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contestants, Welcome to PLANCKS Austria 2025,

The language used in this competition is English, but you may also provide your answers in German.

Write each problem on a separate sheet, number the pages, and include your (abbreviated)
team name on each sheet. You may of course use more than one sheet per example.

A transparent and well-organized approach is recommended. Additionally, some sub-points can be
solved independently of previous tasks — so don’t give up too early, and give it a try!

When a problem is unclear, a participant can ask, via the crew, for a clarification. If the response is
relevant to all teams, the jury will provide this information to the other teams.

You are allowed to use a non-programmable, not-graph calculator (But scientific is okay).

No books or other sources, except for this exercise booklet and a dictionary, are to be consulted
during the competition.

The organization has the right to disqualify teams for misbehavior or breaking the rules.

The use of hardware (including phones, tablets, etc.) is not permitted, except for (non-smart) watches
and medical equipment. Phones must be stored away and should not be kept in pockets.

In situations to which no rule applies, the organization decides. We wish you all the very best.

May the best physics team win!
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1 Problem Quartet

12 points

1.1 Bouncing Balls

Consider the setup as illustrated in Figure 1.1.

(a)

(1.5 points) Start with two balls on top of each
other(see figure), with m; > my. They will fall down
from a height h with velocity v(0) = 0. Determine
the velocity vy of ball 2 after bouncing off the floor
in dependence of the mass a = e

(0.5) What is the maximum velocity ball 2 can reach
in dependence of this mass ratio.

(0.5) At what mass ratio ball 1 comes to rest after
bouncing off the floor and determine the maximum
height ball 2 can reach in this case.

(0.5) Now add a third ball with mass mg, and con-
sider my » mgy » mg3. What is the maximum height
ball m3 can reach, after bouncing off the floor. The
radius of ball 2 is r,.

1.2 Falling Conductor Loop

ooooooooooooooo

Figure 1.2: A conductor loop falling into a

homogeneous magnetic field

Matthias Diez, TU Graz & KFU

Figure 1.1: Bouncing Balls

(3 points) A rectangle conductor
loop with length [, width w and re-
sistance R is falling in earth’s grav-
itational field, from an initial height
h with an inital velocity v(0) = 0.
Right above earth’s surface is a homo-
geneous magnetic field with strength
B, pointing in a direction perpendic-
ular to the conductor loop. The mag-
netic field extends to a height [. Cal-
culate the time dependence of the ve-
locity of the conductor loop inside the
magnetic field.
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1.3 Fata Morgana

n(z) =1+ Az
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Figure 1.3: Fata Morgana path of light.

(3 points) A man with eye level Y stands in the dessert at a distance D from an object of height
H. On the opposite sight stands his girlfriend, whose eyes are on the same height above the
floor. Due to the heat the refraction index of air changes approximately as n(z) = ng(1 + Az).
Determine conditions on A (You do not need to solve for A), such that they can look each other
in the eye when both look up in an angle 6. 6, is the angle between the vertical axis and the
light ray. Furthermore determine the trajectory of light z(z) where z is the height of the light
above the floor, for given A.

1.4 Water reservoir h

(3 points) At the bottom of a water tower,
with a conic water reservoir, is a small hole with
radius r « R. The radius of the cone depends
on the height R(h) = kh. At t = 0, the water d
is at height h. Determine the time evolution of
the water beam radius b(t) at a distance d under
the reservoir, long before the reservoir is empty.

Figure 1.4: Water tower
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2 Kapitza’s Pendulum

13 points Johannes Krondorfer, TU Graz

(0,50)

v

_— ?—I»yo(t) = A cos(wt)

(a) Coordinates (b) Dynamic Stabilization

Figure 2.1: Definition of the coordinates for Kapitza’s pendulum (a) and illustration of
dynamical stabilization for a fast oscillating pivot point (b).

Time-dependent problems pose a significant challenge in both classical and quantum mechan-
ics. Unlike time-independent systems, where well-established techniques allow us to determine
solutions analytically, time-dependent systems often require intricate methods or purely nu-
merical approaches. However, in some cases, the specific structure of time dependence allows
for systematic analytical treatments.

In this example, we explore Kapitza’s pendulum — a simple pendulum of mass m, with
a massless rod of length ¢ in a homogeneous gravitation field g = gé,, with a periodically
oscillating pivot point (0,yo(t)) = (0, Acos(wt)), as illustrated in Figure 2.1a. General goal
of this example is to analyze the stability of the pendulum for a fast oscillating pivot point
with small amplitude, where we can observe the phenomenon of dynamical stabilization, as
illustrated in Figure 2.1b. To this end, we will derive and analyze the equations of motion and
employ Floquet theory and the Magnus expansion, two essential tools in studying time-
periodic ordinary differential equations (ODEs). Although we investigate a classical system,
the investigated methods are broadly applicable to periodically driven quantum systems, where
they unveil insights into phenomena such as dynamical stabilization, topological phases, and
coherent control.
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2.1 Equations of Motion

Consider a pendulum of length ¢ and mass m suspended from a pivot at (0, o) as depicted in
Figure 2.1.

(a) (0.5 points) For a fixed pivot point yy = const. derive the equation of motion for the
angle 6.

(b) (0.5 points) Find the stationary points of the equation of motion. Linearize the equation
around these points and analyze their stability. If the solution is stable, calculate the
oscillating frequency wy.

(¢) (1 point) Now, consider a time-dependent pivot yo(t). Derive the modified equation of
motion for §. Compare this to part (a) and provide a physical interpretation of additional
terms.

(d) (0.5 points) Linearize the equation around the stationary points and express it as a
first-order vector valued ODE of the form

%a: _ [%O(t> (1)] . (2.1)

2.2 Floquet-Lyapunov Theorem

For the remaining problem we will consider the specific case of yo(t) = Acos(wt), and derive
stability porperties of this system. Generally, linear time-dependent ODEs, such as (2.1), are
not analytically solvable. However, for linear ODEs, with time-periodic matrix, a specialized
treatment is possible, as shown by the following theorem.

Theorem (Floquet-Lyapunov Theorem). Consider the system of linear differential equations

d

%) = H(t)=(?), (2.2)

where H(t) is a time-periodic continuous matrix function with period T, i.e.,
Ht+T)=H(t), forallt. (2.3)

Then, the fundamental solution matriz (the propagator) U(t)! , i.e. the solution to the matriz

differential equation

%U(t) = HOU(t) with U0) =1, (2.4)

can be expressed as .

U(t) = P(t)e"t, (2.5)
where P(t) is a T-periodic matriz, i.e. P(t +T) = P(t) and H = TlogU(T) is a constant
matriz.

'For a linear first order ODE the propagator U(t) can be used to determine the solution for given initial
conditions z(0) = xg, by x(t) = U(t) zo. Thus the propagator completely determines the time evolution of the
system. While in classical mechanics this concept is not necessarily introduced, the propagator, or time-evolution
operator has an essential role in quantum mechanics and the mathematical treatment of ODEs.
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(a) (2 point) Prove the Floquet-Lyapunov theorem, i.e. show (2.5).

(b) (2 point) Perform the variable transformation W (t) = P(t)"'U(t) to show that
d
dt

and conclude that the long-term evolution and stability is determined by H instead of P.
Under what conditions is the solution stable?3

—W(t) = HW(t) (2.6)

2.3 Dyson Series and Magnus Expansion

Now we know which time-independent quantity is of interest to us for determining the stability
of the Kapitza pendulum. However, we still cannot compute U(T') analytically, but need
to employ approximations. The standard method for perturbative expansion of differential
equations of the form (2.4) is the so called Picard iteration or Dyson series, where we write

t) = i U®(t), (2.7)

with U (t) = O(||H||¥) and U = I.
(a) (1 point) Show that this ansatz (2.7) yields an order by order representation with

fdtlj dty - J b H(b)H(E) . H(b). (2.8)

(b) (1 point) Show that if H commutes for different times, i.e. [H(t), H(t')] = 0 for all ¢ and
t’, then U(t) can be written via the exponential

U(t) = exp ( L H(Y) dt’) , (2.9)

and argue why this is not the case for (2.1).

In general, these perturbative approach is not optimal, since important properties of the system
might be not conserved, such as symplecticity in classical hamiltonian systems or unitarity in
quantum mechanical systems. Therefore a different approach is more promising to obtain
better and more physical approximation of the system. This leads to the concept of Magnus
expansion.

In the Magnus Expansion the evolution operator U(t) of the system is expressed as a proper
matrix exponential by defining 2(t) := log U(t) and thus U(t) = exp (2(¢)). Assuming that
Q) can be written as an infinite sum in orders of H, we write Q(¢) = >, Q(¢) with O =
O(|H|").

(c) (1 point) Show that €2, and €3 can be expressed as’
Q(l)(t) = U(l)(t)

(1) = UO(1) ~ (OO (1)) 2.10)
Q) (1) — UO(¢) — % QOB (1) + (B (H)) - é(Q(l)(t))?’.

2Hint: The differential equation (2.4) with initial conditions uniquely defines the propergator U. It might
be helpful to prove U(t + T) = U(t)U(T) first.

3 Hint: Think about the boundedness of P and the eigenvalues of H.

4 Hint: Use Taylor expansion and gather the terms of the same order.
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2.4 Stability Analysis of Kapitza’s Pendulum

With these theoretical results we can now analyze the stability of Kapitza’s pendulum in lin-
earized form (see (2.1)) with a time-dependent pivot point yo(t) = A cos(wt) with fast oscillation
frequency w of the pivot point, and small amplitude A. With the previous sections we know
that the long term evolution is governed by H by Floquet analysis and with the Magnus ex-
pansion we have that H = LQ(T). So let’s determine the effective (averaged) evolution of
Kapitza’s pendulum and determine its stability.

(a) (2 points) Show that the effective time-independent evolution matrix for and 4,1 « 1
up to third order is given by

5 _ (1) QM)+ 9@(T) + 0(T) 2
ST T —3 (%) Fwi 0]

(2.11)

where T = 27 is the period of the oscillating pivot point.> Note that Qg_f)(T) = 0 and you

w
do not need to calculate this term.

(b) (1.5 point) Convert the effective first-order ODE obtained above back into a second-order
equation to obtain the effective second order differential equation. Analyze the stability
of both stationary points and interpret the results. Derive conditions on the stability and
compute the frequency of the pendulum.

5Hint: You need to neglect small terms of A, % « 1 to get the result. You can neglect terms of A, Awg, Aw3
for small amplitudes A and fast frequencies w. Some terms cancel each other anyway and some have to be
neglected. Note that you cannot neglect Aw.
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3 Relativistic Particle in a Box

10 points Martin Napetschnig, TU Munich

[1, 2, 3, 4] The particle in a box is a well-known problem of non-relativistic quantum mechanics
that you are probably familiar with from your courses. In this exercise, you will work out the
treatment of a relativistic particle in a box. You will first derive a relativistically covariant
evolution equation, the Klein-Gordon equation. Then, you have to settle whether a ’box’, i.e.
an infinite square well, can actually contain one and only one particle forever. This seem-
ingly stupid question caused intense debates among the most brilliant minds back in the 1930s,
including Niels Bohr, Arnold Sommerfeld and Fritz Sauter, after Oscar Klein brought up a
famous paradox - the Klein paradoz - according to which high potential barriers for relativistic
particles seem to reflect more particles than are incoming!

You can keep or skip all factors of the speed of light ¢ in your calculation, but do it con-
sistently! The Lagrange function of a relativistic point particle in one dimension for a spinless
particle with charge ¢ and mass m is given by

L(z,%) = —mc®A |1 — i—j - V(z). (3.1)

(a) (1 point) To verify the non-relativistic limit, derive the equations of motion to first order
in (%)2 You should recover a familiar result.

(b) (1.5 points) Find the Hamilton function H(p,x). For p = 0 = V you should recover
another familiar result.

(¢) (0.5 points) With the Hamiltonian found we now consider operators H — H = i,
r — T, p—op= —iha%. It is more convenient to work with the squared version of
the Hamiltonian for the quantum mechanical evolution equation. Show that the squared
Schrodinger equation is given by

N2

(m(% . V(:)ﬁ"))2 U(t,z) = (—h202$ + m204> U(t,z) (3.2)

(d) (0.5 points) From now on consider the case of an electrostatic potential V(z) = ¢V =
const. Show that . , .
U(t,x) = e <Ae%’“ + Be_%kw> (3.3)

is a solution to (3.2), where A, B,k do not depend on x or ¢. Find the expression for k.

Now consider the situation of a particle moving from left to right, scattering off a potential
well of height ¢V4, as sketched in Figure 3.1. Depending on the hierarchy between E & Vj, in
region II there are 3 different regimes

e Weak potential: E > ¢V} + mc?
e Intermediate potential: ¢Vy — mc? < E < ¢V + mc?

e Strong potential: E < ¢V — mc?
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V(x)
Weak potential regime

qVy + mc?

