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• A large set of articles on photocatalytic
modeling have been reviewed.

• Current semi-mechanistic models over-
look realistic water background compo-
nents.

• Future models need to be based on ex-
periments under low concentration
(ng/L–μg/L).

• New models on compounds other than
dyes and E.coli need to be developed.
Abbreviations:AB9, acid blue9;AC, activated carbon;A
Cuckoo optimization algorithm; COD, chemical oxygen de
incident radiation; k, reaction rate coefficient; K, equilibr
Langmuir–Hinshelwood; LSSVM, least square support
Rhodamine B; ROS, reactive oxygen species; RSM, respon
radicals; θRhB, the fractional site coverage by RhB; θTiO2, th
⁎ Corresponding authors.

E-mail addresses: mohamedateia1@gmail.com (M. Ate

https://doi.org/10.1016/j.scitotenv.2019.134197
0048-9697/© 2019 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 26 April 2019
Received in revised form 20 August 2019
Accepted 29 August 2019
Available online 02 September 2019

Editor: Ching-Hua Huang
Recently, a series of newphotocatalysts have beendeveloped for to combat diverse bio-recalcitrant contaminants
and the inactivation of bacteria. Modeling photocatalytic processes is important to assess these materials, and to
understand and optimize their performance. In this study, the recent literature is critically reviewed and analyzed
to identify and compare methods of modeling photocatalytic performance. The Langmuir–Hinshelwood model
(L-H) has been used in many studies to rationalize the degradation kinetics of single contaminants because it
is the simplest model including both the adsorption equilibrium and degradation rates. Other studies report
the development of more sophisticated variants of the L-Hmodel that include the rates of catalyst excitation, re-
combination of electron-hole pairs, production of reactive oxygen species (ROS), and formation of by-products.
Modified Chick-Watson (C\\W) and Hom models have been used by many researchers to include lag phases
of bacteria in the description of disinfection kinetics. Artificial neural networks (ANNs) have been used to analyze
the effects of operational conditions on photocatalyst performance. Moreover, response surface methodology
(RSM) has been employed for experimental design, and optimization of operational conditions. We have
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reviewed and analyzed all available articles that model photocatalytic activity towards water pollution, summa-
rized and put them in context, and recommended future research directions.

© 2019 Elsevier B.V. All rights reserved.
Artificial neural network (ANN)
Response surface methodology (RSM)
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1. Introduction

Industrial wastewaters contain a variety of toxic and carcinogenic
compounds (e.g. pharmaceuticals, pesticides, and surfactants), which
pose a threat to the environment if released without treatment; as de-
scribed in several recent review articles (Félix-Cañedo et al., 2013; Luo
et al., 2014; Sousa et al., 2018; Yang et al., 2017). Most of these com-
pounds are persistent and pass through conventional biological treat-
ment systems without significant changes in their chemistry or
concentration (Chen et al., 2012). Therefore, advanced water treatment
technologies are essential before industrial wastewater containing such
compounds can be discharged into the sewer network or water bodies.
Advanced oxidation processes (AOPs) are recognized as being effective
for the degradation of a variety of bio-recalcitrant compounds including
phenols, pesticides, pharmaceuticals, dyes, and petrochemicals
(Ambrosio et al., 2017; Awfa et al., 2019; Chen et al., 2017; Faisal et al.,
2018; Pal et al., 2018). In AOPs, reactive oxygen species (ROS) oxidize
organic molecules and break them down into degradation products.
These reactions can be enhanced by light and/or catalysts (Alalm et al.,
2015).

Among AOPs, heterogeneous photocatalysts employ solid semicon-
ductor catalysts illuminated at a wavelength of light exceeding the
bandgap to degrade organic pollutants. These photocatalysts are able
to overcome someof the shortcomings of other AOPs (e.g. sludge forma-
tion and the need for pH adjustment) (Koltsakidou et al., 2017). Al-
though TiO2 and ZnO are the most commonly reported photocatalysts
in the literature (Affam and Chaudhuri, 2013), many novel
photocatalysts have been developed during the last decade that are
able to achieve higher photocatalytic activities than pristine TiO2 and
ZnO, by reducing the band-gap, increasing the active surface area, and
enhancing the absorption of visible light (Awfa et al., 2018; Cheng
et al., 2015; Koltsakidou et al., 2017; Shimizu et al., 2019). In addition,
several studies describe the immobilization of photocatalysts on fixed-
media surfaces to improve durability and reduce treatment cost
(Alalm et al., 2018; Khavar et al., 2018). However, these physical and
chemical modifications alter the material characteristics and activity of
the photocatalysts.

Several review articles have discussed the performance, reaction
mechanisms, and kinetic modeling of photocatalysts for the degrada-
tion of organic contaminants and for photocatalytic disinfection. Due
to the significant influence of photocatalysts type, operational condi-
tions, and the nature of contaminants, kinetic models are often used
for optimizing the photocatalysis process (Sathishkumar et al., 2013).
Blanco-Galvez et al. (2007) reviewed studies on application and reactor
designs for solar photocatalytic detoxification and disinfection using
TiO2. Byrne et al. (2011) presented a general overview of solar disinfec-
tion (SODIS) and the enhancement modification of SODIS by the addi-
tion of TiO2 (i.e., solar photocatalytic disinfection). Both reviews
suggested that solar TiO2 photocatalysis can be an affordable solution
for the removal of organic contaminants, and also microorganism disin-
fection, in the future. Chong et al., 2010a presented an in-depth review
of the application, process parameters, and kinetic modeling of TiO2

photocatalysis for the removal of organic contaminants and disinfec-
tion. In the same year, Dalrymple et al., 2010 reviewed the disinfection
mechanisms and the mathematical models (e.g. empirical and mecha-
nistic models) used to fit the photocatalytic disinfection process.

Recently, several innovative approaches for enhancing photocata-
lytic activity for pollution degradation and disinfection have been af-
fected by modifying the bare photocatalysts creating composite
photocatalysts. These modifications affected the photocatalysis mecha-
nism compare with the bare photocatalysts (Awfa et al., 2019; Brame
et al., 2015; Chen and Liu, 2016; Dong et al., 2015). Yet, most reviews
have focused on the use of simple TiO2 photocatalysis, and use the sim-
plified Langmuir-Hinshelwood kinetic model (i.e., pseudo-first order)
approximation to explain the photocatalytic processes. Moreover, pho-
tocatalytic experiments have produced a wide variety of results and it
can be extremely challenging to create effective models help optimize
photocatalytic activity. Artificial neural networks (ANNs) have been
used recently to model photocatalytic efficiency (Jing et al., 2017),
followed by the introduction of response surface methodology (RSM)
to design experiments and optimize operational conditions (Colombo
et al., 2013). Therefore, we believe it is imperative to undertake an in-
sightful study that presents a rigorous reviewdelineating the discrepan-
cies and agreements between the disparate reported models in the
literature. To the best of our knowledge, there is currently no review
considering the use of kinetic, empirical, and exploratory models for
the photocatalytic degradation and disinfection of water for composite
materials photocatalysts. Thus, a comprehensive overview of models
of photocatalytic remediation of contaminatedwater would help efforts
to optimize and implement photocatalysis. In this paper, we present an
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overview of recently developed models of photocatalytic processes for
simple and composite photocatalysts. The currently available kinetic
models in the literature for photocatalytic oxidation and disinfection
are summarized and critically reviewed. Finally, we discuss the use of
ANNs and RSM for modeling and optimizing operational parameters.

2. Fundamentals and treatment mechanisms

In heterogeneous photocatalysis, light with an energy that is greater
than the band gap (i.e., the energy difference between the valence band
and the conduction band in semiconductors), excites the electron from
the valence band to the conduction band and creates an electron-hole
pair (e− and h+) which triggers a series of reactions leading to the pho-
tocatalytic degradation of pollutants (Awfa et al., 2018). Electrons and
holes on the surface of a semiconductor participate in redox reactions
that produce reactive species such as hydroxyl radicals (•OH) and su-
peroxide anion radicals (•O2

−). Hydroxyl radicals and superoxide radi-
cals are very strong ROS that can destroy the bonds of stable and
unreactive organic molecules to form organic intermediates, which
can be further degraded to CO2 andH2O (Matos et al., 2009). The overall
process of heterogeneous photocatalysis can be decomposed into five
steps (Herrmann, 1999). First, contaminants move from the fluid
phase to the interface region of the catalyst by diffusion. Second, con-
taminants are adsorbed onto the surface of the photocatalysts. Third, a
chemical reaction occurs with oxidizing and/or reducing species in the
vicinity of the surface. Fourth, by-products desorb. Finally, products
are removed from the interface region into the bulk fluid. In addition,
due to the production of ROS, photocatalysis is recognized as an effec-
tive disinfection process (Lim et al., 2011). The major advantage of
using photocatalytic disinfection is the elimination of byproducts
(DBPs) that result from using chlorine or other oxidants for water disin-
fection (Ateia et al., 2019; Chong et al., 2011). In photocatalytic disinfec-
tion microorganisms become inactive or dead when ROS attack and
break the cell wall and denature proteins finally resulting in a variety
of end-products (Farrell et al., 2018; Song et al., 2018). In addition, the
physical separation of microorganisms by adsorption was found to
play a significant role in disinfection by composite materials (Shimizu
et al., 2019). Fig. 1 shows some of the most important mechanisms of
the photocatalytic degradation and disinfection of water pollutants.

