plt.xlabel(’Time / h’, fontsize=20)
20 plt.ylabel(’T / C’, fontsize=20)

Figure �.�: Effect of median �l-
tering, spikes are effectively re-
moved.

Fourier Transform

Listing �.��: Fourier Transform in Python using Numpy

1 final_t = 20*np.pi
2 dt = final_t/2**14
3 t = np.array(np.arange(0,final_t,dt))
4 x = np.exp(1j*2*np.pi*1*t)+0.2*np.exp(1j*2*np.pi*10*t)
5 fft = np.fft.fft(x)
6 freq = np.fft.fftfreq(x.size, d=dt)
7

8 #plt.stem(t, np.real(x))
9 plt.stem(freq, abs(np.real(fft))/np.max(abs(np.real(fft))))

10

11 plt.xlim([0, 20])
12 plt.xticks(fontsize=18)
13 plt.yticks(fontsize=18)
14 plt.xlabel(’Frequency / a.u.’, fontsize=20)
15 plt.ylabel(’Amplitude’, fontsize=20)

Wavelet Transform

CWT[x(t)](a, b) = 1

�a� 12 �
∞
−∞ x(t) �t − b

a
�dt (2.23)

Continuous wavelet transformation, as one 
example for describing oscillatory processes



CONTROL STEELINAnalytical Physics-Infusion on PCA
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2.2. Stochastic Processes and their Features 23

Figure �.�: Illustration of the variance.

Cov(x,y) = �(x − �x�)(y − �y�)� (2.14)

For a matrix X we can define a covariance matrix as follows,

Cov(X) =
�����

Var(x0) Cov(x0,x1) ... Cov(x0,xN−1)
Cov(x1,x0) Var(x1) ... Cov(x1,xN−1)

... ... ... ...
Cov(xN−1,x0) Cov(xN−1,x1) ... Var(xN−1)

�����
,

where the variances represent the main diagonal.
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28 Lecture 2. Data Preprocessing

Median Filter

Listing �.�: Modi�cation to include median �lter

1 %pylab
2 import matplotlib
3 import numpy as np
4

5 x = 3+0.2*np.random.randn(500)
6 x[100]=6
7 x[200]=5
8 x[300]=1
9 x[400]=4

10 filtered_x = []
11 for i in range(0,len(x)-5):
12 filtered_x.append(np.median(x[i:i+5]))
13

14 plt.plot(x, ’k’, linewidth=2.0)
15 plt.plot(filtered_x,’-’,color=[0.1,0.65,0.6],linewidth=3.0,

alpha=0.9)
16

17 plt.xticks(fontsize=18)
18 plt.yticks(fontsize=18)
19 plt.xlabel(’Time / h’, fontsize=20)
20 plt.ylabel(’T / C’, fontsize=20)

Figure �.�: Effect of median �l-
tering, spikes are effectively re-
moved.

Fourier Transform

Listing �.��: Fourier Transform in Python using Numpy

1 final_t = 20*np.pi
2 dt = final_t/2**14
3 t = np.array(np.arange(0,final_t,dt))
4 x = np.exp(1j*2*np.pi*1*t)+0.2*np.exp(1j*2*np.pi*10*t)
5 fft = np.fft.fft(x)
6 freq = np.fft.fftfreq(x.size, d=dt)
7

8 #plt.stem(t, np.real(x))
9 plt.stem(freq, abs(np.real(fft))/np.max(abs(np.real(fft))))

10

11 plt.xlim([0, 20])
12 plt.xticks(fontsize=18)
13 plt.yticks(fontsize=18)
14 plt.xlabel(’Frequency / a.u.’, fontsize=20)
15 plt.ylabel(’Amplitude’, fontsize=20)

Wavelet Transform

CWT[x(t)](a, b) = 1

�a� 12 �
∞
−∞ x(t) �t − b

a
�dt (2.23)
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2.5. Transformations and Filters 27