Intermediate potential regime I qVo 5
qVy — mc

Strong potential regime
A =? By =7
Ar=1 B =1
mc?
| L &
Region | Region Il

Figure 3.1: Particle scattering off the potential well of height ¢V{, V5 > 0. The energy of the
particle is positive and the particle is initially moving from left to right.

(e) (2 points) The terms containing the coefficients A and B in (3.3) describe left- and
right-moving states. For each of the three listed regimes, write down whether Ay and By
multiply with left-moving states, right moving states or exponentially decaying states®.”

(f) (2 points) Given that WU(t,z) and -LU(¢,z) must be continuous at the well, find the
matching relations between Ar, By, A;p and By in the strong potential regime and derive
the reflectivity and transmissitivity » and t. You should find 2 equations for 2 unknowns.®

(g) (1.5 points) Calculate the reflection coefficient
R = |r|? and the transmission coefficient T =
1 — R. Do your results make sense? Do you
have an idea how to resolve the paradox? You
may notice that 7" # |[t|>. Does this surprise E>
you? Give expressions for R and 7" in the limit
Vo — o0, E.

(h) (1 point) As you should have found in point 7, Eo
an infinitely high barrier is fully reflective and 0 L7z L
conserves particle number, thus making our box
'save’. Consider now a particle trapped in such
a box, as sketched in fig. 3.2. Find the eigen-
functions and eigenenergies of the system. Make
a suitable Taylor expansion of the eigenenergies
to recover the non-relativistic energy levels for a

. . . n27r2h2
particle in a box E, = %5 55

Figure 3.2: In the limit V) — o0, a
particle inside the potential well is
reflected from the walls and thereby
stays in the box, fixing the boundary
conditions.

SExponentially growing states are unphysical because ¥(t,z) would not be normalizable.

"Hint: A left-moving state is a state for which the group velocity vg := %—5 is negative, while for right-moving
states it is positive.

8 Hint: In region I, you can normalize A1 = 1 and interpret By = r as the amplitude of the wave reflected from
the well. In region II, you can set the coefficient for the left-moving wave found in point (e) to zero (because
there should be no particle flux from right to left in region II), while the other coefficient can be interpreted as

the transmittivity t.
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4 JTon Trap Chips

15 points Michael Pfeifer, Universitat Innsbruck

Ion traps are devices used to confine electrically charged particles. In this exercise, we will look
at Paul traps that use (partially time-dependent) electrical fields for ion confinement. Micro-
fabricated ion traps (ion trap chips) lie at the heart of some of the world’s most advanced
quantum computers. In this exercise, we will explore some of the fundamentals of macroscopic
Paul traps and ion trap chips.

(a) Drawing of a macroscopic Paul trap with ions (b) Drawing of an ion trap chip from: P. Holz
(blue) and a laser beam (red). From: et al., Adv. Quantum Technol. 3 (2020).
https://www.uibk.ac.at/exphys/qo/research/
trappedions

Figure 4.1: Macroscopic Paul trap and ion trap chip.

4.1 Macroscopic Paul Traps

(a) (1 point) Show that it is not possible to stably confine an electrically charged particle us-
ing only electrostatic fields, i.e. it cannot be maintained in a stable stationary equilibrium
using only electrostatic fields. This result is called Earnshaw’s theorem.

We have shown in the previous exercise, that it is impossible to confine ions using only elec-
trostatic fields. But we can do so using alternating electric fields, possibly in combination with
static electric fields.

(b) (2 points) Consider the four infinitely long rods in figure 4.2 with linear charge densities
+A(t) = £AgcosQt. Calculate the electrical potential ¢(t,z,y) close to the center up to
second order in x,y. Assume R < d.

(¢) (0.5 points) Derive the classical equations of motion of an ion of charge e and mass m
in the electric potential (¢, x,y) from above, neglecting any motion in the z-direction.
For the setting in figure 4.2, analyze the equations of motion for 2 = 0. Are charged
particles in the center confined in the x and y directions in this case?
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Figure 4.2: Four infinitely long electrically charged rods extending in z-direction with line
charges +A(t).

The alternating electric field ¢(t, x,y) = @(x,y) cos Qt leads to a confining force on a charged
particle of charge e and mass m in the x, y-plane. This confining force can be described by an
effective potential

=

blay) = s Vel y)P. (4.)

(d) (0.5 points) Write down the quantum mechanical Hamiltonian of an ion of charge e and
mass m in the potential ¢y (z,y) = ¥(x,y), using the p(z,y) found in sub-problem (b),
and using ladder operators a;, az for the vibrational degrees of freedom. Neglect again any
motion in the z-direction. Assume the internal degrees of freedom of the ion to be that of
a two-level system. What are the oscillation frequencies?

4.2 Micro-fabricated Ion Traps

It turns out that ions cannot only be trapped using macroscopic Paul traps with three-
dimensional electrode arrangements, but also using electrodes arranged in a plane. This opens
up the exciting possibility of micro-fabricating ion traps using standard CMOS fabrication
techniques.

(a) (4 points) Consider an infinitely long electrode extending between z; < x < x5 in the
x, z-plane, shown in figure 4.3. The electrode extends between x; and x5 in z-direction
and from —o0 to 400 in the z-direction. Assume that the electrode is on the potential V'
and the rest of the z, z-plane is grounded. Calculate the electrostatic potential p(z, z, y)
for y > 0. The following integrals might be useful:

1 zZ—a

dz = + const. 4.2
f (22 + 12 + (a — 2)2)*? (22 + y2)y/(a — 2)% + 22 + 42 (4.2)

9Hint: You may for example use Green’s functions or a Fourier transform in z, to solve for ¢. Also think
about the homogeneity in z.

10
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Yy r—a
————dx = arct — ] + t. 4.3
J(a—x)2+y2 x arcan< ; > cons (4.3)
0 ika
f e,—ke_wydk' = —2arctan <2) +m (4.4)
-0 Y
v 2

Xl XZ

Figure 4.3: Electrode on voltage V' extending in the x, z-plane, with the rest of the plane
grounded.

(a’) (1 point) If you cannot derive the potential p(x,y) in part (a), you can request the
solution. To achieve the point you have to show that it is indeed the correct potential

satisfying the boundary condition.

(b) (0.5 points) Assume that the two infinitely long electrodes in the configuration in fig-
ure 4.4 are on the voltage V(t) = Vj cos Qt and the rest of the x, z-plane is grounded. The
electrodes extend between —oo and 400 in the z-direction and between —c < x < 0 and
a < x < a+ b in the z-direction. This configuration is an example for the rf electrodes of
an ion trap chip. Calculate the electric potential p(z,y,t) of this configuration for y > 0.
(Neglect for all calculations the z-direction.)

a+b

Figure 4.4: Two rf electrodes in the x, z-plane, with the rest of the plane grounded.

(¢) (1 point) The effective potential ¥)(z, y) in configuration of the previous sub-exercise has a
minimum at (xg, yo), with o = ac/(b+c) and ¢(xg,yo) = 0. For the case b = ¢, calculate
the ion-surface distance yy. How can you change the ion-surface distance? (Neglect for all

calculations the z-direction.)

11
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One can write down the formula for the electric potential on such an ion trap chip around the
point (xg,yo) in the form:

s

R (2* — y?) cos U, (4.5)

p(r,y) ~ o +
where 1 is the distance of the minimum from the chip surface. The parameter x is called the
trap efficiency.

(d) (1 point) Determine « for the given configuration for b = c.

4.3 Double-wells

By using 3 rf electrodes, one can create a (radial rf-) double-well potential in the x, y-plane
above an ion trap chip.

Consider in one dimension (), in the two separate wells of a double-well potential, two quantum
mechanical, charged particles A and B. They have charge Q5 and g, respectively, and mass
m. In equilibrium, they have a distance sy from each other and oscillation frequencies wa and
wp at their respective potential minima.

(a) (2.5 points) Determine the coupling strength i€l between the two particles A and B
to lowest order.
Note: Use the "rotating wave approximation”, i.e. aza;-r = 0, a;a; = 0, where the az,ai
(1 = A, B) are the creation and annihilation operators of phonons in the potential minima.

(b) (0.5 points) Write down the quantum mechanical Hamiltonian of this double-well system
using ladder operators a;, az, considering only the phononic modes of the double wells and
ignoring the internal degrees of freedom of the trapped charged particles.

As a model of the interaction of two trapped particles in a double-well potential, consider now
two classical particles/blocks A and B, both of mass m, as shown in figure 4.5. They are
coupled to walls with springs of coupling constants kx and kg and to each other with a spring
of coupling constant c.

ky c kg

Figure 4.5: Two blocks A, B with springs.

(¢) (0.5 points) Calculate the eigenfrequencies.

(d) (1 point) Consider the case k4 = kg = k. Assume that the particle A is displaced by
za(0) = Ap at t = 0, while the other particle is initially at rest, and then let to oscillate.
After which time t., is the kinetic energy fully transferred from particle A to particle B
for the first time?

12



Ty Pauliy

5 Hyperfine Qubits in Trapped Neutral Atoms

10 points Johannes Krondorfer, TU Graz

Neutral atom traps are among the most promising platforms for quantum computing. In these
systems, qubits are typically encoded in the fine or hyperfine structure of the atom, taking
advantage of their long-lived states and well-characterized interactions with external fields.
Their precise level structure and weak environmental coupling make them ideal candidates
for applications ranging from quantum computing to atomic clocks and quantum simulations.
Here, we will consider simple two and three level models to describe the basic principles of
optical dipole traps and single qubit operations for hyperfine (i.e. nuclear spin) qubit encoding
in alkaline earth or alkaline earth-like atoms, such as 8"Sr or '"'Yb.

2

w
~

T =
g
(=}

|g)

Figure 5.1: Two-Level system in an external field. Definition of variables and states.

5.1 A Two Level Atom in a Laser Field

To warm up, we consider a simple two-level atom in a laser field and study the dynam-
ics for different laser parameters. The general internal Hamiltonian of the two-level system

{loy,lept={[0 1]T, 1 O]T} in dipole approximation is given by

H = hwyo'o — (Dot + D*o) - E(,1), (5.1)
with the atomic lowering operator o = |g){e| = (1) 8], the dipole element D = {e|d|g) and

the electric field amplitude E(z,t). An illustration is provided in Figure 5.1. For now, we
assume that the atomic motion can be neglected and approximate the electric field as space
independent, i.e. E(z,t) = E(t) = Eycos(wt).

(a) (1.5 points) Transform the Hamiltonian (5.1) into the rotating frame by applying the
unitary transformation V(t) = ewto'o  Apply the rotating wave approximation (RWA),
i.e. 1+ et?“! x~ 1, to obtain a time independent Hamiltonian of the form

h
H = —hAc'o + B (Qo' + Q%) , (5.2)

and determine the parameters A and .'°

10 ffint: Think about how to correctly apply a time dependent unitary transformation to the Hamiltonian.
Note that the time dependent schrodinger equation has to be satisfied for the transformed state [¢)") = V (¢) [¢).

13



Ty Pauliy

(b) (0.5 points) Rewrite the Hamiltonian as a linear combination of Pauli matrices'’ and the
unit matrix, i.e.

H =al+

>t
l\°| o)
QY 2

o, (5.3)

with o = (04, 0y,0.).

(c) (1 point) Show that for a unit vector n the following relation holds for the Pauli matrices!?

exp(ifn - o) = cos(f)1 +in - o sin(h). (5.4)
(d) (1 point) Compute the time evolution operator U(t) = e~#1"" and the excited state
population pe.(t) = [{e|U(t) 1oy |* for the initial state [¢po) = |g). Sketch it for A =
0,9/2,0,20Q, 5.

5.2 Optical Lattices

After the atoms have been pre cooled using techniques like Doppler cooling and magneto optical
traps, they can be loaded into optical lattices, where the atoms see a confining potential simply
by interacting with the laser field. To describe this behavior we have to introduce the spatial
degrees of freedom and write the Hamiltonian as

2

h
H= 21’—m ~hAd'o + 3 (Qx)o’ +Qx)*0) | (5.5)
where the state vector is now written as |[¢)) = .(x,t)|e) + 14(z,t) |g). For simplicity, we
consider only one spatial dimension.

(a) (0.5 points) Derive the Schrédinger equation for the coefficients . (z,t) and ¢y(x, ).

(b) (1 point) Apply an adiabatic approximation (;.(z,t) ~ 0, A £ % ~ A) for the excited
state population to obtain an effective Hamiltonian for the ground state evolution

2

Heg = 2]9_m + Verr() - (5.6)

(¢) (2 points) For two red detuned (A < 0) counter propagating laser beams
E
E(xz,t) = E,(z,t)+ E_(z,t) = 70 (cos(kx — wt) + cos(kx + wt)) = Eycos(kx) cos(wt) ,

we obtain a standing wave as trapping potential, i.e. Q(z) = Qg cos(kz) as illustrated in
the left part of Figure 5.2.1
(i)  Estimate the number of vibrational levels of a trapped atom.

(i) How must the laser beams be selected to obtain an effective potential moving with
constant velocity v.

