Problema de autovalores del momento angular.

En este apartado vamos a resolver el problema de autovalores del momento angular. En particular, vamos a ver cuáles son los posibles valores que pueden tomar las componentes del momento angular y el módulo al cuadrado del momento angular.

Podemos, en principio, diagonalizar cualquiera de las componentes del momento angular, sin embargo, si utilizamos las coordenadas esféricas el operador más sencillo es \hat{L}_z , de modo que vamos a buscar los autovalores de \hat{L}_z . Una vez que los encontremos, sabemos que los autovalores de \hat{L}_z serán también los autovalores de las otras dos componentes del momento angular, ya que el espacio es isótropo. El operador \hat{L}_z en coordenadas esféricas es:

$$\hat{L}_z \psi(\mathbf{r}) = -i\hbar \frac{\partial \psi(\mathbf{r})}{\partial \omega}$$

Vamos a resolver el problema de autovalores de L_z en la representación coordenadas, es decir, que vamos a encontrar las funciones que satisfacen la siguiente condición:

$$\hat{L}_z \psi(\mathbf{r}) = -i\hbar \frac{\partial \psi(\mathbf{r})}{\partial \varphi} = c\psi(\mathbf{r})$$

La solución de esta ecuación diferencial es:

$$\psi(\mathbf{r}) = f(r,\theta) e^{ic\varphi/\hbar}$$

donde $f(r,\theta)$ es una función arbitraria. Para que la función $\psi(\mathbf{r})$ no sea una función multivaluada de x, y y z, dicha función debe ser una función periódica de φ de modo que $\psi(r,\theta,\varphi) = \psi(r,\theta,\varphi+2\pi)$. De modo que:

$$f\left(r,\theta\right)e^{ic\varphi/\hbar} = f\left(r,\theta\right)e^{ic(\varphi+2\pi)/\hbar} = f\left(r,\theta\right)e^{ic\varphi/\hbar}e^{i2\pi c/\hbar}$$

por tanto, se debe verificar la condición $e^{i2\pi c/\hbar}=1$. La única forma de verificar la condición anterior es que c sea de la forma $c=m\hbar$, donde m es un número entero. Por tanto, los autovalores de \hat{L}_z son los números:

 $m\hbar$

y las autofunciones

$$\psi(\mathbf{r}) = f(r,\theta) e^{im\varphi}$$

(con autovalor $m\hbar$). El espectro de \hat{L}_z es discreto. Los autovalores del operador \hat{L}_z son infinitamente degenerados ya que la función $f(r,\theta)$ queda indeterminada. Como podemos ver, los autovalores de \hat{L}_z son números reales, debido a que \hat{L}_z es hermítico. Por otro lado, cualquier función del espacio de estados se puede desarrollar en serie de las autofunciones de \hat{L}_z de modo que dicho operador es un observable. Por último, decir que los autovalores de los operadores \hat{L}_x y \hat{L}_y también serán de la forma $m\hbar$ con m un número entero.

Vamos a ver ahora cuáles son los autovalores del módulo al cuadrado del momento angular. Como \hat{L}^2 y \hat{L}_z conmutan, podemos encontrar una base de autovectores comunes a los dos operadores. Sea el ket $|m\rangle$ un autovector normalizado común a los dos operadores, de autovalor L^2 y $m\hbar$, de modo que:

$$\hat{L}^2 |m\rangle = L^2 |m\rangle$$
 y $\hat{L}_z |m\rangle = m\hbar |m\rangle$

En primer lugar, podemos ver que los vectores $\hat{L}_x |m\rangle$, $\hat{L}_y |m\rangle$ y $\hat{L}_z |m\rangle$ son también autovectores de \hat{L}^2 con el mismo autovalor L^2 :

$$\hat{L}^{2}\left(\hat{L}_{x}\left|m\right\rangle\right) = \hat{L}_{x}\hat{L}^{2}\left|m\right\rangle = L^{2}\left(\hat{L}_{x}\left|m\right\rangle\right)$$

y del mismo modo para \hat{L}_y y \hat{L}_z . Como consecuencia los kets $\hat{L}_+ |m\rangle$ y $\hat{L}_- |m\rangle$ son también autovectores de \hat{L}^2 y con el mismo autovalor L^2 . Vamos a ver ahora cómo afectan los operadores \hat{L}_+ y \hat{L}_- al ket $|m\rangle$. Vamos a ver que los vectores $\hat{L}_+ |m\rangle$ y $\hat{L}_- |m\rangle$ son autovectores de \hat{L}_z pero con autovalor $(m+1)\hbar$ y $(m-1)\hbar$ respectivamente. Para demostrarlo utilizaremos las relaciones de conmutación $[\hat{L}_z, \hat{L}_+] = \hbar L_+$ y $[\hat{L}_z, \hat{L}_-] = -\hbar \hat{L}_-$:

$$\hat{L}_{z}\left(\hat{L}_{+}\left|m\right\rangle\right) = \left(\hat{L}_{+}\hat{L}_{z} + \hbar\hat{L}_{+}\right)\left|m\right\rangle = \left(\hat{L}_{+}m\hbar + \hbar\hat{L}_{+}\right)\left|m\right\rangle = \left(m+1\right)\hbar\left(\hat{L}_{+}\left|m\right\rangle\right)$$

У

$$\hat{L}_{z}\left(\hat{L}_{-}\left|m\right\rangle\right) = \left(\hat{L}_{-}\hat{L}_{z} - \hbar\hat{L}_{-}\right)\left|m\right\rangle = \left(\hat{L}_{-}m\hbar - \hbar\hat{L}_{-}\right)\left|m\right\rangle = \left(m - 1\right)\hbar\left(\hat{L}_{-}\left|m\right\rangle\right)$$

De modo que aplicando sucesivamente el operador \hat{L}_+ obtenemos autovectores de \hat{L}_z con mayor autovalor (cada vez que lo aplicamos el autovalor de \hat{L}_z aumenta en una unidad de \hbar) que siguen siendo autovectores de \hat{L}^2 del mismo autovalor L^2 . Del mismo modo, aplicando sucesivamente el operador \hat{L}_- obtenemos autovectores de \hat{L}_z de menor autovalor, pero que siguen siendo autovectores de \hat{L}^2 del mismo autovalor.

Vamos a ver ahora que el autovalor $m\hbar$ debe cumplir la condición $|m\hbar| \leq L$, lo cual es lógico, ya que una componente de un vector (en nuestro caso la z) nunca puede ser mayor que el módulo del vector. El ket $|m\rangle$ es un autovector común a \hat{L}^2 y a \hat{L}_z , vamos a calcular el valor medio del operador \hat{L}^2 sobre este estado:

$$\left\langle \hat{L}^2 \right\rangle_m = \left\langle m \left| \hat{L}^2 \right| m \right\rangle = L^2 = \left\langle \hat{L}_x^2 \right\rangle_m + \left\langle \hat{L}_y^2 \right\rangle_m + \left\langle \hat{L}_z^2 \right\rangle_m = \left\langle \hat{L}_x^2 \right\rangle_m + \left\langle \hat{L}_y^2 \right\rangle_m + m^2 \hbar^2 \left\langle \hat{L}_y^2 \right\rangle_m + m^2 \hbar^2 \left\langle \hat{L}_z^2 \right\rangle_m + m^2 \hbar^2 \left\langle$$

Los términos $\left\langle \hat{L}_{x}^{2}\right\rangle _{m}$ y $\left\langle \hat{L}_{y}^{2}\right\rangle _{m}$ son números reales positivos, de modo que:

$$L^2 \ge m^2 \hbar^2$$
 o bien $|m\hbar| \le L$

Según hemos visto, aplicando los operadores \hat{L}_+ y \hat{L}_- podemos obtener autovectores de \hat{L}_z con autovalores arbitrariamente altos (tanto positivos como negativos). La única forma que se verifique la condición anterior es que existan autovalores de \hat{L}_z que notaremos como m_{\min} y m_{\max} de modo que:

$$\hat{L}_{+} | m_{\text{max}} \rangle = 0$$
 y $\hat{L}_{-} | m_{\text{min}} \rangle = 0$

y tales que:

$$m_{\text{max}}\hbar \le L$$
 y $m_{\text{min}}\hbar \ge -L$

Vamos a encontrar cuáles son los valores m_{\min} y m_{\max} . Aplicamos el operador \hat{L}^2 a los vectores $|m_{\min}\rangle$ y $|m_{\max}\rangle$, que son autovectores de \hat{L}^2 con autovalor L^2 :

$$\hat{L}^{2} | m_{\text{max}} \rangle = \left(\hat{L}_{-} \hat{L}_{+} + \hat{L}_{z}^{2} + \hbar \hat{L}_{z} \right) | m_{\text{max}} \rangle = \left(m_{\text{max}}^{2} \hbar^{2} + m_{\text{max}} \hbar^{2} \right) | m_{\text{max}} \rangle =$$