3. Kinetic models

Models of reaction kinetics can be used to describe the time-
dependent relationship between the operating conditions of the system
and the degradation rate of organic contaminants and/or the deactiva-
tion rate of microorganisms. Previous studies have reported that the
photocatalytic degradation/deactivation rate depends on the water
Fig. 1. Key mechanisms in the photocatalytic degr
chemistry parameters (e.g. pH, water temperature, contaminant con-
centration, dissolved oxygen, natural organicmatter, and inorganic spe-
cies) and system parameters (e.g. light intensity, light wavelength,
catalyst type, and catalyst loading) as reviewed elsewhere (Chong
et al., 2010a). Therefore, many researchers attempted to develop
models that can describe and evaluate the photocatalytic degradation
kinetics. In this section, the kinetic models from the literature are
reviewed. Table 1 summarizes the catalysts, target contaminants,
model applications and the assumptions behind each model.

3.1. Photocatalytic degradation models

Inmost photocatalysis studies, the concentration of a single contam-
inant is monitored at periodic time intervals. The removal of organic
contaminants by photocatalysis could be attributed to a mechanism of
adsorption onto active sites of the catalyst followed by degradation of
a contaminant yielding intermediates and end-products. Accordingly,
we introduce the kinetic equations corresponding to this mechanism.
The Langmuir–Hinshelwood model (L-H) is a simple kinetic model de-
scribing the degradation of a single contaminant by photocatalysis. It in-
cludes both adsorption and degradation rates (Alalm et al., 2018), as
expressed in Eq. (1).

r ¼ −
dC
dt

¼ krKadC
1þ KadC

ð1Þ

where r is the degradation rate, kr is the reaction rate constant, C is the
initial concentration of the contaminant, and Kad is the adsorption equi-
librium constant. It is assumed that the reaction system is in dynamic
equilibrium, the reaction is surface mediated, and the competition
with intermediate products and reactive species for the occupation of
catalyst actives sites is not limiting (Chong et al., 2010b). The r value is
dependent on the type and concentration of contaminant, the catalyst
material, catalyst loading, and the irradiation flux, through the factors
kr andKad in Eq. (12).Kad and kr are dependent on the affinity of themol-
ecule for the surface (Alalm et al., 2015; Koltsakidou et al., 2017). If the
removal of the contaminant in the dark for the same catalyst loading is
low, removal by adsorption can be neglected. Such cases are often re-
ported for low contaminant concentrations (Herrmann, 1999; Van
Doorslaer et al., 2012); the value of Kad is very small, and Eq. (1) can
be simplified to Eq. (2), resulting in the pseudo-first-order model:

ln
Ct

Co

� �
¼ krKadt ¼ −kappt ð2Þ

where C0 is the initial concentration of the contaminant, Ct is con-
taminant concentration at a certain time, kapp is the apparent first-
adation and disinfection of water pollutants.



Table 1
Overview of photocatalytic degradation kinetics models.

Catalysts Contaminants Model applications Assumptions R2 Ref.

Photocatalytic degradation models
AC-TiO2 Rhodamine B (RhB -

dye)
• Effect of initial concentration of RhB.
• Effect of light intensity.
• Effect of the ratio of AC to TiO2.

• Oxidation on the surface of the catalyst.
• Radical production (•OH) mainly formed from
the adsorbed H2O molecules.

• Faster recombination rate.
• •OH concentration is constant at a steady state.
• h+ concentration is constant at a steady state.
• Adsorption coefficient for all organic molecules
(i.e., parent compound and degradation prod-
ucts) present in the reaction mixture are equal.

• Adsorption rate constant is dependent on light
intensity.

• Does not consider direct oxidation and photol-
ysis reaction.

• Photocatalytic reaction experiment was initi-
ated after adsorption-desorption equilibrium
was established.

0.95–0.97 (Li et al., 2008)

AC-TiO2 Rhodamine B (RhB -
dye)

• Effect of initial concentration of RhB.
• Effect of light intensity.
• Effect of the ratio of AC to TiO2.

• Oxidation on the surface of the catalyst.
• Radical production (•OH) mainly formed from
the adsorbed H2O and O2 molecules.

• Faster recombination rate.
• •OH concentration is constant at a steady state.
• h+ concentration is constant at a steady state.
• Adsorption coefficient for all organic molecules
(i.e., parent compound and degradation prod-
ucts) present in the reaction mixture is equal.

• Photocatalytic reaction experiment was initi-
ated after adsorption-desorption equilibrium
was established.

• Does not consider direct oxidation and photol-
ysis reaction.

0.15-15a (Zhang et al.,
2011)

ZnO Acid blue (dye) • Effect of initial concentration of acid blue.
• Effect of light intensity.
• Effect of the loading of ZnO.

• Oxidation on the surface of the catalyst.
• Radical production (•OH) mainly formed from
the adsorbed H2O.

• •OH concentration is constant at a steady state.
• h+ concentration is constant at a steady state.
• Fast and slow recombination rate scenarios of
h+-e−.

• Considered degradation products in the reac-
tion.

• Photocatalytic reaction experiment was initi-
ated after adsorption-desorption equilibrium
was established.

• Consider photolysis reaction.
• Does not consider direct oxidation.

0.97 (Amani-Ghadim
and Dorraji,
2015)

TiO2 • Furfuryl alcohol
• 4-chlorophenol
• Diclofenac (pharma-
ceutical)

• 17α-ethynylestradiol
(pharmaceutical)

• Inhibitory effect of NOM (e.g. SWNOM) or
background constituents (tert-butyl alcohol)
with different initial concentration.

• Oxidation on the surface of the catalyst and in
the bulk solution.

• Adsorption rate constant is independent of light
intensity.

• •OH concentration is constant at a steady state
condition.

• Does not consider degradation products in the
reaction (i.e., first 20 min reaction only).

• Photocatalytic reaction experiment was initi-
ated after adsorption-desorption equilibrium
was established.

• Consider photolysis reaction.
• Does not consider direct oxidation.
• Consider adsorption competition and inner fil-
ter effect.

0.90–0.97 (Brame et al.,
2015)

AC-TiO2 Carbofuran (pesticide) • Effect of initial concentration of carbofuran. • Oxidation on the surface of the catalyst.
• Radical production (•OH) mainly formed from
the adsorbed H2O and O2 molecules.

• Faster recombination rate.
• •OH concentration is constant at a steady state.
• h+ concentration is constant at a steady state.
• Adsorption coefficient for all organic molecules
(i.e., parent compound and degradation prod-
ucts) present in the reaction mixture is equal.

• Photocatalytic reaction experiment was initi-
ated after adsorption-desorption equilibrium
was established.

• Does not consider direct oxidation and photol-
ysis reaction.

0.93–0.97 (Vishnuganth
et al., 2016)

Sm-ZnS Direct blue 14 (dye) • Effect of initial concentration of direct blue 14.
• Effect of light intensity.

• Empirical kinetic model calculation. 0.9–0.97 (Bakhtkhosh and
Mehrizad, 2017)
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Table 1 (continued)

Catalysts Contaminants Model applications Assumptions R2 Ref.

• Effect of the loading of ZnO.
• Effect of the loading of pH.

CNT-ZnSnO4 Basic red (dye) • Effect of initial concentration of basic red.
• Effect of light intensity.

• Oxidation on the surface of the catalyst.
• Radical production (•OH) mainly formed from
the adsorbed H2O.

• •OH concentration is constant at a steady state.
• h+ concentration is constant at a steady state.
• Considered degradation products in the reac-
tion.

• Slow recombination rate scenarios of h+-e− due
to trapping by water molecules (based on scav-
enger measurement).

• Photocatalytic reaction experiment was initi-
ated after adsorption-desorption equilibrium
was established.