(iii) How must the laser beams be selected to obtain an effective potential that is accel-
erating.

(iv) Estimate the maximal acceleration such that the atoms remain trapped.

o
1 07" 0 —1
12The (anti-)commutation relations for the Pauli matrices are [0, 0m] = 2i€nmror and {on, 0m} = 26,m.
13 Hint: You may use the adiabatic approximation F(x,t) ~ Ey COS(k(t):L’—Sé w(t') dt') ~ COS(]C(B—S(t) w(t’) dt’)
which is valid if w « w? and dw/c « w/c = k.

. . . . 1 . N — |1
U The Pauli matrices are given by o, = 0 + of= 0 =io —iof= [? 01 L0, =0lc—ool= 0 ]
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Figure 5.2: Illustration of standing wave potential for trapped atoms (left) and internal three
level structure (right), with hyperfine ground states |g1), |g2) and excited state |e).

5.3 Hyperfine Transitions for Trapped Atoms

Now that we have trapped the atoms in an optical lattice (see Figure 5.2, we need schemes for
how to manipulate the hyperfine states, in which we want to encode a qubit. We only discuss
the realization of single qubit operations, as two qubit gates are theoretically more challenging.
The problem for hyperfine states is that transitions cannot be driven directly by optical laser
fields due to the small energy splitting in the electronic ground state and the violation of
optical selection rules. However, transitions in the hyperfine levels (nulcear spin states) of the
electronic ground state can be driven by two-photon Raman processes, whose principle we will
derive below.

We consider the three level system {|g1), |g2) . |e)} as depicted on the right side of Figure 5.2.
Assume that two laser fields are applied, one coupling |g1) to |e), the other coupling |gs) to |e).
Setting the energy of the excited state |€) to zero, the Hamiltonian is then given by

H = —hwo,1|91><91|—hw0,2|g2><92|— <'D101 + 'DT01> 'E1($,t)—<'D20$ + 'D§<71>'E2(l’a t), (5.7)

with 0, = |ga){e|. Let’s assume E;(z,t) = Ey;cos(wit) and Es(x,t) = Eyacos(wst). Via
unitary transformations Vi(t) = e “it9X9il and V,(t) = e w2929l we transform into the
respective rotating frame and by applying the rotating wave approximation we obtain the
Hamiltonian

H' = —hAle)el + (A1 = A)lgi)Xg1] + h(As = A)]g2)(g2|
h . h . (5.8)
+ E <g210'1r + QIO'1> + 5 (QQO‘; + QQO'l> s
where we applied an additional energy shift of —A to all levels, with A = (A; + Ay)/2.

(a) (0.5 points) For the ansatz [(t)) = ¥1(t) |g1) + ¥2(t) |g2) + Ye(t) |€), write down the
time-dependent Schrodinger equation.

(b) (2 points) Assuming that A » |A; — As| we can make an adiabatic approximation
0y ~ 0 to obtain an effective two level system. Find the resonance condition for the
effective two-level system and the effective Raman Rabi frequency (g, i.e. the oscillating
frequency of the effective two-level system at resonance.
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6 Schrodingers Cat

10 points Markus Aichhorn, TU Graz

The superposition principle states that if |¢,) and |¢;) are two possible states of a quantum
system, then also (|¢a) + |#))/v/2 is a possible state. We call this superposition. When applied
to macroscopic systems, however, this leads to paradoxical situations. One of the most famous
of these paradoxa is Schrodingers cat, where the cat is in a superposition of dead and alive. We
will investigate whether such a state is in practice detectable.

ho { N\

S~

Figure 6.1: Schematic illustration of a cat state in the harmonic oscillator.

The basis of this example is the harmonic oscillator, which can realize macroscopic states,
as we will see below. It is defined as

R 1 2
H=—p+ m;"’ #? (6.1)

2m
As it is well known, this problem can be solved by introducing ladder operators. We define

X = #/mw/h and P = p/v/mwh, and with that

1 - .
a=—(X+iP), a'=—(X-iP), N=da 6.2
ﬁ( ) ( ) (6.2)
(a) (1 point) Check that if one works with functions of the dimensionless variables X and P,
one has

A 0 A 0
P=—i— X =i—
ox ‘op
From the relation a|0) = 0, and replacing a by X and P, calculate the wave function of
the ground state 1o(X) and 1y(P). Do not normalize the result.

A special state is the eigenstate of the annihilation operator a, i.e. a|a) = «|a). This coherent
state has quasi-classical properties. It can be expanded in terms of |n), the eigenstates of the
number operator N, as follows

oy = o2 Y j—% In. (6.3)

n

An important property of |a) is that it fulfills Ax = +/h/(2mw) and Ap = /mhw/2, i.e.
AxAp = h/2.
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(b) (1 point) Following the same procedure as above, calculate the wave function ¢, (X) of
the coherent state |a), as well as ¥, (P). Again, normalisation is not necessary.

(c) (2.5 points) Suppose we have the system in a coherent state |ag) with ay = pe'® at
time ¢ = 0. Show that the system is at later times in a coherent state which can be
written as e”%2|a(t)). Calculate (x), and {(p),. Now take |a| » 1, look at Az/{(x)max
and Ap/{p)max, and argue why this can be called a quasi-classical state.

(d) (0.5 points) Consider a classical numerical example: We take now an ideal pendulum of
length 1 meter and weight 1 gram. At time ¢ = 0 the pendulum is at rest at (2 )yax = 1 pm.
What is the corresponding value of a(t = 0) and the relative uncertainty on its position

Ax /T max?

We now define a cat state as follows,
1 —iT T
|the) = 7 (e a) + ™| —a)) (6.4)

(e) (0.5 points) Suppose now « purely imaginary, i.e. « = ip. Discuss qualitatively the
physical properties of the composition of state (6.4) (position, momentum). For a value
la| » 1, in what sense can this state be considered a concrete realization of the Schrodinger
cat type of state?

We now study the properties of the cat state (6.4) in exactly this limit, |a] » 1 with a = ip,

and we set pg = py/mhw/2.

(f) (2 points) Calculate the (non-normalized) probability distribution for the position and
the momentum of the system.

(g) (0.5 points) A physicist (Alice) prepares N independent systems all in the state (6.4)
and measures the momentum of each of these systems. The measuring apparatus has a
resolution dp which fulfills Ap = y/mhw/2 « 0p « pg. Draw qualitatively the histogram
of the results of the N measurements for N » 1.

(h) (0.5 points) Another physicist (Bob) claims that the measurements of Alice have not
been done on a superposition of states as in (6.4), but on a non-paradoxical statistical
mixture of states, that is to say half of the N systems are in state |, and the other half
in |—a). Assuming this is true, does one obtain the same probability distribution for the
momentum as for the previous question for the N measurements?

(i) (1 point) In order to settle the matter, Alice now measures the position of the N indepen-
dent systems, all prepared in state (6.4). Draw the shape of the resulting distribution of

. . . . /2
measured events, assuming that the resolution of the measuring apparatus is dx « /pmw.
Can Bob obtain the same result concerning the N position measurements assuming he is
dealing with a statistical mixture?

(j) (0.5 points) Considering the numerical value obtained in the case of a simple pendulum
in question 4), evaluate the resolution 0z which is necessary in order to tell the difference
between a set of N systems in a superposition (6.4) from a statistical mixture of states?
Can this be done in practice?
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7 Boltzmann Machine

8 points Johannes Krondorfer, TU Graz

The 2024 Nobel Prize in Physics recognized John J. Hopfield and Geoffrey Hinton for their
foundational work on neural networks and machine learning — including the development of
the Boltzmann Machine. This model applies principles from statistical mechanics to machine
learning: configurations have energies, and learning adjusts these energies to match observed
data. Boltzmann Machines introduced core ideas that shaped modern machine learning —
energy-based models, expectation matching, and deep generative architectures. Their quantum
extensions now aim to model entangled or coherent systems. In this problem, you will explore
how Boltzmann Machines perform learning as free energy minimization, both in the classical
and quantum setting, to approximate the distribution of given data.

Figure 7.1: Hlustration of a Boltzmann machine as an undirected graph, with edge weights
w;; and node weights b;.

7.1 Classical Boltzmann Machine

A Boltzmann Machine is a stochastic neural network inspired by statistical physics. It consists
of binary variables s; € {—1,1}, representing the state of unit i, connected by symmetric
interactions, as illustrated in Figure 7.1. The system defines a probability distribution over
configurations based on an energy function

E(S) = —Zwijsisj —Zbisi, (71)
i<j i
with 8 = (s1, 82,...,sn) € {—1, 1}, symmetric w;; € R, and b; € R.
(a) (0.5 points) Define the probability of a state s as
1

P(s) = Ee’BE(S). (7.2)

Determine Z appropriately and compute the information — log P(s).
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We define the entropy S as expected information, i.e.

Si=— > P(s)logP(s), (7.3)
se{-1,1}NV
and the free energy as
1
F:= —ElogZ. (7.4)

(b) (0.5 points) Show that F' = (E), — %S, where (), is the expectation with respect to P.

In the context of machine learning the thus defined system is used to model the distribution of
given data Pyata. The parameters of the model (w;;, b;) should be adjusted such that P ~ Pyata.
For that purpose we want to minimize the so-called Kullback-Leibler (KL) divergence

PdataHP Z Pdata (;t(é;() ) ) (75)

which measures the deviation of the probability distributions Py.:, and P.

(¢) (1 point) Show that D(Pyaa||P) = 0 and D(Pya.||P) = 0 if and only if Pya, = P.

(d) (0.5 points) Show that minimization of the KL-divergence is equivalent to maximization
of the log-likelihood (log P)p, .

(e) (1.5 points) In order to optimize the parameters of the model, we can perform gradient
descent. For that purpose compute explicitly the update rule for the parameters 0 = w;, b;

0
Q&G_U%D<Pdata|‘P)a (76)

with learning rate n. Interpret the result, what does the learning procedure correspond to?

In practice, Boltzmann Machines are used not just to learn distributions, but to generate
samples 8 ~ P & Py, after training. However, since P(s) cannot be computed exactly for
large systems due to the intractability of the partition function Z, we rely on approximate
sampling techniques. The most commonly used is Gibbs sampling, a Markov chain Monte
Carlo (MCMC) method where variables are updated sequentially according to their conditional
probabilities P(s;|s_;), where s_; denotes s without s;. Over time, the chain converges toward
the target distribution P(s).

(f) (1 point) Compute the conditional probability

1

P(Si = 1|S—i) = m

, (7.7)

by explicitly identifying o and = in terms of the model parameters and the current state.
This expression is known as the sigmoid function, widely used in computer science.
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7.2 Quantum Boltzmann Machine

In a Quantum Boltzmann Machine, the classical binary variables s; € {—1,1} are replaced
by a quantum two-level system {|—1),|1)} as computational basis, and the energy function is
generalized to a Hamiltonian H acting on a Hilbert space. The state of the system is described
by a density matrix

1
p= Ee_ﬂH, 7 = tr{e 1} (7.8)

where tr{.} = >, (n|.|n) for some basis |n) of the underlying Hilbert space. This defines
a quantum generalization of the Boltzmann distribution, where H is a Hermitian operator,
possibly non-diagonal in the computational basis.

The principle from above remains the same and we define entropy

S = —tr{plogp}, (7.9)
and free energy
1
F = —ElogZ. (7.10)

(a) (0.5 points) Show that F' = tr{pH} — %S.

Analogously to the classical case we define the quantum Kullback-Leibler energy between a
data density operator pg.t. and the model density operator p as

D(pdataHp) = tr {pdata(log Pdata — IOg 10)} ’ (711)

for which the same properties hold as in the classical case.

(b) (1 point) Assume we have a Hamiltonian of the form H = }, 6,0,, where O, are
hermitian observables. Compute explicitly the update rule for the parameters

0
QM < 0M - naTD(pdataHp) ’ (712)
m

and compare the result with the classical one.

(¢) (1.5 points) Consider a Hamiltonian of the form
H = —ZwijUiZO'j—ZbiO'f, (713)
i<j i

with symmetric w;; € R, b; € R and o7 the z-Pauli matrix at position i.'* Argue why this
system in the computational basis {|—1),|1)} for each state is not more powerful than the
classical analog and provide an extension that takes the quantum nature into account.

1

0
i—1 N—i

4The z-Pauli matrix is given by 0% = [ _01], where the i-th position refers to the i-th ”particle”. More

/_)% /_H
explicitly this means that 07 = I QI Q- @IQRc* @I ---®I.
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8 The Precession of Mercury
A Practical Approach to Geodesics in General Relativity

14 points Matthias Diez, TU Graz & KFU

In the formalism of general relativity it can be
quite tedious to deal with all the indices. In this
problem, we want to take an easier approach to
get the equations of motions of a massive parti-
cle when a specific metric is given. We explicitely
want to calculate the fraction of perihelion pre-
cession of mercury that may be accounted for by
general relativity. The line element in general rel-
ativity is ds? = g, dz*dx”. Figure 8.1: Perihelion precession

8.1 The Geodesic Equation

In order to derive the geodesic equation, usually we try to minimize the action Sif ds

2 2 u2 dz dxv
0= (5J ds = 5f V G dardz? = (5f g“”d_d_du’ (8.1)
X1 ) ul U U

where the final equality holds if the curve is parametrized with w.