$$= m_{\text{max}} \left(m_{\text{max}} + 1 \right) \hbar^{2} | m_{\text{max}} \rangle$$

$$\hat{L}^{2} | m_{\min} \rangle = \left(\hat{L}_{+} \hat{L}_{-} + \hat{L}_{z}^{2} - \hbar \hat{L}_{z} \right) | m_{\min} \rangle = \left(m_{\min}^{2} \hbar^{2} - m_{\min} \hbar^{2} \right) | m_{\min} \rangle =$$

$$= m_{\min} \left(m_{\min} - 1 \right) \hbar^{2} | m_{\min} \rangle$$

Estos dos valores tienen que ser iguales a L^2 de modo que:

$$m_{\text{max}}\left(m_{\text{max}}+1\right) = m_{\text{min}}\left(m_{\text{min}}-1\right)$$

De esta ecuación podemos ver qué relación existe entre estos dos números:

$$m_{\text{max}}^2 + m_{\text{max}} - m_{\text{min}} (m_{\text{min}} - 1) = 0$$

resolvemos la ecuación de segundo grado:

$$m_{\text{max}} = \frac{-1 \pm \sqrt{1 + 4m_{\text{min}} (m_{\text{min}} - 1)}}{2} = \frac{-1 \pm \sqrt{4m_{\text{min}}^2 - 4m_{\text{min}} + 1}}{2} = \frac{-1 \pm (2m_{\text{min}} - 1)}{2} = \begin{cases} m_{\text{min}} - 1 \\ -m_{\text{min}} \end{cases}$$

El primer resultado sería absurdo, ya que m_{max} sería menor que m_{min} , de modo que la solución correcta es que $m_{\text{max}} = -m_{\text{min}}$. Al valor m_{max} lo notaremos por l. Este número l puede ser cualquier número entero positivo. Podemos calcular ya el autovalor del operador \hat{L}^2 , ya que:

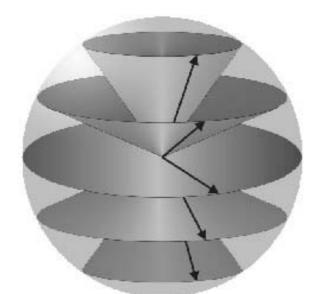
$$\hat{L}^{2} | m_{\text{max}} \rangle = m_{\text{max}} (m_{\text{max}} + 1) \, \hbar^{2} | m_{\text{max}} \rangle = l \, (l+1) \, \hbar^{2} | m_{\text{max}} \rangle$$

En conclusión, los autovectores comunes a \hat{L}^2 y a \hat{L}_z quedan caracterizados por dos números cuánticos l y m, de modo que notaremos estos autovectores comunes como $|l,m\rangle$, de modo que:

$$\hat{L}^{2} | l, m \rangle = l (l+1) \hbar^{2} | l, m \rangle$$

$$\hat{L}_{z} | l, m \rangle = m \hbar | l, m \rangle$$

donde $l=0,1,2,\cdots$ y $-l\leq m\leq l$, de modo que para un valor de l fijo, m puede tomar los valores $m=-l,-l+1,\cdots,l-1,l$. Para cada valor de l existen 2l+1 posibles valores de m. Para un valor de l fijo, podemos representar los autovectores ket comunes a \hat{L}^2 y a \hat{L}_z , $|l,m\rangle$, como se muestra en la siguiente figura. Para un ket $|l,m\rangle$, los operadores \hat{L}^2 y \hat{L}_z tienen un valor bien determinado, mientras que los operadores \hat{L}_x y \hat{L}_y no, de modo que el vector momento angular se encontrará dentro de uno de los conos, dependiendo del valor de m (todos los vectores que tienen un módulo fijo y componente z fija generan un cono). El vector momento angular nunca puede apuntar en la dirección vertical ya que en ese caso estarían determinados simultáneamente \hat{L}_x , y \hat{L}_y ya que sería nulos. Por ejemplo, para l=2, los posibles valores que podemos obtener al medir \hat{L}_z son $-2\hbar$, $-\hbar$, 0, \hbar y $2\hbar$, mientras que si medimos \hat{L}^2 obtendremos el valor $2(2+1)\hbar^2=6\hbar^2$ (de modo que $|\hat{\mathbf{L}}|=\sqrt{6}\hbar\simeq 2.5\hbar$). En este caso, tendremos los cinco conos que se muestran en la figura, de modo que cada uno corresponde a un ket $|l,m\rangle$.