2.5 Transformations and Filters
Convolution

Convolution is a very important operation, because it helps us to per-
form quickly different process stages of our data. Formally, convolution
is defined for continuous functions by

(f ○ g)(x) = � f(t)g(x − t)dt (2.21)

and in the discrete case

(f ○ g)x =�
k

fkgx−k. (2.22)

We can write several transformations as convolution. Just to mention
some famous examples:

MA(x) = f ○ [1,1,1, ...,1]�N, (2.23)

Filter(x) = f ○ [−1,−1,−1,−1,1,1,1,1], (2.24)

First Differentiation:
df

dx
= f ○ [−1,1], (2.25)

Second Differentiation:
df

dx
= f ○ [1,−2,1]. (2.26)

⇤ = STCS (2.27)

Moving Average Filter

Listing �.�: Moving window with averaging

1 %pylab
2 import matplotlib
3 import numpy as np
4

5 x = 3+0.5*np.random.randn(500)
6 filtered_x = []
7 for i in range(0,len(x)-15):
8 filtered_x.append(np.mean(x[i:i+15]))
9

10 plt.plot(x, ’k’, linewidth=2.0)
11 plt.plot(filtered_x,’-’,color=[0.1,0.65,0.6],linewidth=3.0,

alpha=0.9)
12

13 plt.xticks(fontsize=18)
14 plt.yticks(fontsize=18)
15 plt.xlabel(’t’, fontsize=20)
16 plt.ylabel(’x’, fontsize=20)

Figure �.�: Averaging effect on
noisy curve, smoothing over a
window of �� bins.

• Now... Eigenspace of the 
Wavelet covariance matrix

• Now, we mix both 
methods, if (and only if) 
Ricker wavelets are useful 
here

SOPROD 2017, T-
Model MDNN 

Predictor



CONTROL STEELINDigitalisation in Industry (and in Steel Industry)

• Tertiary digitalisation
• Semantic layer which integrates optimized analysis techniques (algorithmic integration)
• Include a digital repository of methodology

• If the process requires a wavelet preparation, this can be automatically received from 
a semantic database

• In specific cases, PCA or other procedures perform better if a suited physics-informed 
preprocessing is applied
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Part 3. Assorted Application Examples in Steel Production



CONTROL STEELINPhysics-Informed MDNN Temperature Predictor

Ricker Wavelet based 
temperature prediction 
mixture density network, 
for estimating also the 
uncertainty of the 
prediction.



CONTROL STEELINExample 2: Mixture Density Network for Scale Prediction

Suboptimal model answer, but perfect assumption of uncertainty

Good Approximation

Scale predictor
Camera measurement

Different example: Scale 
predictor with MDNN

Scale is estimated together 
with the uncertainty of this 
prediction



CONTROL STEELINExample 2: Testing for Sensitive Variables 

Perturbation theory

§ Test vectors

§ Stochastic perturbation

§ Tests the influence of specific 
variables
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Perturbation theory opened new understand about 
what variables essentially impacted the scale.
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• Digitalization allows steel industry to get a full grasp of information about their 
processes

• Digital data can be gathered from the processes

• Transformations exists that help to project the data to a certain physically 
reasonable coordinate system

• Using the example of the well-known PCA, we showed how to apply PCA to a 
different covariance space

• Steel industry can use digitalisation to actually understand the inherent 
uncertainties

• The digital data then leads to tools for predicting behaviour or detecting 
anomalies

Summary
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Dr. Marcus J. Neuer
Marcus.Neuer@bfi.de

+49 175 2064672

Thank you for 
your interest!
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CONTROL STEELINExample 3. Uncertainty Distributions of Processes
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CONTROL STEELINExample 3. Quantifying the process corridor

Allows „easy“ identification of defect risk along the process chain
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CONTROL STEELINPhysics-Informed Mixture Density Neural Network

Physics-infusion means to enrich the 
input or output data of machine 
learning techniques with 
information that is based on 
physical reasoning.



CONTROL STEELINFormalisation of data sampling