(a) (1 point) Derive from the variation of ds the Geodesic equation of motion and write it
as:

d? dx? dat
Tt =T, === =0 8.2
duz” Y du du ’ (8.2)
with the Christoffel-Symbol,
s, = 290 grp — 0 8.3
v 59 [ o9 + OuGrp — /\gpu]' ( . )

Hereby it is useful to use the normalization condition of the four-velocity for a massive

particle, guy%% = 1, what would the normalization condition for a Photon be?

(b) (1 point) Show, using the Euler-Lagrange equations , that the Lagrangians L = 4 /gﬂydg—:df—:
and £ = L? lead to the same equations of motion.

8.2 The Schwarzschild Metric

Next we will consider the well known Schwarzschild metric, which is a good description for a
72 body-problem” in our solar system. This metric can be written as (units: G = 1, ¢=1)

T r

2M oM\
ds® = (1 — _> dt* — <1 — —) dr? — r*(d6* + sin® 0d¢?) . (8.4)

(a) (0.5 points) Identify the Lagrangian £ in equation (8.4).

(b) (1 point) Identify the constants of motion of L.
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(¢) (1 point) Sketch how you would determine the Christoffel Symbols by comparing the
equations of motion directly with equation (S8.4), without using expression (8.3) and
explicitly calculate in this way one of the Christoffel symbols.

8.3 Classical Treatment

Before we try to discuss the relativistic case any further, let us look at Newtonian orbits. For
this we consider to be in a plane, and use polar coordinates.

(a) (0.5 points) Write down the non-relativistic kinetic energy of a particle in polar coordi-
nates.

(b) (0.5 points) Write down the Lagrangian of a particle moving in one plane of a central
potential, generated by a body with mass M and identify the constants of motion.

(¢) (0.5 points) Express, 72 in terms of 7 and the constants of motion (Hint replace ¢ with
an expression related to angular momentum).

(d) (1 point) In a next step we introduce a new variable p := % and replace the derivatives

with respect to ¢ with respect to ¢. This should give;
(7'(0))* + p(¢)* = Ap(¢) + B (8.5)

Determine the constants A and B.

(e) (1 point) Now take the derivative on both sides of this equations with respect to ¢ and
solve the differential equation for p.

8.4 Relativistic Treatment

Let us now use the constants of motion we defined before

(a) (1.5 points) Use g, %% = 1 the constants of motion from £, and # = Z to express 2.

(b) (0.5 points) In a next step we introduce again p := % , and replace the derivatives with
respect to s with respect to ¢.

(¢) (1 point) Derive both sides of this equation with respect to ¢ and you should get:
P'(¢) +p(¢) = C + Dp(¢)* (8.6)

Determine the constants C and D.
(d) (1 points) Justify why the term Dp? can be seen as a small perturbation for Mercury.

(e) (2 points) Use the Newtonian solution from equation (8.5) in the additional Term Dp?
and write down the differential equation for the first order perturbation p(). Use the
particular solution ¥, of

y'(z) + y(x) = A(1+ 2B+ Bceos(x)), y,=A (1 + Bz cos(z) + B B — écos(x)]
(8.7)

and determine an expression for the precession of mercury, (i.e. how far the focci rotate
for one revolution). (Hint: The approximation cos(¢ — ) = cos ¢ cos 5 + sin ¢ sin § might
be useful.
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9 Pulsar Electrodynamics

10 points Martin Napetschnig, TU Munich

[5] Pulsars are among the most extreme objects in our universe. Pulsars are rapidly spinning
neutron stars (NS). These are compact objects (size of ~ O(10 km)), which are formed at
the end of a stars lifecycle, if the stars mass is about 1.2 — 3.6 Me. As you will show soon,
neutron stars are fastly rotating (can be as fast as milliseconds!), are permeated with a very
high magnetic field and send pulsating radiation around their rotation axis, that we can detect
on Earth and on Earth bound satellites. Pulsars are used as reliable 'clocks’ in astronomy.
In fact, in 2023 an array of so-called pulsar timing arrays (PTAs) has been used to detect a
stochastic nHz gravitational wave background for the first time. Neutron stars are an active
field of research and there is still a lot to explore. In this exercise, you will analytically derive
some of the characteristic properties of pulsars.

If you feel more comfortable using Gauss (cgs) units instead of SI, there will be no points
deducted for wrong factors of g & c.

9.1 Pulsar Characteristics

Figure 9.1: Sketch of the pulsar. The magnetic moment /i is tilted from the rotation axis by a
constant angle a.

(a) (0.5 points) Given a star with total mass M, angular rotation velocity 2 and radius R,
calculate the minimal period that it can have by equating the centrifugal to the gravita-
tional force (on the equator). Insert numbers for our Sun and a typical neutron star and
give an answer about whether their measured periods are close to their minimum period
or not.

(b) (0.5 points) During a stellar collapse to a NS, the mass of the star remains constant,
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while it’s radius shrinks drastically. Using that angular momentum and magnetic flux are
conserved, find the relation between the initial and final rotation velocity % and the initial

R;
Ry

Sun be enhanced if it kept its mass and would shrink to a NS? (Our Sun is actually too
light for this, but if it was twice as heavy it could do so).

. How much would the magnetic field of our

and final magnetic field % as a function of

(c) (2 points) We take the rotation axis of the pulsar to be the z-axis. The magnetic field
far away from the pulsar is modeled as a dipole field with a definite magnetic moment ji,
which is pointing in a direction tilted by a fixed angle o from the z-axis and rotating with
the pulsar (see fig. 9.1).

The pulsar is loosing a lot of energy via radiation, which will cause it to spin down. Put
differently, the energy for the emission of radiation needs to be supplied by the kinetic
energy of the pulsar. The radiated power is given by the dipole radiation formula:

o |52
P=—1a M (9-1)

Calculate the kinetic energy loss per time Cfi—f for a rigid full sphere rotating with constant

mass and radius. Equate your result to (9.1) and find a relation between the period P = %”

and it’s rate of change P. 1°

(d) (1 point) Astronomers observe pulsars and can measure the present values Py & Py and
purely from this information infer the age of the pulsar 7. Show that they are no better
than you and provide a formula T'(Py, P). °

Useful constants: Re ~ 7 x 108m, Mg ~ 1.9 x 103°kg, Po ~ 2.3 x 10%s (27 days), Bo(Re) =
10_4T, GN = 6.67 X 10_111%1—532, Rng ~ 104m, Mg ~ M@, Pyng ~ 1073 — 1s, BNS(RNS) =
10 — 1011 T.

9.2 The Aligned Rotator

To study the magnetosphere of the pulsar, we now specialize to the case where the internal
magnetic field inside the pulsar is aligned with the rotation axis, i.e. Bi,||Q]|7. This model
is called the aligned rotator'”. As of (9.1), in this case there is no dipole radiation emitted,
but as you are going to show now, there is an inevitable outflow of particles that will cause
an additional source of radiation. The pulsar is modeled as a rigid, conducting full sphere
that has an internal magnetic field Em = Bye,. The region outside the sphere is vacuum
(Pour = fout = 0). I recommend to use standard spherical coordinates, where the angle 6 is
defined as the angle « before.

15 Hint: Parametrize i = pu €,(t) with |€,]?> = 1 and insert it into (9.1).
16 [fint: Assume the period has increased by a lot, i.e. Py >> Piitial-
1"The non-aligned rotator has been solved in a very thorough calculation by Armin J. Deutsch in 1955

24



Ty Pauliy

Toroidal
field

Electron

O_pen
magnetic
field lines

o
-
=
a |
=R
==
[-R
(=9
. 1=
\\g
®

Light Cylinder
/

Magnetic and rotational axes
>

@ 1
' Ciosed M™F | ~—
S magnetic |
A field lines { +
he | a
v % |
- star Y 7 I

0 L L L
0.0 05 1.0 1.5 20 25 3.0 35 4.0
R/r,

Figure 9.2: Left: Computer simulations of the charge distribution around the pulsar.
Magnetic field lines are black, the GJ boundary line that you calculate in point (c) is dashed.
Taken from Crinquand 2021.

Right: Similar to the left plot. Open and closed field lines are shown together with 6pc that
you derive in point (d). The GJ boundary is again the dashed line. Moreover, the light
cylinder distance Ry, is also shown. Taken from Venter, 2008. In these sources () = —Q¢.,
such that the charges are opposite to our case.

(a) (2 points) Outside the pulsar, the magnetic field B, is a dipole field. The corresponding
vector potential reads

T fo HXT  poe M
A7) = — = —V x — 9.2
(") 47 13 47 x r (9:2)

Calculate B,,; from (9.2) and show that it is given by

- 9 = =

5 po fir® = 3(fi- 1) T

By = — 9.3
YT 4r o (9:3)

In case you can not derive this, proceed with (9.3) for the next points. Give its components
in the basis vectors of spherical coordinates using the vector identities stated below: Eout =
B,€, + Byey + Bye,. By matching the B field inside and outside the star at the polar caps
(0 = 0,+m), find the relation between p and By.

(b) (1 point) Mathematically, field lines are curves r(f) satisfying

dr  rdf

= == 9.4

B " B, (9-4)
Find r(#) up to an integration constant K that we will use later. Each value of K ’labels’
a field line. This result is generic for dipole fields and gives them the ’toroidal’ shape (see
also fig. 9.2).
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()

(2 points) Our initial assumption was that the pulsar is in vacuum. However, upon
calculating the electric field strength on the surface (which we will not do), one finds that
the electric forces are much stronger than gravity, such that charged particles are extracted
of the pulsar and form a corotating magnetosphere consisting of a fully conducting plasma
that rotates with the pulsar. Find the charge density p(r, #) using that in a fully conducting
plasma the Lorentz force has to vanish in combination with Maxwells equations/Gauss law
(V-E = ...). You should recover a famous result first found by Goldreich & Julian in
1969: L

PGT = —2€0<Q : B) (95)

For which values of § we have positive/negative charges in the magnetosphere? At which
value of 6 is the boundary line between the two regimes? 18

(1 point) It is not surprising that our approximations are doomed to fail sooner or later.
The assumption of a corotating plasma at larger and larger distances has to break down
because physics dictates a fundamental speed limit to the orbital velocity of the plasma
particles. What is the maximum distance R; at which the orbital velocity reaches its
maximally allowed upper value? This value is called the radius of the light cylinder.
Magnetic field lines that bend back ’soon enough’ to not touch the light cylinder are
closed field lines. They bend and feed back into the star (see figure 9.2). Field lines
which start at a too low angle do not bend before reaching the light cylinder, their fate is
beyond our theoretical control. These field lines are called open field lines. They can be
an additional source of radiation and/or charged particles. Find the critical angle at the
polar cap 0pc, below which one has open field lines. To do so, use your result for the field
line r(#) that you derived before.