$$L^2 = \hbar^2 2 (2+1) = 6\hbar^2$$

$$L_z = -2\hbar, -\hbar, 0, \hbar, 2\hbar$$

Si realizamos una medida del cuadrado del módulo del momento angular sólo podemos obtener los siguientes valores como resultado de la medida:

$$0, 2\hbar^2, 6\hbar^2, 12\hbar^2, 20\hbar^2, \cdots$$

Por otro lado, si medimos la componente \hat{L}_z del momento angular podemos obtener como resultado:

$$0, \pm \hbar, \pm 2\hbar, \pm 3\hbar, \pm 4\hbar, \cdots$$

Por último, si medimos el cuadrado del módulo del momento angular y obtenemos como resultado el valor $l(l+1)\hbar^2$ e inmediatamente después medimos la componente \hat{L}_z del momento angular sólo podemos obtener como resultado los valores:

$$-l\hbar$$
, $-(l-1)\hbar$, \cdots , 0 , \cdots $(l-1)\hbar$, $l\hbar$

Vamos a ver a continuación cómo podemos obtener para un valor fijo del número l los distintos vectores $|l,m\rangle$ normalizados a partir de uno de ellos. Lógicamente lo que tenemos que hacer es aplicar los operadores \hat{L}_+ y \hat{L}_- . Vamos a partir del ket $|l,m\rangle$ normalizado. En primer lugar obtendremos el vector $|l,m+1\rangle$:

$$\hat{L}_{+}|l,m\rangle = c_{+}|l,m+1\rangle$$

a continuación tomamos el hermítico conjugado de esta expresión:

$$\langle l, m | \hat{L}_{-} = c_{+}^{*} \langle l, m+1 |$$

Si proyectamos una expresión sobre la otra obtenemos:

$$\langle l, m | \hat{L}_{-}\hat{L}_{+} | l, m \rangle = |c_{+}|^{2} = \langle l, m | (\hat{L}^{2} - \hat{L}_{z}^{2} - \hbar \hat{L}_{z}) | l, m \rangle =$$

 $= l(l+1) \hbar^{2} - m^{2} \hbar^{2} - m \hbar^{2} = \hbar^{2} [l(l+1) - m(m+1)]$

Esta expresión determina el módulo de la constante c_+ . Como somos libres de escoger la fase tomaremos esta constante como real y positiva, de modo que:

$$c_{+} = \hbar \sqrt{l \left(l+1\right) - m \left(m+1\right)}$$

У

$$\hat{L}_{+}\left|l,m\right\rangle = \hbar\sqrt{l\left(l+1\right) - m\left(m+1\right)}\left|l,m+1\right\rangle$$

De esta expresión obtenemos el vetor $|l, m+1\rangle$ a partir del vector $|l, m\rangle$. Vamos ahora a aplicar el operador \hat{L}_{-} :

$$\hat{L}_{-}|l,m\rangle = c_{-}|l,m-1\rangle$$

tomamos de nuevo el hermítico conjugado:

$$\langle l, m | \hat{L}_{+} = c_{-}^{*} \langle l, m - 1 |$$

y proyectamos una expresión sobre la otra:

$$\left\langle l, m \left| \hat{L}_{+} \hat{L}_{-} \right| l, m \right\rangle = |c_{-}|^{2} = \left\langle l, m \left| \left(\hat{L}^{2} - \hat{L}_{z}^{2} + \hbar \hat{L}_{z} \right) \right| l, m \right\rangle =$$

$$= l (l+1) \hbar^{2} - m^{2} \hbar^{2} + m \hbar^{2}) = \hbar^{2} [l (l+1) - m (m-1)]$$

y tomando c_{-} real y positiva queda:

$$c_{-} = \hbar \sqrt{l \left(l+1\right) - m \left(m-1\right)}$$

Por tanto:

$$\hat{L}_{-}\left|l,m\right\rangle = \hbar\sqrt{l\left(l+1\right) - m\left(m-1\right)}\left|l,m-1\right\rangle$$

Esta expresión nos permite obtener el vector $|l, m-1\rangle$ a partir del vector $|l, m\rangle$. Resumiendo las dos expresiones:

$$\hat{L}_{+}|l,m\rangle = \hbar\sqrt{l(l+1) - m(m\pm 1)}|l,m\pm 1\rangle$$