• Consider direct oxidation and photolysis.

0.99 (Dorraji et al.,
2017)

Ag-CNT-ZnS Rhodamine B (dye) • Effect of initial concentration of Rhodamine
B.

• Effect of the loading of Ag-CNT-ZnS.

• Oxidation on the surface of the catalyst.
• Radical production (•OH) mainly formed from
the adsorbed H2O.

• •OH concentration is constant at a steady state.
• h+ concentration is constant at a steady state.
• Considered degradation products in the reac-
tion.

• Photocatalytic reaction experiment was initi-
ated after adsorption-desorption equilibrium
was established.

• Slow recombination rate scenarios of h+-e− due
to trapping by Ag and CNT.

0.91 (Yazdani and
Mehrizad, 2018)

Photocatalytic disinfection models
AC-TiO2 E. coli • The ratio of TiO2 to AC

• Light intensity
• Temperature
• pH

• Oxidation on the surface of the catalyst.
• Photogenerated oxidants are predominant.
Inactivation follows modified Langmuir--
Hinshelwood model.

• The fractional site coverage by •OH is constant.
Adsorption coefficient for all intermediates is
equal.

NA (Youji et al.,
2008)

TiO2, Silica-TiO2 E. coli • Catalyst concentration
The ratio of TiO2 to silica

• The chemical composition of water
(NaCl, NaHCO3, Na3PO4, Humic acid)

• e− concentration is constant at a steady state.
• •OH concentration is constant at a steady state.
• h+ concentration is constant at a steady state.
• The bacterial lysis of the inactivated bacteria
can generate the same number of organic com-
pounds as the events of reaction.

• Rate constants and adsorption constants for all
intermediates are equal.

0.99 (Marugán et al.,
2008)

H-titanate
nanofiber
catalyst
(mainly TiO2)

E. coli • Catalyst concentration • e− concentration is constant at a steady state.
• •OH concentration is constant at a steady state.
• h+ concentration is constant at a steady state.
• The bacterial lysis of the inactivated bacteria
can generate the same number of organic com-
pounds as the events of reaction.

• Rate constants and adsorption constants for all
intermediates are equal.

0.97–0.99 (Chong et al.,
2011)

TiO2 E. coli • Catalyst concentration
• Initial bacteria concentration
• Light intensity

• e− concentration is constant at a steady state.
• •OH concentration is constant at a steady state.
• h+ concentration is constant at a steady state.
• The bacterial lysis of the inactivated bacteria
can generate the same number of organic com-
pounds as the events of reaction.

• Rate constants and adsorption constants for all
intermediates are equal.

5.3–7.4c (Marugán et al.,
2011)

TiO2

(continuous
reactor)

E. coli • Catalyst concentration
• Light intensity (distance from the reactor
wall)

• e− concentration is constant at a steady state.
• •OH concentration is constant at a steady state.
• h+ concentration is constant at a steady state.
• The bacterial lysis of the inactivated bacteria
can generate the same number of organic com-
pounds as the events of reaction.

• Rate constants and adsorption constants for all
intermediates are equal.

NA (Marugán et al.,
2013)

TiO2 (& H2O2) M. aeruginosa • Catalyst concentration • H2O2 and *OH under visible light are the major
factors contributing to the degradation of cell
integrity without any synergistic effect among
each other.

• Inactivation follows delayed Chick-Watson
model and Hom model.

0.90–0.99 (Chang et al.,
2018)
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order rate constant (min−1), and t is reaction time (min). kapp can be
used to compare the photodegradation performance of different
photocatalysts, discuss the effect of water chemistry, and the influ-
ence of operational conditions. For instance, Alalm et al. (2016b)
used kapp and the L-H model to compare the performance of ZrO2,
WO3, and their composites including Ru/WO3/ZrO2 for degradation
of the pesticide carbofuran and the antibiotic ampicillin. As shown
in Fig. 2, the linear regression slopes between ln (C0/C) and irradia-
tion time (t) represented the values of kapp.

As described in the L-H model, the removal of contaminants by
adsorption on photocatalyst particles may be relatively low and can
be omitted. When photocatalysts coalesce with supporting materials
that have a large specific surface area (e.g. AC, MWCNTs, magnetite,
etc.), however, the adsorption can significantly contribute to the re-
moval of contaminants (Ateia et al., 2017a; Ateia et al., 2018; Ateia
et al., 2017b; Shimizu et al., 2018). Accordingly, models describing
photocatalytic degradation by composites are reviewed separately
from other models that describe the degradation by bare
photocatalysts.
3.1.1. Degradation models for bare photocatalysts
Due to the non-selective nature of ROS, the photocatalysis should be

considered not only in the context of the targeted contaminant, but also
taking various inhibition mechanisms in complex water matrices into
consideration (Ren et al., 2018). Brame et al. (2015) developed a
model to describe the inhibitory effect of background constituents
such as natural organic matter (NOM) on the performance of photocat-
alytic oxidation using bare TiO2. Theirmodel considers different hinder-
ing mechanisms including site blocking due to the adsorption of
inhibitors, scavenging of ROS on the catalyst surface and in the solution,
and the inner filter effect, which can decrease the efficiency of the
photocatalysis. The photodegradation of organic contaminants (e.g.
furfuryl alcohol and 4-chlorophenol) without considering the degrada-
tion of by-products can be expressed as a second order reaction
Fig. 2. Typical results of an experiment showing pseudo first order kinetics. Photocatalytic
degradation by different catalysts, pH 7, catalyst dosage = 1.0 g/L, carbofuran initial
concentration = 20 mg/L, ampicillin initial concentration = 10 mg/L, UV flux =
50W/m2, (a) carbofuran, (b) ampicillin (Alalm et al., 2016b).
(Eq. (3)).

dCA

dt
¼ kACROSCA ð3Þ

where CA is the concentration of the target contaminant, CROS is the con-
centration of ROS at steady state, and kA is the reaction rate constant. A
mass-balance approach was taken that includes ROS-mediated degra-
dation in the bulk solution, adsorption on catalyst active sites, and deg-
radation by ROS and/or photo-generated holes. The scavenging of ROS
by an inhibitory compound both in the bulk and at the surface was in-
cluded in the mass balance of ROS. By considering the ROS production
rate and the concentration of the inhibitory compound, an overall
model for the degradation rate of a target compound (A) was obtained
as expressed in Eqs. (4–6).

dCA

dt
¼ −PROS;0

1þ kNCN F þ KNSð Þ
kACA F þ KASð Þ

10−μlCN ð4Þ

F ¼ 1

1þ kACA þ kNCN

D0
ð5Þ

S ¼ 1
1þ KACA þ KNCN

ð6Þ

where CA is the concentration of the target compound A, kA is the reac-
tion rate constant for a specific ROS reacting with A, KA is the Langmuir
adsorption constant for A, CN is the equilibrium concentration of the in-
hibition compound N, kN is the reaction rate constant for a specific ROS
reactingwith N,KN is the Langmuir adsorption constant for N, PROS is the
production of ROS, μ is the specific absorption coefficient of thematerial,
l is the optical path length of the incoming light, and D' is the diffusion
coefficient normalized per unit diffusion length. For the validation of
this model, photocatalytic experiments were conducted using P25
TiO2, which mainly produces hydroxyl radicals, and amino-
functionalized fullerenes attached to a silica gel substrate, whichmainly
generates superoxide species; for the removal of furfuryl alcohol and 4-
chlorophenol (i.e., probe compound) in the presence of NOM and t-
BuOH (i.e., inhibitory compound). For all experiments, the model
attained a high degree of accuracy in predicting degradation rates in
the presence of inhibiting agents.