One may need the following conversions between unit vectors in Cartesian and spherical coor-
dinates:

€ sinf cos¢ cosf cos¢p —sing e,
€ | = |sinf sing cosfsing cos¢ ) (9.6)
€, cos 0 —sind 0 €

This is a short reminder of some useful vector identities:

VxVxA=V(V-A) —AA, (9.7)
Ax (BxC)=B(A -C)-C(A-B), (9.8)
(Ax ByxC=B(A-C)—AB-0), (9.9)
Vx(AxB)y=(B-VA+AN-B)—(A-V)B-B(V-A) (9.10)
V-(AxB)=B-(VxA) —A-(VxB), (9.11)
AF—1F’| = 4O (7 - 7), (9.12)
euet = 31 = 6, (9.13)

& x & =& (9.14)

&y x €y = €, (9.15)

&y X & = €. (9.16)

18 fint: The electric field is stationary, i.e. does not depend on time and there are no currents outside the
pulsar, jout = 0. Moreover, (9.11) might be useful.
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S1 Problem Quartet

12 points Matthias Diez, TU Graz & KFU

S1.1 Bouncing Balls

(a) Momentum and energy conservation give us:

MV — Mol = MU + Mals (S1.1)
02 v? 02 02
m1?+m25 :m151+m252 (812)

combining these two equations leads to

VAU =vy— 0 (S1.3)

and from this we end up after reinsertion at:

-3 1-3

v = T = oM, Ly (S1.4)
mi + me 1+a
3mi — mao 3—a

= S1.5
ml—I—mgv 1—|—av ( )

where we used a = my/m;.
(b) The maximum velocity vy is reached for a — 0, and this gives vy = 3v

(¢) If a = % ball 1 comes to rest according to equation (S1.5) and from this we directly get
Vg = 20

(d) We have seen that if ball 1 bounces off ball 2 and is much lighter it gains exactly v. In
the co-moving system of ball 1, ball two moves with velocity -2v before the collision and
is reflected with velocity 2v after the collision. Thus the lab frame ball two moves with
velocity vo = 3v. The third ball then moves with velocity —4, in the comoving frame
of ball 2 before the collision. It is then reflected with 4v, and in the lab frame we get
vs =4v+ 3v =Tv

S1.2 Falling Conductor Loop

From height h to [ the conductor is freely falling, this means it arrives with velocity v, (ty) =

—+/2¢g(h — l)at at the top of the non zero magnetic field area at a time tg = 4/2(h —1)/g. After

entering due to Faraday’s law the induced voltage is

do dz
= —— = _B I 1'
U 7 w o (S1.6)
Therefrom the induced current is: I
[ =— S1.7
- (51.7)
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and this induced current leads to a Lorentz force on the loop which is:

2
Bw*v,

F=- 2 S1.8
_— (519
The equation of motion for the loop is then:
dv B*w*v
= = —mg — - S1.9

We can solve this equation by separation of variables:

'Uz(t) d / t
—f Uz =J dt’. (S1.10)
’Uz(to) g + O{,U,/Z to

with a = % Solving the integrals on both sides and rearranging gives:

v,(t) = - [1- e*a(t’tO)] + v, (tg)e =) (S1.11)

S1.3 Fata Morgana

Snell’s law gives

n(Y)sinfy = n(z)sin(0(z)). (S1.12)
Furthermore we can use the trigonometric identity
tan 6 1
sinf = ——0 (S1.13)

V1+tan20 A1+ cot?0’

and cot § = j—fc to arrive at a differential equation

dz n(z)?
— =\ — 1 1.14
dx \/n(Y)2 sin 63 ' (51.14)

describing the trajectory of the light beam. As the problem is symmetric we find the conditions
that at x = 0 the derivative of z vanishes and z(z = 0) > H. We can then solve equation
(51.14) by separation of variables:

f dz' =J dz’ (S1.15)
\/ (1—}-Az’)2 1 D

(1+Ay)2 511192
This integral can be solved by substituting cosh(u) = Hzg/ﬁ, leading to
1 . (x+ D)A 1
=—|(1+A4 0 h| ———— h™ —1. 1.1
z() I [( + Ay sin ) cos (1 T Aysind, + cos Lln901> } (S1.16)

The condition that 2 (z = 0) vanishes gives

sinfy — 1

A= (S1.17)

2(0) — ysinfy

With the help of a computer one can then try to solve the last two equations for A.
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S1.4 Water Reservoir

We use the bernoulli equation with:

p (%v% + gh(t)) = %pvi (S1.18)

When we assume that r is much smaller than the radius of the water surface, we may say that
vy € vq and can therfore be neglected. Thus the velocity of the water leaving the reservoir is

va = +/2gh(t) (S1.19)

The current water volume in the reservoir is

VE:%RUxﬂfwh@):ék%h%ﬂ (S1.20)
The change in volume is
e (S1:21)
This is equivalent to the amount of water flowing out, which is:
I = —r’mug = —rma/2gh(t) (51.22)

We then get by separation of variables:

h(t) 5 t 2
13 g1.1 /

ho 0

which results in.

2

2 2 5

h = ho (1 = 5T0\/§t> (S1.24)
2k2hg

The velocity at a distance d is

va(t) = A/va(t)? + 2gd = /2g(h(t) + d. (S1.25)

We use the continuity equation:

ra(t)?mug(t) = r’oa(t) (51.26)
Therefrom we have: )
?}A(t) d o1
t) = = 1+ — 1.27
i) =rif = (1 55 S
Plugging in (S1.24) we end up with:
2\ 71
d 2\/2
ralt) = (14 (12 o2, (S1.28)
o 2h2h¢
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S2 Kapitza’s Pendulum

13 points Johannes Krondorfer, TU Graz

S2.1 Equations of Motion

(a) We use the angle 6 as generalized coordinate and write x = ¢sin() and y = yo — £ cos(0).
With that we get

me? .

_ Mo oy T o
=5+ == (S2.1)
V =mg(yo — £ cos(h)) .

By using the Lagrange function L = T'—V and the Euler-Lagarange equation %%—%—g =0,

we get )
me%0 + mglsin() = 0, (52.2)

and thus )
b= —% sin(6) (S2.3)

(b) The stationary points are easily found by computing 6 = 0 which is solved by 6 = nm with
n € Z. By linearization we perform a stability analysis of § = 0 and 6 = .

0 = 0: For small angles sin(#) ~ 6 by Taylor expansion. Thus, we get the linearized equation

b= —%9, (S2.4)

which has sin(wg) and cos(wp) solutions, with wy = /2. So § = 0 is stable.
0 = 7: By setting ¢ = 0 — 7 we get sin(¢ + 7) ~ —¢. Thus we have

. g
which has real exponential solutions and is thus unstable.

(¢) Now we use the time dependent pivot point yo(t). The equations remain the same, but
one has to take the time dependence of y(¢) into account. This yields

m m

T _ .9 .9 _

" i) =

%(52 cos(0)26% + €2 sin(0)%6% + 23l sin(0)6 + 32) (S2.6)

2 COS(9)292 + (9o + ESin(Q)é)Q)

2 . .
_ 2 4 g sin(0)6 + ™

-9
B 290

where the term not depending on 6 or 0 is irrelevant. The potential V' is the same as
before, but with time dependent yo(t). For the Euler Lagrange equation we thus get

= (mﬁé + mL (o sin(f) + o COS(H)é)) - (mﬁyo cos(0)8 — mgl sin(@)) (52.7)

— ml?0 + ml(jjo + g)sin(6) .
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Thus we can write

i— -9 96n). (S2.8)

The additional appearing term g, clearly acts as an additional acceleration due to the
forced movement of the pendulum.

Similar to the linearization before we can write sin(f) ~ ¢ for § « 1 and sin(¢ +7) ~ —¢
for  « 1 and § = ¢+ m. Thus, by defining xg = 0, ¢ and z, = 2o = 6, ¢ we get the system
of equations

d [ 0 1]
—x=|_ x, (S2.9)
dt FRM 0

where the + is for the expansion around 0 and the — is for the expansion around 7. So
we have o (t) = ;yO(ZHg'

S2.2 Floquet-Lyapunov Theorem

(a)

To prove the Floquet-Lyapunov theorem we first prove the identity U(t + 1) = U(t)U(T).
For that we define V(t) = U(t + T)U~'(T) and compute the derivative
d d

V(O = GUE+TUTNT) = Hi+T)U(E+ T)UT(T) = HOV(E),  (S2.10)

and V(0) = U(T)UNT) = I, and thus V(t) = U(t) as it satisfies the same defining
differential equation. Now in order to show the theorem we define P(t) = U(t)e " and
show P is T-periodic by

Pt +T)=U(t+T)e 100 — ) U(T)e HTe 1t
— UOU(TMU(T)e Mt = U(t)e ™t = P(1),
where we have used e H#7 = ¢=108U(T) — [ ~}(T'). This concludes the proof of the theorem.
First we apply the transformation and write U = PW, and thus
HPW = HU = U = (PW) = PW + PW
— HPW — PHW + PW,
=W =HW
where we used P = (Ue_NH) — Ue At —UeH'[ = HP — PH. The differential equation

for W has constant coefficients, so standard stability arguments apply: W (t) is stable iff

the spectrum of H is a subset of the left half plane, ie. o(H) = {z € C|Re(z) < 0},
because then ||[W]| < C for some constant C. For the stability of U the situation does not
change, since P is periodic, invertible and continuous we can estimate

@I =IPOW@I < [[PONIW @I < max [|P]IWEI]

W@ = 11PE) UGl < IP@ )]
= [[U@I = 1P HIW @O = HMHH)WWMWM

And thus we have
C'IWI < ||U]] < C"||W]| (S2.11)

which means that the stability of U is determined by W and thus by H.
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S2.3 Dyson Series and Magnus Expansion

(a)

We insert the ansatz (2.7) into the ODE (2.4) and gather terms of the same order in H.
This yields

So we get

and thus we directly obtain (2.8).

In principle we can just start with (2.8) and integrate every time ti,...,t; from 0 to ¢.
However, we have to correct multiple appearing terms by dividing with k!, which is the
number of possible permutations of the H(¢;). With that we can write

UM (t = <J H(t dt) : (S2.12)
and thus

U(t) = ;U(’“)(t) = g% (LtH(t’) dt’)k = exp (ﬂH(t’) dt’) : (S2.13)

Alternatively one can just show that the exponential ansatz satisfies the differential equa-
tion (2.4). For our linearized pendulum, however, this is not the case since the system
matrix does not commute for different times, instead we have

oS ey -y 2]

To compute the first few terms of the Magnus expansion it is easiest to expand on both
sides of the equation

eXp(Q(t)) =U()

0
= exp Z Q = Z
< 1+0'+ 92 + 6(23 +O(|H|Y) =T+ UY + U +U® 1 O(|H|*)
Q(l)+ UW+
0@ (Qu))z U@y
QB 4 Lo 0@ 4 QR0 4 +Wpy T Uey
O(||H|[*) O(||H|[*)

Now simple rearrangement yields the result (2.10).
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S2.4 Stability Analysis of Kapitza’s Pendulum

(a) To compute H; we compute the individual terms, noting that Qf) (T) = 0. We have

ﬁ_lr 0 1] [0 1
T T, [as(®) 0O T Fwd o

1 T
?J o(t") dt' =0

So we only have U®)(T) left to calculate, which is given by

:fd“f e d’*’lam o Lostiy ] Lost o]

J dtlf dtQJtQ dtgl o () o ét2)] .
And we have

T t1 to T t1
J dtlj dtgf dtg Oéi(t2> = J dtlf dtg t2ai<t2)
0 0 0 0 0
T 11 A 2
= $J dtlf dts t (i cos(wtq) + w%)
0 0 4
A

where we used

2 T t1 273
w wi T
_—f dtl f dtQ tz COS(CL)tQ) F 0
0 \0 J
tq sin(wtl)_‘:cros(u;tl)_i
_wiT?  2AT
= + i —_—,
6 l
where we used that So dt % = T . For the other term we get

J\ dtlf dtQJ\ dt3 a4 tl a4 (tg)
T 2 - to -
— f dt; <+A7w cos(wty) F wo) J tQJ dts (+A7w cos(wts) F wo)
0 0

AT 2AW3T  wiT?
+ - :
202 l 6
With that we have everything together and calculate

1
0B — B _ 6(Q(l))3

- 0 Tl 2| o o 77
| AT 24eT | T 0 _El o7 0]
i 0 iﬁim%__l[ 0 -|-w0T3]
- _A22uz22T n 2A?3T n ngTS 0 6 |wiT? 0
= AQwQTO 2AWT iQATT:|

—SHe t—— 0
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In total we get

2

The solution is stable if —% (%)2 F w2 < 0, which is the case if (%)2 > F2w?2. This is
always the case for the initially stable point 6, = 0. For 6, = 7 this can be achieved by
suitably adjusting A and w. This yields new frequencies of the pendulum as

1 [ Aw)? Aw)®
wizé(%) + wp if (7“) > F2uwp (S2.15)
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S3 Relativistic Particle in a Box

10 points Martin Napetschnig, TU Munich

(a) Apart from the irrelevant constant mc?, the Lagrange function is

Lz, ;b)emTfQ V@) 10 ((%)j ($3.1)

This leads to mz = —0,V (x), Newton’s second law.
(b)
L
p= G = = m— (53.2)
2 2
p .2 p
=i (1 + mch) , ($3.3)
: cp
T(p) = —F/—m—m— S3.4
Then
H(p,x) = pi(p) - L(SU, @(p)), (53.5)
2 4

cp? N mc
\/m204 + c?p? \/m204 + 2p?

=/ 2p? + m?ct + V(x) (S3.7)

For p = 0 = V(x), we recover H = E = mc?, Einsteins formula.

+V(), (S3.6)

(c) Not much to show here: (H—-V)¥ = /.0 = (H-V)*¥ =...¥

(d) One can easily see that (3.3) solves (3.2) if k = +1\/(E — qV)2 — m?¢
(e) We calculate first the group velocity for all cases (using E = 1/c2p? + m2c* + qVp):

E 2 2
_E__cp _ b ($3.8)

op  \/e2p?+m2t E—qV

Vg

Now, we see that:
e Weak potential: Here, Aj corresponds to a right-moving and By to a left-moving
state, as we are used to. This is also the case for A; and B;

e Intermediate potential: In these cases, k is imaginary and Aj; is an exponentially
decaying state while By would be exponentially growing and is thus unphysical.

e Strong potential: Chapeau who gets this right! As F — ¢V < 0, the roles of Ay and
By are reversed! Ay is left-moving and By is right-moving.
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(f)

For this problem I can put the wall at the origin(x = 0). The first derivative of ¥ can
have a kink, but must be continuous. Thus the procedure is valid. We know already
that » = B;. From the previous point we also derived that A; = 0, since it describes
left-moving states. This leaves us with ¢ = By;. From the matching of ¥ and ¥’ one gets:

1+r=t, (S3.9)
k(1—r)=—Fkt (S3.10)

with k = 2v/E? —m2ct and k' = 1\/(E — qV4)? — m3c'. One then finds

C

k+ K
2k
t= 0 (S3.12)

This is all for this point. It should be pointed out that if the roles of A;; = 0 < By =0
are exchanged, k' < —Fk’ and one treats the case of the weak potential regime, which is
completely analogous to the usual thing we do in the QM lectures.