Amani-Ghadim and Dorraji (2015) developed a pseudo first-order
model of the degradation of acid blue 9 (AB9) by ZnO nanoparticles.
The degradation rate (rd) was expressed according to the Eq. (7).

rd ¼ k0 AB9½ �ads ˙OH½ � ð7Þ

where [AB9]ads is the dye concentration on the catalysts surface, k′ is the
reaction rate constant in the equation between •OH radicals and dye,
and •OH is the concentration of hydroxyl radicals estimated using the
steady-state approximation. The concentration of hydroxyl radicals
was estimated by assuming that the hydroxyl radicals are only formed
via trapping of positive holes bywatermolecules. All of the assumptions
used in this model are listed in Table 1. Two different recombination
rate assumptions were used: a slow regime representing a low concen-
tration of electron-hole pairs and a fast regime for high concentrations
of electron-hole pairs. It should be noted that these regime assumptions
are thought to occur due to the effect of water molecules on the recom-
bination reaction (i.e., trapping of holes by water molecules could com-
pete with recombination reaction, or not), and also the effects of light
intensity and wavelength for the photoexcitation of an electron from
the valence band to the conduction band to create an electron-hole
pair (e− and h+). The models for high and low concentrations of



7M. Ateia et al. / Science of the Total Environment 698 (2020) 134197
electron-hole pairs are expressed by Eqs. (8–9) respectively.

kapp;Hhec ¼
βH1I

1
2 ZnO½ �

1
2

1þ βH2 Dye½ �0 þ βH3I
1
2 ZnO½ �

1
2

ð8Þ

kapp;Lhec ¼
βL1I

1
2 ZnO½ �

1
2

1þ βL2 Dye½ �0 þ βL3I
1
2 ZnO½ �

ð9Þ

where β represents factors that depend on the production rate of
electron-hole pairs (1), the generation of hydroxyl radicals via trapping
of holes by adsorbed water molecules (2), and the reaction rate be-
tween hydroxyl radicals and dye molecules and intermediate products
(3). The calculated kapp values in the ‘fast’, high electron-pair concentra-
tion scenarios showed good agreement with the experimental values
(R2 = 0.971). Therefore, the authors concluded that hole trapping by
water is not fast enough to inhibit electron-hole recombination in ZnO
nanoparticles.

3.1.2. Degradation models for photocatalysts composites
The earliest study was reported by Li et al. (2008) on the develop-

ment of a kinetic model to describe the removal of rhodamine B (RhB)
by a TiO2/activated carbon (TiO2/AC) photocatalyst. The model was
built using a few key elements; (1) experimental light intensity,
(2) the assumption that the adsorption of RhB and its intermediate
products are equal, (3) photonic activation step of hole-electron (h+-
e−), and (4) that the •OH reaction with RhB and intermediates is the
rate-limiting step. Accordingly, the degradation rate is represented by
Eq. (10).

r ¼ k″ΘOHΘRhB ð10Þ

where k″ is the reaction rate coefficient, and ΘOH and ΘRhB are the frac-
tional site coverage by hydroxyl radicals and RhB, respectively. ΘOH

and ΘRhB were derived according to the assumption listed in Table 1,
and the final model is expressed in Eq. (11).

kr ¼ k″ KOk04=k5ð Þ k1=k2ð Þ1=2I1=2
1þ KOk04=k5ð Þ k1=k2ð Þ1=2I1=2

ð11Þ

where k1 is reaction rate coefficient representing photoexcitation of
TiO2 to produce electron-hole pairs, k2 represents electron-hole recom-
bination to produce heat, k4 describes the reaction between a hole and
water, k′ 4 is the product of k4 and the water concentration, k5 is the re-
action between ROS and organic molecules, KO is the adsorption con-
stant for hydroxyl radicals, and I is the light intensity. The new model
fits well with the experimental data and provides insight into the effect
of the ratio of TiO2 to AC on TiO2/AC photocatalysis.

Based on thework of Li et al. (2008), Zhang et al. (2011) developed a
new kinetic model of TiO2/AC photocatalysis for RhB by considering the
adsorption equilibrium constants for intermediates in the expression of
degradation rate as depicted in Eq. (12).

r ¼ kK1C
1þ K1C þPKiCi

ð12Þ

where Ki is the adsorption equilibrium constant for each intermediate
and Ci is the concentration of each intermediate. The final developed
model is expressed in Eq. (13).

k ¼ k24
k03

 !1
2 þ k24

k03

 !1
2

2
664

3
775k

1
2
3 1− 1−

X kiþ1

k−i

� �
θTiO2

� �

� 1−e−2:303LεCTAθTiO2

L

 !1
2
I

1
2
ave ð13Þ

where ki is the reverse reaction rate constant for adsorption of each in-
termediate and catalyst, k3 is the reaction rate constant in the reaction of
irradiated TiO2 to produce electron-hole pairs, k′3 is the reaction rate
constant in the equation of electron-hole recombination to produce
heat, k4 is the reaction rate constant in the equation between hole and
water molecules, θTiO2 is the fractional site coverage of TiO2, L is the ef-
fective path of radiation through the photo-reactor, ε is the molar ab-
sorptivity, CTA is the concentration of TiO2/AC in water, and Iave is the
average intensity of incident radiation. This model fitted well with the
experimental data and was successfully validated (after the adjustment
of some modeling parameters) in another study (TiO2/AC
photocatalysis of methyl orange) (Li et al., 2006). However, it should
be noted that any practical application of the systemmust consider eco-
nomic constraints in addition to the photodegradation efficiency.

Thus, the most recent study on TiO2/AC photocatalysis implicitly
linked a kinetic model optimizing photodegradation, and electrical en-
ergy demand (i.e., economic feasibility) for use on carbofuran
(i.e., pesticide) removal (Vishnuganth et al., 2016). The model was de-
veloped based on the assumptions of Li et al. (2008) and Zhang et al.
(2011). The adsorption coefficients for carbofuran in the reaction mix-
ture were assumed, and the final form of the model is expressed by
Eq. (14).

r ¼ kr
kCCk0 ∙OH½ �

1þ kCC0ð Þ 1þ k0 ∙OH½ �ð Þ ð14Þ

where [•OH] is the concentration of hydroxyl radicals and it is taken to
be constant (i.e., Bodenstein steady state assumption). Thus, this
model partially resembles the classic L-H model and at low initial
carbofuran concentration (C b 10−3 M) the equation will follow
Eq. (13). The electrical energy determination (EEO) can be calculated
using Eq. (15).

EEO ¼ P � t

V � ln
Ct
Co

� � ð15Þ

where P is the rated power of the system, t is the irradiation time, V is
the volume of the water in the reactor, and Co and Ct are the initial
and time-dependent concentrations of a pollutant, respectively. This
EEo approach provides the preliminary data for scale-up and also a sim-
ple comparison for different photocatalysts (Miklos et al., 2018).

In addition, a number of studies have attempted to enhance the pho-
tocatalytic activity of semiconductor materials by incorporating carbon
nanotubes (CNT), due to their potentially superior characteristics (e.g.
high charge carrier mobility retarding electron-hole recombination,
and high specific surface area) (Awfa et al., 2018). However, creating a
detailed mechanism for kinetic modeling is still a major challenge. Pho-
tocatalytic degradation of contaminants occurs due to the interaction
with ROS or via direct oxidation by photogenerated holes (Cavalcante
et al., 2016). However, most existing kinetic models seem to have
overlooked the latter mechanism. Dorraji et al. (2017) developed a
mechanistic model for the degradation of basic red 46 (BR46) by zinc
stannate/CNT. Based on experiments carried out by ROS scavengers, it
was found that the degradation of BR46 occurred by oxidation by pri-
mary photo-generated holes, and oxidation by secondary hydroxyl
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radicals. Accordingly, the overall degradation rate was expressed as in
Eq. (16).

r ¼ −d BR46½ �t
dt

¼ kBR46 hþ
� �

BR46½ �ads þ kOH�BR46 °OHd eads BR46½ �ads ð16Þ

where kBR46 is the rate constant for direct oxidation of BR46 on photo-
generated holes, and kOH.BR46 is the rate constant for the reaction be-
tween hydroxyl radicals and BR46molecules. The concentrations of hy-
droxyl radicals and photo-generated holes were calculated using the
steady-state approximation. The final model form could be expressed
by Eqs. (17–21).

r ¼ αI þ βI BR46½ �0
1þ γ BR46½ �0

BR46½ �aq ð17Þ

α ¼ kirrkBR46KBR46

k0H2O
þ kirrk∙OH;BR46KBR46

kinact
ð18Þ

β ¼ kirrk∙OH;BR46kBR46K
2
BR46

KBR46 þ 1ð Þkinactk0H2O
þ kirrk∙OH;IntkBR46KBR46

kinactk0H2O
ð19Þ

γ ¼ k∙OH;BR46KBR46

KBR46 þ 1ð Þkinact
þ k∙OH;Int

kinact
ð20Þ

k0H2O ¼ kH2O H2O½ �ads ð21Þ

where [BR46]0 is the initial dye concentration, [BR46]aq is the dye con-
centration, I is the light intensity, kirr is the reaction rate constant in
the equation of catalysts irradiated to produce electron-hole pairs,
kBR46 is the reaction rate constant in the equation between hole and
dye, KBR46 is the adsorption rate constant for dye, k•OH,BR46 is the reaction
rate constant in the equation between •OH radicals and dye, kinact is the
reaction rate constant in the equation of •OH radicals changing to OH−

and hole (•OH radicals deactivation), and kH2O in the reaction rate con-
stant in the equation between hole andwater molecules. The calculated
reaction rates showed good agreement with the experimental rate (R2

= 0.99).
Similarly, Yazdani andMehrizad (2018) developed a newmechanis-

tic model for Ag-ZnS-CNT photocatalysis for the degradation of rhoda-
mine blue (RhB). In their proposed mechanism (Fig. 3), it was
assumed that Ag played a role as a sensitizer by surface plasmon reso-
nance, while MWCNT acted as a sensitizer and also an electron acceptor
Fig. 3. The proposed photocatalytic mechanism of the Ag-ZnS-MWCN
under visible light irradiation. The electrons from ZnS are photoexcited
to the conduction band of ZnS together with electrons from Ag and
MWCNT. These electrons reactwith oxygen to generate superoxide rad-
icals. In the presence of MWCNT, excited electrons move into the gra-
phitic π electron band, inhibiting electron-hole recombination
(i.e., decreasing the recombination rate). Moreover, the adsorption af-
finity and high specific surface area of MWCNTs help to sequester RhB
and concentrate it close to photocatalyst active sites. In parallel, holes
in the valence band of ZnS contribute to the formation of hydroxyl rad-
icals. Accordingly, the degradation rate is expressed by Eq. (22).