Both k and k&’ are real numbers, so

4k?

2 _ 2 _

i) =t e (S3.13)
,  (k+K)?
— - 7 14
kE'

T<0 (S3.16)
R>1 (S3.17)

The very last line is the essence of the Klein paradox. We seem to get more stuff reflected
than we sent in. Moreover, less than zero is transmitted, which is also counter-intuitive. In
case of the weak potential regime, k' <> —k’ and we obtain the regular results that we are
familiar with: 0 < R,T <1 & R+ T = 1. In the intermediate potential regime, k' = ix is
complex and R = 1,T = 0. The fact that T # |t|? is a generic result and is not specific to
our example. What is conserved is the probability fluz v|U(t,z)|* ~ £]U(¢,2)|*. For the
reflection coefficient R = ]Z—I;‘|T|2 = 1|r|?, where k; = k = kg, while for the transmission

coefficient T = ’Ifc—f|zf|2 = ’—LT”‘/|t|2. The sign of &' now depends on whether one is in the
weak or in the strong potential regime. In the weak one &’ > 0, 0 < T < 1, while in the
strong one k' < 0, T < 0. As an aside, conservation of probability is ensured in all cases
via R+ T = |r|* + irTk/|t|2 = 1. We see in (S3.14) that for Vj — oo, limp R = 1. This
is what we wanted: The infinite square well is fully reflective, but it does not reflect
more than what is incident.

The resolution of the apparent paradox is that in region II, the wavefunction is actually de-
scribing a negative energy solution, i.e. antiparticles. Solid State physicists might prefer to
think about it as a reversed biased pn-junction (Zener diode) where Vj would be the built-
in voltage. The potential barrier is large enough to source particle-antiparticle/electron-
hole pairs (¢Vp > mc?). Antiparticles have negative charge and feel a potential dip
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instead of a well. This causes a negative charge current to the right, equivalent to a posi-
tive charge current to the left, explaining the negative transmission coefficient. Particles
are repelled by the potential and get pushed to the left, adding up with the fully reflected
incident beam, thus accounting for R > 1.

The eigenfunctions are completely analogous to the non-relativistic case.
U(t,z) = Asin(kx)e w5 (S3.18)

The cos solution does not allow W(t,z = 0) = 0. Since ¥(t,v = L) =0 — k = ", neN.
For the normalization we need to solve

L

|A|2J dz sin®(kz) =1 = (S3.19)
0

|A? <£ L cos(kzx) sin(k:x)|x_L) = (S3.20)
2 2k w0 '

A= \/% = (93.21)
— 2 ] L _iEnt
U(t,z) = \/;sm (mrz> e n (S3.22)

where F,, are obtained by plugging (S3.22) into (3.2) with the result:

hQ 2012
B, =mcj1- 2 (S3.23)

m2c2 2

The suitable expansion parameter is the Compton wavelength of the particle (versus the
system size L): Ac = 2. We can Taylor expand (S3.23) and find:

h2m?n? A
. 2
E, =mc + N + O ((_L ) (S3.24)

As long as the box size is much larger than the Compton wavelength, the non-relativistic
result is an excellent approximation.
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S4 Ion Trap Chips

15 points Michael Pfeifer, Universitat Innsbruck

S4.1 Macroscopic Paul Traps

(a) Consider an electrostatic field ¢(7) in free-space. It must satisfy the Laplace equation
Ap(%y) = 0 at all points .
In terms of the Hessian matrix (Hy); ;(Zo) = (0:0;¢)(Zo), we can write the Laplace equa-
tion as trH¢(Zy) = 0. But since the trace is the sum of the eigenvalues of a matrix, this
means that the Hessian of the potential ¢ has either at least one negative eigenvalue or
all eigenvalues are zero at the point 7.
Hence, the potential ¢ cannot have a minimum at 7, and, therefore, one cannot stably
confine an electrically charged particle in this potential.

(b) Electric potential of an infinitely long cylinder of radius R with line charge A:

o(r) = 2250 In (%) (S4.1)

Hence, for the shown configuration:

e - 10 (YR (ST

24 (d—y)? 24 (d + y)? o
x —Y x Y
1 1 .
Therefore: \ 2\ (4 2042 4 (4 )
t _
ot = A0 (9 4 (000 sy
dreg - \((d—)? + 3?)((d + 2)* + y?)
Taylor expansion around z = 0,y = 0 up to second order:
0 0 0?
pl,y,1) = 9(0,0,1) + 5~ T+ + ot Ty
6x r=0,y=0 ay z=0,y=0 6‘xé’y z=0,y=0 (84 4)
1% 2y L0 2 |
2 a‘rQ z=0,y=0 2 ay2 zzO,yzOy .
Evaluating the terms:
% o, 2% _o, (S4.6)
(9:1; z=0,y=0 ay z=0,y=0
% 0? 8 o2 8
v —o, &7 S -2 (S4.7)
6:15(9@/ z=0,y=0 65172 z=0,y=0 d2 ay2 z=0,y=0 d2
Putting this together, we obtain:
At Ao cos 2t
playt) = 2 g2y - 28U 2oy ($1.9
TEo TEQ
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(¢) The equations of motion are given by:

dp  2Xgecos

I=—r=—— S4.9
ma e p— x, ( )
and dp  2XoecosQt
. © 0€ COS
= L =TT S4.10
n eﬁy megd? 4 ( )
For 2 = 0, the equations of motion become:
. 2)\06 . 2)\06
__=n0E — . S4.11
mx Wsonx’ my 7T€0d2y ( )

We see that a charged particle will harmonically oscillate in the z-direction, but will be
unconfined in the y-direction.

(d) Using the given equation for the effective potential 1:

2
e AN
mQ? m2ed

e

U(z,y) IVo(z,y)|* =

The classical Hamiltonian for the motion of the ion in the trap is hence given by:

2 2 2 2 2 2 2 2
P +Pp Py +Dp e A Py +D
==l ) = 2 y 0 202 =B 2+ ),
2m ev(z,y) 2m mQ? w2l ( 4 ) 2m 2mw (@ +v7)
(S4.13)
with \
€ 0
=V2——. S4.14
v mS) ey ( )

Quantizing z = /h/2mw(al+a,), p. = in/hmw/2(al—a,) and y = \/h/2mw(a) +ay),p, =

in/hmw/2(a) — ay), we obtain:

1 1
H = hw (afcax + 5) + hw (azay + 5) . (54.15)

Assuming two internal states |g),|e) of energies E,, E., we obtain for the quantum-
mechanical Hamiltonian of the system:

1 1
H = E,|g){g| + E.|e)e| + hw (alam + 5) + hw (azay + 5) ; (54.16)
where the oscillation frequencies in z- and y-direction are equally w, = w, = w = 2%2_500

S4.2 Micro-fabricated Ion Traps

(a) We want to solve the electrostatic problem:

Ap =0 in Hao,
’ e (S4.17)
p(x,2,y) = f(z,2) fory=0
in Hxo = {(,2,y)|y = 0} with
V for 71 <7 < a9,
Fla,2) = s s (S4.18)
0 otherwise
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There are different ways to solve it. We will use Green’s function. The Green function in
H-, is, by the method of mirror charges, given by:

1 1 1
Gz, z,y,2, 2 —
(2, 2,y Y = A <\/<$_aj/)2+(Z_Z/)2+(y_y/)2 \/(a:—x’)2~|—(z—z')2—|—(y+y’)2
(54.19)
Using Green’s theorem in the form
f (ngG GVg0> s = f (9AG — GAY) dr, (54.20)
% 1%

we obtain with the property AG(7,7) = —§(7 — ):

o(F) = — J Erp(P\GEF) + | VLG ) - dS, (84.21)

€o ov

which becomes for p(7) = 0 in H.y:

o(x,z,y) = fm da’ JOO dzf(x, z)? Gz, z,y, o', 2" y'). (S4.22)
1 —o0 y'=0
Plugging in:
a%, y/zoG(:v, 2y, 2,2 y) = % (o)t (Zy_ NPT (S4.23)
and hence:
o(x, z,y) J da’ f dz ! 73 (S4.24)
(=) +(z—2) +9y?)
" y
oz, z,y) = ;Ll da’ [CEEIEET (S4.25)
Finally:

p(r,2,y) = p(x,y) =

A=

(arctan (xg - x) — arctan (xl — x)) : (54.26)
Y )

We consider Laplace’s equation in two dimensions:

Alternative Solution:

¢ %9

— 4+ —=0. 4.2

372 + o 0 (54.27)
Given boundary conditions at y = 0:

¢(x,0) = V(z), (54.28)

where V() is a prescribed function (e.g., a strip potential).

The Fourier transform of ¢(x,y) is defined as:
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gzg(k,y) = JOO oz, y)e * dx. (54.29)

Applying the Fourier transform to Laplace’s equation:

0% 26
I 510

Since differentiation in x corresponds to multiplication by —k? in Fourier space:

(k) (k,y) + ¢ _ 0 (S4.31)
Rearranging:
PO a-

This is a standard second-order differential equation with the general solution:

o(k,y) = A(k)e™Hv. (S4.33)
The term e*¥ is excluded to ensure the solution does not diverge as y — 0.
Using the boundary condition ¢(k,0) = V(k), we get:

o(k,y) = V(k)e W, (S4.34)

To obtain ¢(x,y) in real space:

b, y) = — J ket g, (4.35)

2m J_ o

For a conducting strip of length L = x5 — 21, the boundary condition is:

Vix) V, 1 <z <29,
a’/’ —
0, otherwise.

The Fourier transform of this function is:

~ T2 ) e*ikwl o e*ikmg
V(k)=V f ek dy =V - (S4.36)
T —1
Substituting into the inverse Fourier integral:
Vv 0 —ikzy ikxo ]
o(x,y) = Q—J ‘ .,: e Mk qf;, (S4.37)
T J o —i

This integral was given leading to:
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o= [ (5572~ (552)]

We now evaluate the integral:

o
I =J Me_bk cos(ck) dk.

0 k
Using Euler’s formula:
ick —ick
cos(ck) = i,
2
we write:
1 (* sin(ak : ,
J = §L Slngfa )e—bk<ezck + e—zck) dk.
Splitting:
1
I=—L+1,
2
where

* sin(ak . © sin(ak .
0 0

iak 7e—iak .

Using sin(ak) =
1 [® ei(a+c)k _ ei(a—c)k’

I = — —O% k.
P79, K ‘

A standard integral result is:

o0 e(wc—b)k:
f dk = —In(b —ia).
0 k

Applying this,

1 c+a c—a
I =— [tarf1 < > —tan ! ( >] :
s b b
Using the result from the previous exercise, we obtain:

Vo a+b—zx a—zx c+
o(t,z,y) = — cos (Qt) | arctan | ———— | — arctan + arctan
n ) Y )
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(S4.39)

(S4.40)

(S4.41)

(54.42)

(S4.43)

(S4.44)

(S4.45)

(S4.46)

T
—arctan | —

(S4.47)
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’ 2

(c) Because of the relation ¥(z,y) = mﬁ]ﬁgp(x, y)|? for the effective potential, the desired
minimum (g, yo) of the effective potential 1) is as well an extremum of the electric potential

—

¢(z,y), where Vi(zo, yo) = 0.
Calculating dp(xo,y)/0y = 0 for b = ¢ yields:

Yo = %\/a(a + 2b), (54.48)

i.e. the ion-surface separation depends on the electrode sizes. One can therefore change
Yo by changing the electrode sizes a, b.

(d) Taylor expansion of ¢ around (zo, yo):

2 1%

2 0y?

%
2
)y +6x8y

%
ox?

Jp
ZE+@

0
¢<x7 y) = @(‘r(h y0)+a£

L1
I3

(z0,%0) (z0,y0) (70,y0) (%0,Y0)

(54.49)
Because of the form of ¢(zg,yo) given in the problem statement, it suffices to evaluate d2¢p

at ©o = a/2 and yo = y/a(a + 2b)/2:

(x0,y0

o v 5 = Eloz(a—i-2b) 5 = Eli (54.50)
022 | 0wy T (a+ D)2 /a(a+2b) ¥4 m(a+b)32/ala+2b)  v§

and thus:

K= W((IQ—EW\/M (S4.51)

S4.3 Double-wells

(a) C.f. Brown, K., Ospelkaus, C., Colombe, Y. et al.: Coupled quantized mechanical oscilla-
tors. Nature 471, 196-199 (2011), https://doi.org/10.1038 /nature09721

The Coulomb interaction potential for the two trapped charged particles of charges Q 4, Qg
in the two potential wells separated by a distance s is given by (+ Taylor expansion):

1 TA— X 2% xh  2xax
U(l‘A,fL‘B) _ QAQB ~ QAQB (1 + A B + _,24 —5 o A2 B) ’
dmeg sg — x4+ 4mEQSy So S5 s 55
(S4.52)
where x4 and xp are the displacements of the particles from the minima in the double-well
potential.