R ¼ k10 RhB½ �ads ˙OH½ � ð22Þ

where [RhB]ads is the dye concentration on the catalysts surface, k10 is
the reaction rate constant in the equation between •OH radicals and
dye, and [•OH] is the concentration of hydroxyl radicals estimated
using the steady-state approximation. Rates for hole production, the re-
action between holes and water to produce hydroxyl radicals, the oxi-
dation of RhB molecules by hydroxyl radicals, and the reaction
between intermediates and hydroxyl radicals were included in the
model and expressed by Eqs. (23–27).

R ¼ k1 Ag−ZnS−MWCNTs½ �
k2 Rh−B½ �0 þ k3 Ag−ZnS−MWCNTs½ � þ 1

Rh−B½ �ads ð23Þ

k1 ¼ k10k3
k13

ð24Þ

k2 ¼ k10 þ k11
k13

ð25Þ

k3 ¼ k3k12
k08k13 ð26Þ

k08 ¼ k8 H2O½ �ads ð27Þ

where [Ag-ZnS-MWCNTs] is the catalysts concentration, [Rh\\B]0 is the
initial dye concentration, k3 is the reaction rate constant for hole pro-
duction, k8 is the reaction rate constant in the reaction between hole
andwatermolecules, k11 is the reaction rate constant in the reaction be-
tween •OH radicals and intermediate, k12 is the reaction rate constant in
the equation between •OH radicals and electron (•OH radicals deactiva-
tion), and k13 is the reaction rate constant in the reaction of •OH radicals
changing to OH− and hole (•OH radical deactivation). The model was
Ts under visible light irradiation (Yazdani and Mehrizad, 2018).
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then simplified to an L-H formand the comparison between experiment
and calculated values of kapp showed good agreement (R2 = 0.91).

Several studies have used photocatalytic kinetic modeling for Zn-
based photocatalysts. A new, modified kapp value (i.e., as a function of
pH, catalyst loading, initial contaminant concentration, the mass ratio
of ZnS over Sm, and irradiation intensity) has been developed for Sm-
doped-ZnS photocatalysis towards the removal of direct blue 14
(DB14) (Bakhtkhosh and Mehrizad, 2017). The modified kapp values
can be calculated by Eq. (28).

kapp ¼ k0 ZnS : Sm½ �a0Ib0
DB14½ �c0pHd

ð28Þ

where a, b, c, d, and k′ are the exponents of the non-linear equations that
can be calculated by regression analysis. The calculated values of kapp by
this model were notably close to the calculated values from the experi-
mental results and themodified kinetic model revealed that the process
was compatible with pseudo-first order kinetics. Further, an empirical
relation was used in this study to predict rate constants as a function
of water chemistry and operational parameters. However, it should be
noted that there is no reason to believe that themodels can be extrapo-
lated beyond the range of calibrated values (Dalrymple et al., 2010).

Generally, most studies that report photocatalysis kineticswere per-
formed using synthetic dyes as a proxy for contaminants. However,
these tests can mask the partially non-catalytic behavior of the reaction
because dye's themselves could be a source of reactivity by electron
transfer to the conduction band of the semiconductor (i.e. they act as
sensitizers). Best practice is, therefore, to test photocatalysts using dif-
ferentmolecules to highlight the photocatalytic activity of thematerials
(Herrmann, 2010). Currently, available models were developed based
on experiments with high initial concentrations of contaminants, in
the range of 102–107 times their typical concentrations inwaste streams
(Fig. 4). Therefore, more efforts are still needed to develop kinetic
models to describe the photocatalytic degradation of pollutants at low
Fig. 4. The relationship between the initial concentration of contaminants and
concentration levels (i.e. ng/L–μg/L). This will allow elucidating the ef-
fect of initial concentration on the model accuracy. It should be noted,
however, that the R2 value indicating goodness of fit is more suitable
for linearity testing and is dependent on the number of data points
(i.e. the different number of data used in each study can limit the direct
comparison among those studies). Another important aspect is that
measuring only the disappearance of parent compounds is not recom-
mend because different by-products and intermediates are produced
during the photodegradation of organic molecules. Accordingly, the or-
ganic concentrations can be expressed collectively using the chemical
oxygen demand (COD) or total organic carbon (TOC) to assess the over-
all degradation (and progress towards mineralization) of pollution; in
some cases, the reaction products are more toxic than the original con-
taminant. A lump-sum L-H model can be used to describe the removal
of TOC by a photocatalytic process as expressed by Eq. (29) (Chong
et al., 2010b).

rTOC ¼ β1 TOC½ �
β2 þ β3 TOC½ � ð29Þ

where β1, β2, and β3 are empirical parameters determined from exper-
imental results.

3.2. Photocatalytic disinfection models

Eq. (30) expresses a general model for the kinetics of photo-
disinfection. In this model, it is assumed that the photocatalyst concen-
tration is constant during the whole process (Chong et al., 2010b).

dN
dt

¼ −k m Nx Cn Tm−1 ð30Þ

where N is the number of living bacteria at time t, k is the experimental
reaction rate, C is the concentration of photocatalyst, and x, n, andm are
the accuracy of the corresponding developed kinetic degradation models.
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the empirical constants of the model. A Chick-Watson (C\\W) model
(Eq. (31)) has also been used to describe the disinfection rates in photo-
catalytic processes (Yan et al., 2018).

ln
N
N0

¼ −kt ð31Þ

where N0 is the initial number of living bacteria. The limitation of the
classic C\\W model is that the disinfection rate is described using a
first-order kinetic relationshipwithout considering the catalyst loading.

In addition, the process of removing bacteria by irradiation may ex-
hibit shouldering or tailing if limited inactivation occurs early or late in
the process, which is not included in the classic C\\W model. To over-
come this limitation, Cho et al. (2004) used a delayed C\\W model
(Eq. (32)), which included a lag phase to describe the possible shoulder
in the kinetic relationship, and also considered the concentration of hy-
droxyl radicals.

ln
N
N0

¼ −k C T−C Tlag
� � ð32Þ

where C is the concentration of hydroxyl radicals, T is the irradiation
time, and Tlag is the length of the induction or lag phase.

The experimental results showed a lag phase at lower values of C*T,
which supports the use of this model to represent photocatalytic disin-
fection, however, afit to the experimental results did not showhigh cor-
relation, as shown in Fig. 5. To overcome the non-linearity of the
disinfection kinetics, Chong et al. (2010b) suggested using the Hom
model (Eq. (33)), which predicts the inactivation of bacteria with a
non-linear function of catalyst concentration and irradiation time.

log
N
N0

¼ −k0 Cn Tm ð33Þ

where k′ is the degradation rate, C is the concentration of catalyst, and n
and m are empirical parameters that affect the non-linearity of C and T
respectively. This model is limited to photocatalytic disinfection be-
cause it can only provide two non-linear regions.

Additionally, Li et al. (2008) derived a simple model based on
pseudo first order equation (Eq. (34)). In this model, it was assumed
that the fractional site coverage by hydroxyl radicals is constant because
the dissolved oxygen in the system was not changing.

r ¼ kr � kCC
1þ kCC0

¼ kappC ð34Þ

where kr is the rate constant, kC is the adsorption rate constant, C is the
bacteria concentration, and C0 is the initial bacteria concentration.
Fig. 5. Delayed Chick-Watson model for inactivation of E.coli, (a
Marugán et al. (2008) developed a model that takes into consider-
ation shouldering and tailing, and surface inhibition from organic by-
products released by the decomposition of bacteria and background or-
ganics. A scheme for photocatalytic disinfection was proposed to in-
clude the damage of bacteria cells, the inactivation of bacteria, and the
production of organic by-products as shown in Eqs. (35–36) (Chong
et al., 2011).

dCundam

dt
¼ −k

KCn
undam

1þ KCn
undam þ KCn

dam
ð35Þ

dCdam

dt
¼ k

KCn
undam−KCn

dam

1þ KCn
undam þ KCn

dam
ð36Þ

where k is the rate constant,K is the pseudo-adsorption constant, Cundam
is the undamaged bacteria concentration, Cdam is the damaged bacteria
concentration, and n is the inhibition coefficient.

We note that this model involves three independent parameters
that can be determined by fitting the experimental results. This is the
same number of independent parameters as found in empirical models
like the Hom model, which is commonly used to fit survival curves in-
cluding, simultaneously, shoulders and tails. However, in contrast to
the limited physical meaning of the parameters appearing in the empir-
icalmodels, thismodel gives a substantial meaning to the kinetic (k), in-
teraction (K) and inhibition (n) parameters (Chong et al., 2011).
Marugán et al. (2011) developed a rigorous kinetic model including
the radiation absorption effects on photocatalytic inactivation of bacte-
ria. To establish different irradiation conditions, a black light blue lamp
with a maximum emission at 370–375 nm was used with or without
three different neutral polymeric filters. The irradiation intensity was
calculated by integration over the wavelength range in which there is
an overlap between the photocatalyst absorption and the radiation
spectra of the lamp after the attachment of different filters. The model
employed a series of processes for the inactivation mechanism includ-
ing the incremental damages and lysis. The volumetric reaction rates
of undamaged and damaged bacteria were expressed by Eqs. (37–38)
respectively.

Ru ¼ −α1
KadsCcat

1þ KadsCcat

� �
Bu½ �2

Bu½ � þ α4 Bd½ � þ α3 B½ �0− Bu½ �− Bd½ �� �
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2 j

SgCcat

s" #

ð37Þ

Rd ¼ α1
KadsCcat

1þ KadsCcat

� �
Bu½ �2−α4 Bd½ �2
Bu½ � þ α4 Bd½ � þ α3 B½ �0− Bu½ �− Bd½ �� �

−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2 j

SgCcat

s" #

ð38Þ
) Evaluation of fit; (b) Model prediction (Cho et al., 2004).



Fig. 6. Comparison between model predictions and interpolated experimental results for
the remaining concentration of viable bacteria after 2000 s of irradiation as a function of
catalyst concentration (Marugán et al., 2013).
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where Ru is the reaction rate for undamaged bacteria, Rd is the reaction
rate for damaged bacteria, [Bu] is the undamaged bacteria concentra-
tion, [Bd] is the damaged bacteria concentration, [B]0 is the initial bacte-
ria concentration, Kads is the equilibrium adsorption constant, Ccat is the
catalyst concentration, j is the local volumetric rate of photon absorp-
tion, Sg is the catalyst specific surface area, andα1,α2,α3, andα4 are ki-
netic parameters. Themodel has been validated by experimental results
obtained at different initial bacteria concentrations, catalyst loadings,
and irradiation powers. It is suggested that the interaction betweenmi-
croorganisms and catalyst can be considered to be limited, which
allowed removing one parameter to simplify the model.

Later, the same group worked to create a new model to simulate
photocatalytic disinfection in a bench-scale, annular, continuous flow
photo-reactor (Marugán et al., 2013). Mass balance was used to de-
scribe the concentration of undamaged and damaged bacteria in the
tank. The differential equation describingmass conservation of undam-
aged and damaged bacteria in the photo-reactorwas derived neglecting
thermal effects and axial diffusion and assuming azimuthal symmetry,
steady state, constant diffusion coefficient, and unidirectional axial
flow. The model was then expressed as a function of cylindrical coordi-
nates (Eqs. (39–42)).

vz rð Þ ∂ Bu½ � z; rð Þ
∂z

¼ D
1
r
∂
∂r

r
∂ Bu½ � z; rð Þ

∂r

� �� �
þ Ru z; rð Þ ð39Þ

vz rð Þ ∂ Bd½ � z; rð Þ
∂z

¼ D
1
r
∂
∂r

r
∂ Bd½ � z; rð Þ

∂r

� �� �
þ Rd z; rð Þ ð40Þ

vz rð Þ ¼ 2 1− r=rextð Þ2 þ 1−χ2

ln 1=χð Þ ln r=rextð Þ
� �

=
1−χ4

1−χ2−
1−χ2

ln 1=χð Þ
� �

ð41Þ

χ ¼ rint=rext : ð42Þ

where vz(r) is velocity profiles in the annular space, Ru is the reaction
rate for undamaged bacteria, Rd is the reaction rate for damaged bacte-
ria, [Bu] is the undamaged bacteria concentration, [Bd] is the damaged
bacteria concentration, z is the axial cylindrical coordinate, r is the radial
cylindrical coordinate, rint is the radial cylindrical coordinate relative to
the internal wall of the reactor, and rext is the radial cylindrical coordi-
nate relative to the external wall of the reactor. The validation of the
model was carried out graphically by comparing the model prediction
curve with the experimental results obtained at different catalyst con-
centrations (Fig. 6). This model could be used to predict the photocata-
lytic disinfection performance for similar photo-reactor configurations,
taking into consideration the relatively high intrinsic variability of ex-
periments with microorganisms, and that the model parameters were
not adjusted.

Chang et al. (2018) developed a sequential reaction model to de-
scribe the generation of hydroxyl radicals by H2O2 and TiO2 and quanti-
fied their effects on the cell integrity of microcystins and the
degradation of microcystins (MCs). First, the delayed Chick-Watson
model and the Hommodel were employed to simulate the lag behavior
of cell damage. Then, kineticmodels for describing the concentrations of
MCswere developed by integration of a cell rupture kinetic model with
an MCs degradation model, assuming that MCs are released into the
water immediately after cell rupture, as recommended in previous re-
ports (Huo et al., 2015). In the kinetic models, it was assumed that
H2O2 and hydroxyl radicals are the main contributors to the rupture of
cells under visible light. In addition, the synergistic effect between
H2O2 and hydroxyl radicals was neglected. Accordingly, the cell rupture
kinetics were divided into two parts. A kinetic rate constant was
assigned to hydroxyl radicals and another rate constant was assigned
to H2O2. The refined equations for a dual-oxidant delayed Chick-
Watson model and a Hom model are expressed in Eqs. (43–44)
respectively.

ln
N
N0

¼ 0 t≤tlag
� �

− kC;H2O2 ;cell þ kC;∙OH;cellRct
� �

CH2O2 t−CH2O2 tlag
� �

tNtlag
� �	

ð43Þ

ln
N
N0

¼ 0 t≤tlag
� �

− kC;H2O2 ;cell þ kC;∙OH;cellRct
� �

CH2O2 t−CH2O2 tlag
� �

tNtlag
� �	

ð44Þ

where tlag is the lag phase time, kC, H2O2, cell is the second-order rate con-
stant of cell rupture caused by H2O2 in a dual-oxidant delayed Chick-
Watson model, kC, •OH, cell is the second-order rate constant of cell rup-
ture caused by •OH in a dual-oxidant delayed Chick-Watson model, kH,
H2O2, cell is the second-order rate constant of cell rupture caused by
H2O2 in a dual-oxidant Hom model, kH, •OH, cell is the second-order rate
constant of cell rupture caused by •OH in dual-oxidant Hom model, Rct
is the radical transformation efficiency, CH2O2 is the H2O2 concentration,
k* is the first-order decay constant of the disinfectant, and m and n are
empirical parameters. Both of the dual-oxidant models were further
validated by comparing the predicted values with the values obtained
from the experimental work. The validation showed that both models
could be used to predict cell rupture of microcystins under different of
loadings of H2O2 and/photocatalyst (Fawzy et al., 2016).