The term proportional to x4z g representes the lowest order coupling between the motions
of the particles in the potential minima, hence:

STATB. (54.53)

The particles oscillate with harmonic frequencies w4, wp in their respective wells:

TA = d (ag + aA) , Ip = i (CLTB + CLB> . (S4.54)

2mw 4 2mwp

Therefore:

aly +as) (ag+ap (S4.55)

U= ey Ty (8 0a) (ah +an).
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Using the "rotating wave approximation” given in the problem statement, this becomes:

- QaQp K f i f f
U, ~~ _47T50msg i (aAaB + aAaB> = —h Qe (aAaB + asa ) . (S4.56)

We therefore obtain for the coupling strength:

Q0B
dreqma/wawpsy

hQux = I (S4.57)

(b) The harmonic oscillations of the particles in their respective wells contribute each a term
hw; <azai +1/ 2) to the Hamiltonian. Together with the expression of the coupling strength

between the particles in the double-well potential, derived in the previous sub-problem,
this becomes:

1 1
H = hwy <aLaA + 5) + hwp <aEaB + 5) — hQex (alaB + aAa;) . (S4.58)

(¢c) The Lagrangian of the system is given by:

1 . 1 . 1 1 1
L= §m$?4 + émeB - 5/@4%’124 - 5/4;33523 —5¢ (x4 —25)°. (54.59)

Hence the equations of motion in matrix form:

. ka+c c
TAY _ [~ m LA
()-(F 80

The eigenfrequencies are given by the square-roots of the eigenvalues of the above matrix
system to be:

.

1 [ ky+k ka—kp)?
wy = |— AT B+ci\/u+02. (54.61)
m 2 4

(d) In the case ks = kp = k, the eigenfrequencies of the system become:

k2
Wy =/ ; ¢ (54.62)
2
o= (54.63)

i - <_11> . G) . (S4.64)

Therefore, the solution of the equation of motion is given by:

and

_, z4(1) - -
Z(t) = (xB(t)) = CL U4 cos (wit + ¢y ) + C_U_ cos (w_t + ¢_). (54.65)
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Using the initial conditions, we obtain:

Tat) = % (cos (wyt) + cos (w_t)), (54.66)
and A
Zp(t) = 70 (cos (w_t) — cos (wyt)). (S4.67)

We want to know the smalles ¢ > 0, for which:
cos (wt) + cos (w_t) = 0. (54.68)
We can solve this equation (n € N odd):
wit = w_t + n. (54.69)

Since we want the smalles ¢ > 0 for which this is the case, we choose n = 1 and obtain:

foo= — (S4.70)
Wy — W-
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S5 Hyperfine Qubits in Trapped Neutral Atoms

10 points Johannes Krondorfer, TU Graz

S5.1 A Two Level Atom in a Laser Field

(a) The correct transformation rule for the Hamiltonian under a time-dependent unitary trans-

formation .
H =VHVT +invvT, (S5.1)
Obviously the first term of the Hamiltonian commutes with the transformation and we
have
ihVV = ih-iweloVVT = —hwo'o
and

iwt —iwt
T (S 0 0 0 e 0 _ a—iwt
Vav [ 0 1] [1 ol o 1|=° ¢

Volvt = Wil

So in total we get

2Q)
A

— D-Ey, ; . D* - Ey, : :
H/ _ —h(w _WO) O'TO'—F hl — o 0(elwt _|_eflwt)elwt0j o O(elwt _|_eflwt)eflwto,

—hAaa+h(ch + Q% )

(b) Tt is straight forward to rewrite the transformed Hamiltonian in terms of Pauli-matrices,
by shifting the energy about —A/2, which is always possible. Thus we have

, A A Q Q"
H = h§1 + hEO'Z + FL?O'I - h70y7
with €2, )" the real and imaginary part of 2. So we have
A
o= h—
2

Q=[0 - A]
Q= /A2 4+ QP

(c) To prove this identity there are of course several ways. We will use Taylor expansion to
prove it. Separating the odd and even parts of the Taylor expansion of the exponential we

get
. B 0 (19)214 0 1(9 2k+1 o
exp(id n-o) = ; (Qk) ZO 2%+ 1] (n-o)
B 00 ( )ke% 0O )k92k+1
=2, o T GZ (2k + 1)!

0

I
S

os(A)l+in-o 5111(0)

47



Ty Pauliy

where we used

1
(n - 0')2 = Zninjaz-aj = §Zninj {oi,0;} = |[n]| = 1.
i.j .J

(d) Now it is easy to calculate the time evolution operator

~

- sin(@t/2)> :

U(t) = e i H't = oI/ (cos(ﬁt/Z)l +1i

Thus we have

(Y —-iQ") .~ Q
ce(t) = |——=—=sin(Qt/2 2=T(1—coth>.
puelt) = [ sin(@it/2) = @)
The excited state population is illustrated in Figure S5.1.

1.0 A

0.8 1

0.6 4

Pe(t)

0.4 1

0.2 4

0.0

Figure S5.1: Excited state occupation pe.(t) = | {e|U(t) [1o) |* for the initial state |t = |g)
scanned for A = 0,Q/2,Q,2Q, 50Q.

S5.2 Optical Lattices
(a) Using the ansatz |¢)) = 1. |e) + 1, |g) we get

P’ h
ihat¢e = _77be - hA¢e + _Q*qvbg
2m 2 (S5.2)

2
. h
ihoab, = —2’;” ¥y + 30

(b) Applying the adiabatic approximation to the first equation in (S5.2) yields

Q*
we - 2_Awg )
and inserting this into the second equation, yields

2 2
. p Rl
ey = Gt + a

which immediately yields the effective potential Vg.
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(¢c) We have Q(z) = Qg cos(kx).

(i) By computing a quadratic approximation at a minimum of the effective potential
we get an approximation of

Via(z) — Z—Sfcos(kx)z - Z—gf (1 + cos(2k)) ~ %ngff
The height of the potential is obviously given by
masx _ 16Y
of T A
the frequency of the quadratic expansion is
hQ2k?
Y07 A

and the energies of the quadratic potential are given by

(x — 7/2k)?.

Eg(N) = hwo(N + %).

Thus we can estimate

Eq(N) < Vg™

hO2k? R2OA
R—2 (N + 1/2)? 0
S A WH1/2)7 < 1055
QQ
N +1/2)2 < 2%
= (N +1/2) < ShA
QQ

<N < ?Mo—m

(ii)) To obtain a trapping potential that is moving with constant velocity v we use the
adiabatic approximation for the laser field

E(z,t) = % (cos(kx — wt) + cos(kz + ¢(1)))

k;+k;x+¢(t)—wt) o <k—k qb(t)—i—wt) |

2 2 5 T 3

= Fycos (
with ¢(t) = (w + dw)t. This gives
E(z,t) = % (cos(kx + dwt) cos(wt + dwt/2)) .

Since dw « w we can approximate
Q(x) = Qg cos(kx + dwt) .

If we choose dw = +vk.

(iii) By the same arguments as before using ¢(t) = Sé w =+ ko(t') dt’, yields

Q(x) = Fycos <k <x + f:v(t’) dt’)) ,

which is just a potential following the acceleration implicit in v(t).
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(iv) To estimate the maximal acceleration we can employ a classical model and calculate
the maximal restoring force of the effective potential

F™ = max 0, Vog ()

hkQy Rk
A sin(2kx) = A

= max

So the maximal acceleration can be estimated by
hkQ2
AmA

For shallow lattices a more detailed quantum mechanical analysis needs to be per-
formed and the maximal acceleration is much smaller.

max
Umax = Fog™ /m =

S5.3 Hyperfine Transitions for Trapped Atoms

(a) Inserting the ansatz into the time-dependent Schrédinger equation we get

hQ) hQ)
iﬁ(?ﬂﬁe = _hAQ/}e + 712/191 + TQ¢92
| es
0y, = B(A1 = A, + 50
hQ*

ihatwgz = ( )77ng2 we

(b) Making the adiabatic approximation we obtain

0 Qs
we ~ ﬂ@bm + ﬂ¢gz
This yields the effective two level system
. R |2 hQi (),
1hdhg, = h(A1 — A)pg, + oA Vg, + 21A Vg
|22 h&25,

iﬁaw% = h(A2 - A)l/’gz + 2A ¢g2 + 9A wm :

So we get the effective two-level Hamiltonian

h|)? h|$2
Ha = (1080 = 2+ 0 o+ (1022 - 2+ 520 150
hQ*Q hQ Q*
o W) Wl + =2 W) (W -

So we get the Raman Rabi frequency

Q5

Q _ 1
TA

and the Raman detuning with resonance condition

[ ]* — Qo

Agr = (A1 — Ag) + =0,

2A

by setting the effective energies equal.
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S6 Schrodingers Cat

10 points Markus Aichhorn, TU Graz

(a) Recall that p = —ih-Z and & = ihZ. For X and P this yields

p o 1 h= —i a — —li
mwhp O(n/mw/h x) 0X
% = i =i =i

o(p /v mwh) ~lop-

Now we calculate the ground state, as an eigenstate of the annihilation operator, and we
get

(]al0y = (a %(X £iP)[0) =0
< (X 4 0x)(X) =0
= 1Po(X) = e Y12

and in momentum space
1 - A
al0) ={|—=(X+1iP)|0)=0
{plal0) <|\/§( )10)

= (lap + lp)dlo( ) =0
$¢0( ) —P2/2

(b) For a coherent state a|a) = «|a), thus we get

(X + (’/AX)@Z)a(X) - a¢a(X)

Sl

(8P + P)Q/)a(P) - a¢a(P)

-

yielding
a(X) = eV
Ya(P) = e”(PHVE/2

(c) We start in the coherent state |ag) with ag = pe'® at time ¢ = 0. For the eigenstates |n)
of the Hamiltonian we have the energy F, = hw(n + 1/2). So we get

i n  ipn .
U(t) |a0> = e_ﬁHt ‘a0> — e—pz/QZ %eth |TL> —02/22 P e —w.mt —1wt/2 |n>

n z(¢ wt)n

1wt/2 —p2/2 Z pe |n> 1wt/2 |CY(t)>
\/7 )
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with a(t) = pe!®=“! For the expectation values this gives

(&), = % {a(t)]a+a'|a(t)) = \/%(a(t) +a(t)”
= \/> peos(wt — @) = Lmax cos(wt — @)

P = \/><Oé [a—al|a(t)) = \/?(Oé(t) —a(t)")
= —\/T psin(wt — ¢) = —Pmax sin(wt — ).

Now if |a| = p » 1 we have

Az/{x), . =1/p«1
AP/ Pmax = 1/p < 1.

So the uncertainty is negligible small compared to the extension of the state in position
space as well as in momentum space.

(d) For the ideal pendulum we have w = 1/{/g ~ 3.13 s71. We have py = 0 and thus ¢ = 0,
and p = (&), /%2 ~ 3.5 x 10° and <§”” ~ 1.3 x 10719,

(e) For the cat state |1).) as in (6.4) with o = ip we get

{afz|a)y =0
<0z\p\0¢> = Pmax = P Tniﬂ’u/2
(—alz] —a)=0

<_a‘p‘ - a> = ~Pmax -

If we interpret the left moving state as "dead” and the right moving as ”alive” we get a
superposition of two classical-like states, analogous to the Schrodinger cat.

(f) To calculate the probability density in position and momentum space we calculate

P(X)oc|e ™4 4ho (X)) + ™ Hah_o (X))
Oc|efi7r/4ef(X7ip\/§)2/2 T ol/4 o= (X +ipy/2)?/2 |2

(S6.1)
2
oc4e2’ X% cos (\/ipX — %)
P(P)acle ™ (P) + ™/ o (P)P
ol I/ (P=pVR?/2 | i/ Ag—(Ppv2)?/2)2 (S6.2)

oce_(P_P\/i)Q 4 e_(P+ﬂ\/§)2

(g) Since the resolution is much larger than the uncertainty of the state itself and much smaller
that the difference in momentum of the two states, Alice will obtain a combination of two
Gaussians with width dp as distribution, one centered at +pg the other centered at —py.
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(h) In momentum space the quantum superposition vanishes as seen in (f). Therefore the

histogram of a classical mixture of the two states will look exactly the same as the mea-
surement of Alice.

When measuring in position space with a resolution dx « -~ h/p e %. In this case the
resolution is fine enough to resolve the structure of the quantum probability distribution
given in (S6.1), and thus the distribution will have that form. On the other side, if we
consider a statistical mixture of the two coherent states the probability distribution is
given by

Pcl(X)OCWa(X)P + ‘w—a(X)P

2_X2

(86.3)

e

and the interference pattern does not occur. So this measurement can decide whether we
only have a statistical mixture or a quantum superposition.