4. Empirical models

4.1. Artificial neural networks (ANNs)

ANNs are data processing systems that have been developed in
analogy to the mechanism of biological nervous systems of the
brain (Alalm and Nasr, 2018). They have the ability to discern the re-
lationship between a large number of inputs and their contributions
tomore than one output. Therefore, ANNs can be very effective in de-
scribing and predicting the influence of operating parameters on the
degradation efficiency of certain pollutants by photocatalysis. More-
over, the models can be easily constructed using programming soft-
ware (Fawzy et al., 2016; Nasr et al., 2016). Each ANN consists of a
number of neurons grouped in ordered layers. The first layer is the
input layer which includes the input (independent) neurons. The
final layer is the output layer, which includes one or more dependent
variables. In most ANNmodels of photocatalyst efficiency, the output
layer comprises one neuron providing the removal efficiency
(Hassani et al., 2018). The layers between the input and output
layers are called the hidden layers. The hidden layers provide inter-
nal processing in the ANNs to increase their accuracy. In some
cases, a single hidden layer is sufficient to obtain the desired
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accuracy if the number of neurons is sufficient (Khataee and Kasiri,
2010). Accordingly, the number of neurons in the hidden layer
(s) was tested in many models to determine the optimum number,
determined using ANN accuracy (Hassani et al., 2018). In a feed-
forward ANN, all the neurons of a given layer are directly linked to
all the neurons of the next layer. Data processing in ANNs is per-
formed as a weighted summation of the variables obtained from
the preceding layer. The weighted summation process is transferred
through layers by mathematical equations called activation func-
tions. Khataee and Kasiri (2010) listed many activation functions
that can be used in ANNs. However, only three activation functions
are widely used in the literature. The first is the hard-limit transfer
function which limits the output neuron to the values zero and one
(Durán et al., 2007). The second is the linear function, and the third
is a sigmoid, which accepts any input value and transforms it into a
number between zero and 1 as expressed in Eq. (45).

a ¼ 1
1þ en

ð45Þ
Table 2
Reviewed ANN models for photocatalytic processes.

Catalyst Contaminant Inputs Outputs

ZnO + H2O2

TiO2 + H2O2

Power station
effluent

- H2O2 concentration
- Catalyst loading

- Cyanide
constant
- Formate
constant

TiO2/montmorillonite Ciprofloxacin - Ciprofloxacin concentration
- Irradiation time
- Catalyst loading
- pH
- O3 flow rate

- Ciproflo

ZnO AB9 - Catalyst loading
- pH
- Irradiation time
- Irradiation intensity
- AB9 concentration

- AB9 deg

Polymer capped ZnO Acridine orange dye - Acridine orange
concentration
- Irradiation time
- Catalyst loading

- Acridine
degradati

Ag/ZnO Bisphenol-A - Bisphenol-A concentration
- pH
- Light wavelength

- Bisphen
rate

Tungsten/TiO2 Landfill leachate - pH
- Irradiation time
- Dopant content
- Calcination temperature

- COD rem

TiO2 4-Nitrophenol - Catalyst loading
- Irradiation time
- Irradiation intensity
- 4-Nitrophenol concentration

- 4-Nitrop

TiO2/ZrO2 Carbamazepine - Catalyst loading
- Irradiation time
- pH
- Carbamazepine
concentration

- Carbama
degradati

ZnO/montmorillonite Disperse red 54 - Catalyst loading
- Irradiation time
- Disperse red 54
concentration

- Disperse
degradati

TiO2 + Mn2+ Phenol - Mn2+ loading
- Irradiation time
- pH
- Phenol concentration
- Applied current

- Phenol d

TiO2 17α-Ethynylestradiol - Catalyst loading
- Irradiation time
- 17α-Ethynylestradiol
concentration
- DOC
- Water conductivity

- 17α-Eth
degradati
The quality and reliability of an ANN are strongly dependent on the
quality of the experimental data and the structure of the network. The
experimental results are used as inputs and in order to validate the out-
puts, so it is very important to include themost important parameters in
the input layer to obtain a reliable network (Radwan et al., 2018). Some
recent studies using ANN models to describe photocatalytic processes
are summarized in Table 2. It can be seen that ANNs have been applied
to experiments using different types of catalysts and a variety of con-
taminants including phenols, pesticides, and pharmaceuticals. The ex-
perimental inputs used in the ANN models varied depending on the
nature and purposes of the studies. However, most researchers used
at least the irradiation time, catalyst loading, and initial concentration
of contaminants as inputs (Dhiman et al., 2017; Ghanbary et al.,
2012). Azadi et al. (2018) used the amount of dopant tungsten and
the calcination temperature of the catalyst as inputs to incorporate the
composition and the preparation method of the catalyst in his model.
Jasso-Salcedo et al. (2016) included the wavelength of the irradiating
light as an input parameter, to take into account the effect of the type
of the light source on the degradation efficiency of bisphenol-A. Other
ANN
structure

No of
epochs

Validation
R2

Ref.

s degradation

s degradation

Not given Not
given

Not given (Durán et al., 2007)

xacin degradation 5-11-1 21 0.996 (Hassani et al., 2018)

radation 5:9:1 Not
given

0.9883 (Amani-Ghadim and Dorraji,
2015)

orange
on

Not given Not
given

0.9814 (Dhiman et al., 2017)

ol-A degradation 3:8:10:1
3:10:10:1

Not
given

0.99922
0.99985

(Jasso-Salcedo et al., 2016)

oval 4:13:1 Not
given

0.98 (Azadi et al., 2018)

henol degradation 4:14:1 4000 0.9925 (Ghanbary et al., 2012)

zepine
on

4:5:1 Not
given

0.9975 (Das et al., 2014b)

red 54
on

3:10:1 Not
given

Not given (Kıranşan et al., 2015)

egradation 5:12:1 Not
given

0.978 (Khataee et al., 2014)

ynylestradiol
on

5-13-1 Not
given

0.994 (Frontistis et al., 2012)
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characteristics such as dissolved organic carbon (DOC) were used as
input for the degradation of 17α-ethynylestradiol by TiO2 (Frontistis
et al., 2012). The number of hidden layers was used in most of the
reviewed studies, except for the study by Jasso-Salcedo et al. (2016),
who used two hidden layers in two models for the degradation of
bisphenol-A. In most cases, the number of neurons in the hidden layer
is chosen using the minimum value of the mean square error (Das
et al., 2014a; Kıranşan et al., 2015). Most of the reported studies used
back-propagation to train the ANNs (Khataee et al., 2014). The valida-
tion of ANNs formost of thephotocatalytic processes of the literature re-
vealed a high correlation between the experimental results and the
simulated results as shown in Table 2.

4.2. Response surface methodology (RSM)

A classic method for optimizing operational parameters is to change
one parameter while keeping the others constant. This technique con-
sumes time and efforts to search a local area of parameter space
(Sahoo and Gupta, 2012). Besides, there is a risk such a search will
only locate a local maximum (Giannakis et al., 2017). In contrast, in
some cases, RSM can determine optimal operational conditions more
quickly by modeling the empirical relationship between the dependent
responses, in this context typically removal efficiency, and the indepen-
dent parameters (input), here the operational conditions (Alalm et al.,
2016a; Ateia et al., 2016; Khodadoost et al., 2017; Ng et al., 2016).
RSM models comprise a variety of mathematical and statistical equa-
tions that can link the operational parameters and optimize the design
of experiments (Karimifard and Moghaddam, 2018; Mirzaei et al.,
2018). RSM is an advanced technique for fitting mathematical models
to the obtained experimental results. These mathematical models may
include linear, quadratic, or polynomial equations, etc. (Karimifard
and Moghaddam, 2018; Pirsaheb et al., 2018; Rakhshaee and
Darvazeh, 2017). An experimental design strategy is used to obtain an
appropriate set of data that can be effectively used in an RSM. The
most prevalent designs are full factorial, central composite, Box-
Behnken, Doehlert, and Taguchi orthogonal array (Khatri et al., 2016).
In full factorial design, a set of two or three levels of variables is consid-
ered at low, medium, and high values. The main limitation of full facto-
rial design is the production of a large number of combinations which
can make the experimental work infeasible logistically. The central
composite design comprises three types of data namely center, axial,
and cube. The method requires fewer lab experiments so may be able
to overcome the interaction problems that occur in full factorial design
(Karimifard and Moghaddam, 2018). In Box-Behnken design, the num-
ber of points is reduced by replacing some of the extreme values for op-
erational conditions (corner points) with average values. In contrast to
the others, Box-Behnken prefers second order polynomials; one limita-
tion is that this design is not preferred for data sets that require the con-
sideration of wide ranges of inputs. The Doehlert design uses a variable
space with circular coordinates for two parameters, spherical for three
parameters, and hyper-spherical for more than three parameters. It is
more appropriate for simulating second-order relations because it is
more uniform and the data sets can be easily upgraded by adding a
few experimental results, even in the case of an unequal number of
points in different levels (Bezerra et al., 2008). In Taguchi orthogonal
array design, the number of required experiments is pre-determined
to minimally cover the considered parameters to reduce the number
of experimental runs (Chong et al., 2010a). Among twelve reviewed pa-
pers (Table 3), the central composite design was used in nine, Box-
Behnken in two, and Taguchi orthogonal array in nine. Full factorial
and Doehlert were not used in any of these papers, possibly because
of the large number of experiments required for RSMmodels. In thema-
jority of the reviewed studies, three inputswere employed in the exper-
imental design. The initial contaminant concentration, the pH of the
solution, and the catalyst loading were the most prevalent parameters
(Abdullah et al., 2012; Soleymani et al., 2015). Other researchers
included the amount of other chemical reagents such as H2O2

(Pirsaheb et al., 2018; Secula et al., 2008). In some studies, the aeration
rate of the solution was also employed as an input parameter (Ng et al.,
2016). Perhaps surprisingly the light intensity was only considered as
an input parameter in one of the reviewed studies (Liu and Chiou,
2005). We note that light sources provide constant irradiation in most
photocatalytic studies, although the light intensity is not standardized
between studies. In addition, most of the researchers employed con-
stant irradiation time to simplify their models and reduce the number
of required samples. However, Chong et al. (2010b) considered the irra-
diation time in addition to contaminant concentration and catalyst load-
ing, inmodeling Congo red removal by Taguchi orthogonal array design.
The numbers of experiments ranged between 9 and 30, and the mode
valuewas 20 experiments,whichwas used in four of the reviewed stud-
ies. In all studies, RSM showed a high correlation as R2 ranged between
0.93 and 0.99, which suggests the suitability of RSM for modeling pho-
tocatalytic degradation processes.

5. Exploratory models

There are some other models that have been used in the literature
with a lesser extent such as exploratory models. In these models, the
analysis includesmultiple hypotheses about the studied system bywid-
ening the assumptions of the models (Agusdinata and Dittmar, 2007).
Support vector machine (SVM) is one of the exploratory intelligent
techniques that have been used to describe and optimize the photocat-
alytic degradation. For instance, Mahmoodi et al. (2019) used SVM sup-
ported with least square (LSSVM) method and Cuckoo Optimization
Algorithm (COA) to describe and optimize the photocatalytic degrada-
tion of Reactive Red 198 using a nano-composite of activated carbon
andmetal-organic framework. Themodel showedmoderate agreement
between experimental and predicted results (R2 = 0.948), which sug-
gests the need for future investigations of this method to obtain a better
description of photocatalytic processes.

6. Conclusions and recommendations

Wehave reviewed and analyzed a large set of articles thatmodel the
activity of simple and composite photocatalysts towards water pollu-
tion. The models are useful for describing the performance of the
photocatalysts and allow comparison between different catalysts and
operational conditions. Theoretical kinetic models were effectively
used to describe the degradation efficiency of pollutants or microorgan-
isms and relate the suggested degradation mechanismwith the experi-
mental results. However, involving the operating parameters leads to
complexity and hence several assumptions are required to overcome
the complex equations. On the other hand, empirical models offer sim-
ple equations to describe the influence of operating parameters on deg-
radation efficiency, but it requires long sets of experimental results.
Moreover, they are always limited to the studied ranges of inputs. The
L-Hmodel is simple and very effective for the description of degradation
kinetics. However, many researchers developedmore advancedmodels
in order to include additional reactions in the photocatalytic mecha-
nism. Photocatalytic disinfection has beenwidely simulated in the liter-
ature using C\\Wand Hommodels, which can be developed to include
the lag phases of bacteria. In addition, some researchers developed even
more detailed kineticmodels to include the effects of operational condi-
tions and reaction intermediates. ANNs showed high accuracy in the
simulation of the influence of operational parameters on the photocat-
alytic degradation efficiency. The composition of ANNs in recent studies
have been reviewed and discussed. It can be also concluded that RSM is
effective for modeling, designing, and optimizing photocatalytic exper-
iments. The central composite design was the most prevalent experi-
mental design strategy that had been used to develop an effective
RSMmodel with a minimum number of experiments.



Table 3
Reviewed RSMmodels for photocatalytic processes.

Catalyst Contaminant Inputs Outputs Method No of
points

R2 Reference

ZnO@g-C3N4 Sulfamethoxazole - pH
- Catalyst loading
- Air flow rate

- Sulfamethoxazole degradation CCD 20 0.9896 (Mirzaei et al., 2018)

Nano carbon dots Phenol - Irradiation time
- Catalyst loading
- H2O2 amount

- Phenol degradation CCD 18 0.96–0.98 (Pirsaheb et al., 2018)

Bi4Ti3O12 Tetracycline - Temperature
- pH
- Irradiation time

- Tetracycline degradation BBD 14 0.9929 (Khodadoost et al., 2017)

ZnO Palm oil mill effluent - Initial COD
- O2 flow rate
- Catalyst loading

- COD removal CCD 24 0.93 (Ng et al., 2016)

Fe3O4 zeolite 13× Biebrich Scarlet - Biebrich Scarlet concentration
- pH
- Catalyst loading

- Biebrich Scarlet degradation CCD 20 0.9804 (Khatri et al., 2016)

TiO2 Direct red 16 - pH
- Catalyst loading
- Direct red 16 concentration

- Direct red 16 degradation CCD 20 Not given (Soleymani et al., 2015)

BiVO4 Methylene Blue - pH
- Catalyst loading
- Methylene Blue concentration

- Methylene Blue degradation CCD 17 0.9845 (Abdullah et al., 2012)

Ag-TiO2 Methylene Blue - pH
- Catalyst loading
- Methylene blue concentration

- COD removal
- Color removal

BBD 15 0.9999–0.9994 (Sahoo and Gupta, 2012)

H-titanate nanofibe Congo red - Catalyst loading
- Irradiation time
- Congo red concentration
- Aeration rate

- Congo red degradation TOAD 9 0.9994 (Chong et al., 2010b)

TiO2 Chloramphenicol - pH
- Catalyst loading
- Chloramphenicol concentration

- Chloramphenicol degradation CCD 20 0.9519 (Zhang et al., 2010)

TiO2-Fe3+–H2O2 Dyestuff effluent - TiO2 loading
- Fe3+ loading
- H2O2 loading

- Decolorization rate CCD 16 Not given (Secula et al., 2008)

TiO2 Red 239 - Light intensity
- Stirring speed
- Red 239 concentration
- Catalyst loading

- Decolorization rate CCD 30 0.9841 (Liu and Chiou, 2005)

BBD: Box-Behnken design; CCD: Central composite design; TOAD: Taguchi orthogonal array design.
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The published studies in the literature show strong progress in
the water treatment by photocatalytic systems over the past de-
cade, as demonstrated by their ability to disinfect and purify
water under increasingly demanding conditions, along with a
deeper theoretical understanding of the mechanism of reactivity.
However, contradictory descriptions and models of photocatalytic
activity limit further progress. Optimization, especially for real
world devices, depends on effective parameterization. In order to
achieve that goal, we recommend further studies focused on the
following directions:

• In most photocatalytic degradation kinetic models, researchers
only considered the effect of initial contaminant concentrations,
light intensities, catalyst concentration, pH, and temperature in
ultrapure water solutions to develop mechanistic models. How-
ever, many of them are in fact semi-mechanistic models that do
not include other factors which could reasonably impact the
photocatalytic activity and mechanism, such as 1) the intrinsic
characteristics of photocatalysts, 2) the effect of background
water chemistry (e.g. DO, quality and quantity of contaminants,
NOM, and inorganic species), and 3) the effect of system param-
eter (e.g. the effect of different wavelength). Research is needed
to understand the fundamental mechanisms (e.g. radical sources
that participated in the reaction and varying environmental con-
ditions) of photocatalytic degradation and photocatalytic disin-
fection to provide basic information for guiding photocatalytic
kinetic modeling and providing a more reliable kinetic model.
• The majority of current studies have used synthetic dyes as the
target contaminant. However, this should be avoided because
these dyes can themselves act as a source of photocatalytic activ-
ity. Moreover, most investigations have used a high concentration
of contaminants (mg/L scale) which may skew the results. Deter-
mination of the performance of kinetic models under low concen-
tration (ng L−1 or μg/L) is a high priority.

• In the photocatalytic disinfection kinetic model, researchers put
focus on E.coli as a targeted contaminant. Development of photo-
catalytic disinfection kinetic model for other types of bacteria
and viruses with extensive fundamental mechanism can be help-
ful for future studies of photocatalytic disinfection kinetic
modeling.
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