. . .- . A/ .
The resolution that is necessary to see the superposition is dx « f ™ ~ 10726, which
is not achievable in practice.
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S7 Boltzmann Machine

8 points Johannes Krondorfer, TU Graz

S7.1 Classical Boltzmann Machine

(a) For proper normalization of P we immediately get Z = Y. e #E(). For the information
we get

—log P(s) = BE(s) +logZ = 3 ( Z’LUUSZSJ Zb sl> + log Z (S7.1)

i<j

(b) This is easily shown by
<E>p—— 62 BE(s P(s)log P(s))
= EZ ((—log P(s) —log Z) P(s) + P(s)log P(s))

- —%longP(s) = —%logZ =F

(¢c) We can bound the logarithm with logaz < o — 1 for all z > 0. For the Kullback-Leibler
divergence this gives

P(s)
Pdata(3>

< Puns(s) ( gy 1) = S (P - Pans(s)) =0

S

Pdata‘ |P 2 Pdata IOg

Thus D(Pyata||P) = 0. For the bound of the logarithm we have equality if and only if
x =1, i.e. Pga = P, which shows the statement.

(d) The Kullback-Leibler divergence can be rewritten as

D<PdataHP) = Z (Pdata<8) 1Og Pdata(s) - Pdata(s) lOg P(S)) - <10g P>Pd,dta + % )

S

and thus minimizing the KL divergence is the same as maximizing the log-likelihood
(log P)p, .

(e) To calculate the update we first compute

o log P(s) = B00B(s) + 007 = (2B (5) — oB(s)),)

So we get

aGD(PdataHP) - 6 (<69E>P <a9E>Pidtd) ’
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which means

05, D(Passal |P) = B (= (s00p + (0)p,,.,.)
Ow,y D(Paatal | P) = B (- (wij)p + <wij>pdm) :

Thus the update is essentially matching the expectation of model and data distribution
of the computational units of the model. When the model is perfectly trained, i.e. the
gradient is zero, then the expectations are the same for model and true data.

(f) In order to compute the conditional probability we use the definition

P( 1|3 ) P(Sl = 173—i) P(SZ = 1,8_1‘)
Si = —-i) = =
P(S_i) P(Sl =1, S_i) + P(Sl = —1, S—i)
B 1
P(5i=—178_1‘) :
1 + P(Si=1,sfi)

Furthermore we have

P(si=—-1,s_; _ N
P<f5i =1, S‘:)) — exp (—B(E(s; = —=1) — E(s; = 1))) = e #AE(s=)
So a = 3 and

T = AE(S_Z) = 2211}1‘]‘8]‘ + sz .
J#i
S7.2 Quantum Boltzmann Machine
(a) Analogously to the classical case we compute
1

tr{pH} — 3

1 1
S = Btr{—plogp— plog Z + plog p} = —Blothr{p} =F

(b) Analogously to the classical case we perform the derivative with respect to the parameters
0,, yielding

0p, D (paatal|p) = Btr {pdata (GGMH — <(99uH>p)}
=5 (<O“>pdam N <O”“>P) '

This is essentially the same as in the classical case, but with expectation values of hermitian
operators in a Hilbert space instead of classical statistical expectations.

(¢) The given Hamiltonian does not provide an advantage of the quantum system over the
classical one, since it is diagonal in the computational basis. Thus by computing the
matrix elements of the Hamiltonian we get

<s| H |3'> = —(gg <2 W;;j8;8; + Z bi3i> )

i<j i

95



Ty Pauliy

with s; € {—1,1}. This is equivalent to the classical system. To exploit the advantage
of the quantum system we need mixtures and superpositions of the computational basis.
This could be achieved by adding terms like

X X T X _Z
HIE{ZFW@" ZI/VUJZ-U]-, ZTZ']'UZ-O']-, }
i ij

i<j

Superpositions are incorporated since (s| Hy [s") pcdss
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S8 Precession

14 points Matthias Diez, TU Graz & KFU

S8.1 The Geodesic Equation

(a) The Euler Lagrange equation for L = 4/g,. d;: d;; is:

0 d 0
L=——L S8.1
oxH ds oz, ( )
where z,, = %. From this we immediately get:
1 d (1
WE RN e 2
2L8 GapZ s <Lga“$ ) (S8.2)

Now we can use that g,s2°2? = 1, as well as for timelike trajectories of massive particles
and we thus get:

1 o 2
5(3“9&5% i = Juag ST+ 8ggaux i + 08Gapt” i (S8.3)
Additionally we use that ¢""¢,,” = 6 and after rearranging we arrive at:
d? dx? dz*
—at —=T" =0 S8.4
duz” " du du ’ (58.4)

(b) We use again the Euler-Lagrange equation, this time for the Lagrangian L?:

d| o ]
— | =—L%| = 0,L* .
ds lé’x'u | On (58:5)
Using the product rule we have:
d ’3
L—|—L|=Ld,L 58.6
ds {&xu | : (586)

where we used that L = 1 and thus d%L = 0.

S8.2 The Schwarzschild Metric
(a) The Lagrangian can be read off to be :

L- (1 - ﬂ) P2 (1 - %> 2 (6% + sin® 067) (88.7)

r

b) We immediately see that L does not depend on ¢, ¢ and s. Therefrom we know that <L
(b) y p : <L,

a L and £L — x“g—ﬁ are constants of motion. However as we know that g, a#z" =1 is

also a constant of motion we find
h = r?sin®6¢ (S8.8)
M .
k= (1 - _) i (58.9)
r
2M 2M
1= (1 - T) (1 — T) i? — 12(6? + sin® 04?) (S8.10)
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In order to get the Christoffel symbols in this specific problem we only need to evaluate the
Euler Lagrange equations for our choice of coordinates and then identify the Christoffel

symbols, eg.: SN .
120y £ 20
T

r ds?

We can rearrange this:

We can read then off I');, = 25 (1 — M)fl.

S8.3 Classical Treatment

(a)

(b)

The constants of motion are:

h = mr?¢?
- M
Ez%[fZ—i—rQ(bQ]—mTG

Rearranging of the equations from above gives:

2(E o mMG) o h22

7'12 — r mr
m
First we use the chain rule to get:
dr  drdo
dt — do dt

Furthermore we have:
dp d1  1dr

dé  dor r2 do

Combining these two leads to:

dr_ _dph
dt  dom
Inserting this in equation (S8.17) gives:
dp\” s 2Em  2MGm?
d¢ h? h?

p

Therefrom we have:

IM Gm?
A=
2Em

B="3

28

(S8.11)

(S8.12)

(S8.13)

(S8.14)

(S8.15)
(S8.16)

(S8.17)

(S8.18)

(S8.19)

(S8.20)

(S8.21)

(S8.22)

(98.23)
(98.24)
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(e) Differentiating both sides with respect to ¢ gives:

/I

20'p" + 2pp’ = Ap’ (S8.25)

From this we have: 4
Pl +p= 5 (58.26)

This equation is easy to solve, the fundamental solutions are sin ¢ and cos ¢. We choose
for the homogeneous part cos ¢ and the particular solution is simply g. Thus we get an
ellipse for A < 0 in polar coordinates:
1 1 ARy
—=p=—|cos(¢) + — S8.27
o= g (oo + ) (s8.27)

where Ry and the energy E as well as h depend on the initial conditions.

S8.4 Relativistic Treatment
(a)

2
I - <1 - ﬂ) l1 + h—Q] (58.28)
r r
(b) Similar to the Newtonian case we use:
dr dp
T o (S8.29)
and get:
n, 2 K 1 1 2
p +p:ﬁ_ﬁ+2Mp e (58.30)
d
where p' = d—g.
(¢) By differentiation of both sides we have:
2M
20"+ 'p = =0 + 3Mp*Y, (S8.31)
dividing by p’ leads to:
2M
P +p= -z T 3Mp? (S8.32)
and this gives us for C' and D:
2M
-5 (S8.33)
D =3M (S8.34)

(d) Justify why the term Dp? can be seen as a small perturbation for Mercury.
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(e) Using the Newtonian solution in the perturbation we get:

2M  3M3
=53 T 7(1 + 2ecos ¢ + e cos® @) (S8.35)
Of the particular solution the first part adds a minute constant, the third a minute constant
and a periodic wiggle, but the second adds something that is not periodic with 27 and

this is observable as precession. So as our approximate solution we take:

p//+p

2

M
P zﬁ(l + ecos ¢ + 3h2 egsin ¢) (S8.36)
M 3M?

where we used: cos(¢ — ) = cos¢pcos S + singsin S and cos 5 ~ 1 and sin 8 ~  for a

small angle § = 3]‘}{2%. Thus the precession A is
27 M?
h2
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S9 Pulsar Electrodynamics

10 points Martin Napetschnig, TU Munich

S9.1 Pulsar Characteristics

(a)
R3
Poin =21\ | —— S9.1
™ G (59.1)
I get for the Sun P, = 1.03 x 10*s while I get for the NS with the above values P, =
5.85 x 107*s. The answer is that the Sun is two orders of magnitude below above their
minimum period, while pulsars are really close to it. The result giving values below ms

can be explained by order 1 factors in the masses and radii of pulsars.

2 2
(b) (0.5 points) % = % = (%) . Taking the indicated values gives % = RRQQ ~ 4.9 x 10°
i i 4 NS
as a magnification factor for the magnetic field, which is the same as for the angular
momentum.
(c)
sin v cos(Qt)
fg= il [ sina sin(Q) |, (59.2)
Cos (v
d d (IO?
B = (). .
e~ dt<2> (59:3)
: 2 : Ho .
IOQ = EMRQQQ = — 12#63/12 sin® a Q4 (59.4)
2 12
: fopt” sin® o\ 4
Q=———->—19Q :
< 12mc3] ) 7 (89:5)
2 o2
. fop msin“a\
P=|—/—— )P :
( 3c31 ) (59.6)
(d) We integrate (S9.6):
Py 2 a2 T
J dP P = (W)J dt, (89.7)
Rx]itial 3C I 0
Po T
f dP P = P, POJ dt, (59.8)
Pinitial 0
PO2 ‘PI%II ial -
n (1 ST ) SRR T (59.9)
1P
T~==2 (S9.10)
2 P,
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S9.2 The Aligned Rotator
(a) Using (9.7) and the index notation:

0,0,—1 =¥ (6-5) - (89.11)
(rkrk)ﬁ T
N L AT 'f) - (89.12)
Hi HT5T
R (S9.13)
- 9 S\ =
= po fir® = 3(ji - 1) T
By = 22 - S9.14
YT 4r rd ( )
Ho [ > =
=3 (2cosf é, +sinf ep) (59.15)
In the last line I used (9.6) for €,. The magnetic moment at the pole is given by:
21 By R3
L L (S9.16)
Ho
(b) We have
dr B
— = | do = S9.17
J r J By ( )
cos 6
=2|df 1
f ol (89.18)
r(6) = K sin® 0 (S9.19)
(c) There are two ways to derive this. Ones uses (9.11), the other uses (9.9). I will show first
the latter option here and use also V-B=0andV x B = /Lojmt — %E =0:
0=FE+ (0 x7) x B, (S9.20)
E=—(Q BF+Q(B-7), (S9.21)
6 . E = % = —(2 [TinBj — BjQiT‘j] s (8922)
Pcs = —€o [3Q]BJ + eri&Bj — Qirj@;Bj — BlQZ] (8923)
Lo 1 -
= —& |:2(Q . B) + égijkgl]kgirj(aiBj — @BZ) (8924)
— —250((- B) - %(Q < 7)(V x B), = (89.25)
pay = —2e0(Q - B) (S9.26)
The other way is smoother (using also (9.10)):
0=FE+ (Qx7) x B, (S9.27)
65:%:—6- (Qxf*)xB]z (89.28)
0
— —B-(Vx (Qx7)= (S9.29)
— —B-(3Q—(Q-V)/),= (S9.30)
pay = —2e0(Q - B) (S9.31)
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After carrying out the scalar product (giving 0.5 P for somebody who does this directly
without computing pg.):

pag = +const (2 cos? f — sin? 0) ~ (3 cos? ) — 1) (59.32)

Thus the critical angle at which there are no charges is given by 6. = COS_I(%) ~ 5h° ~
0.95rad. We have positive (negative) charges for angles below (above) this value. Of
course, we have 4 quadrants: positive charges for 0§ € [—-55°, +55°] and 6 € [125°, 4+235°
and negative ones otherwise. Figure 9.2 is unfortunately confusing, because these papers
consider a pulsar spinning in the opposite direction to our case.

(d) The speed limit is Q- R < ¢ — Ry = §. Now I use (59.19)

R sin2 QPC
— = , S9.33
Ry sin? 5 ( )

bpe ~ q/Qf (89.34)

The small polar cap region sources open field lines.
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