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Dear contestants, Welcome to PLANCKS Austria 2025,

• The language used in this competition is English, but you may also provide your answers in German.

• Write each problem on a separate sheet, number the pages, and include your (abbreviated)
team name on each sheet. You may of course use more than one sheet per example.

• A transparent and well-organized approach is recommended. Additionally, some sub-points can be
solved independently of previous tasks — so don’t give up too early, and give it a try!

• When a problem is unclear, a participant can ask, via the crew, for a clarification. If the response is
relevant to all teams, the jury will provide this information to the other teams.

• You are allowed to use a non-programmable, not-graph calculator (But scientific is okay).

• No books or other sources, except for this exercise booklet and a dictionary, are to be consulted
during the competition.

• The organization has the right to disqualify teams for misbehavior or breaking the rules.

• The use of hardware (including phones, tablets, etc.) is not permitted, except for (non-smart) watches
and medical equipment. Phones must be stored away and should not be kept in pockets.

• In situations to which no rule applies, the organization decides. We wish you all the very best.

May the best physics team win!
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1 Problem Quartet

12 points Matthias Diez, TU Graz & KFU

1.1 Bouncing Balls

Consider the setup as illustrated in Figure 1.1.

(a) (1.5 points) Start with two balls on top of each
other(see figure), withm1 ą m2. They will fall down
from a height h with velocity v(0) = 0. Determine
the velocity v2 of ball 2 after bouncing off the floor
in dependence of the mass a “ m2

m1
.

(b) (0.5)What is the maximum velocity ball 2 can reach
in dependence of this mass ratio.

(c) (0.5) At what mass ratio ball 1 comes to rest after
bouncing off the floor and determine the maximum
height ball 2 can reach in this case.

(d) (0.5) Now add a third ball with mass m3, and con-
sider m1 " m2 " m3. What is the maximum height
ball m3 can reach, after bouncing off the floor. The
radius of ball 2 is r2.

Figure 1.1: Bouncing Balls

1.2 Falling Conductor Loop

Figure 1.2: A conductor loop falling into a
homogeneous magnetic field

(3 points) A rectangle conductor
loop with length l, width w and re-
sistance R is falling in earth’s grav-
itational field, from an initial height
h with an inital velocity vp0q “ 0.
Right above earth’s surface is a homo-
geneous magnetic field with strength
B, pointing in a direction perpendic-
ular to the conductor loop. The mag-
netic field extends to a height l. Cal-
culate the time dependence of the ve-
locity of the conductor loop inside the
magnetic field.
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1.3 Fata Morgana

𝐷 𝐷

𝑌𝑌
𝐻

𝑛 𝑧 = 1 + 𝐴𝑧

Figure 1.3: Fata Morgana path of light.

(3 points) A man with eye level Y stands in the dessert at a distanceD from an object of height
H. On the opposite sight stands his girlfriend, whose eyes are on the same height above the
floor. Due to the heat the refraction index of air changes approximately as npzq “ n0p1 `Azq.
Determine conditions on A (You do not need to solve for A), such that they can look each other
in the eye when both look up in an angle θ0. θ0 is the angle between the vertical axis and the
light ray. Furthermore determine the trajectory of light zpxq where z is the height of the light
above the floor, for given A.

1.4 Water reservoir

(3 points) At the bottom of a water tower,
with a conic water reservoir, is a small hole with
radius r ! R. The radius of the cone depends
on the height Rphq “ kh. At t “ 0, the water
is at height h. Determine the time evolution of
the water beam radius bptq at a distance d under
the reservoir, long before the reservoir is empty.

Figure 1.4: Water tower
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2 Kapitza’s Pendulum

13 points Johannes Krondorfer, TU Graz

𝑚

(0, 𝑦0)

ℓ
𝑔

𝜃

(a) Coordinates

𝑦0(𝑡) = 𝐴 cos(𝜔𝑡)

𝑔

(b) Dynamic Stabilization

Figure 2.1: Definition of the coordinates for Kapitza’s pendulum (a) and illustration of
dynamical stabilization for a fast oscillating pivot point (b).

Time-dependent problems pose a significant challenge in both classical and quantum mechan-
ics. Unlike time-independent systems, where well-established techniques allow us to determine
solutions analytically, time-dependent systems often require intricate methods or purely nu-
merical approaches. However, in some cases, the specific structure of time dependence allows
for systematic analytical treatments.

In this example, we explore Kapitza’s pendulum – a simple pendulum of mass m, with
a massless rod of length ℓ in a homogeneous gravitation field g “ g êy, with a periodically
oscillating pivot point p0, y0ptqq “ p0, A cospωtqq, as illustrated in Figure 2.1a. General goal
of this example is to analyze the stability of the pendulum for a fast oscillating pivot point
with small amplitude, where we can observe the phenomenon of dynamical stabilization, as
illustrated in Figure 2.1b. To this end, we will derive and analyze the equations of motion and
employ Floquet theory and the Magnus expansion, two essential tools in studying time-
periodic ordinary differential equations (ODEs). Although we investigate a classical system,
the investigated methods are broadly applicable to periodically driven quantum systems, where
they unveil insights into phenomena such as dynamical stabilization, topological phases, and
coherent control.
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2.1 Equations of Motion

Consider a pendulum of length ℓ and mass m suspended from a pivot at p0, y0q as depicted in
Figure 2.1.

(a) (0.5 points) For a fixed pivot point y0 “ const. derive the equation of motion for the
angle θ.

(b) (0.5 points) Find the stationary points of the equation of motion. Linearize the equation
around these points and analyze their stability. If the solution is stable, calculate the
oscillating frequency ω0.

(c) (1 point) Now, consider a time-dependent pivot y0ptq. Derive the modified equation of
motion for θ. Compare this to part (a) and provide a physical interpretation of additional
terms.

(d) (0.5 points) Linearize the equation around the stationary points and express it as a
first-order vector valued ODE of the form

d

dt
x “

„

0 1
α˘ptq 0

ȷ

x . (2.1)

2.2 Floquet-Lyapunov Theorem

For the remaining problem we will consider the specific case of y0ptq “ A cospωtq, and derive
stability porperties of this system. Generally, linear time-dependent ODEs, such as (2.1), are
not analytically solvable. However, for linear ODEs, with time-periodic matrix, a specialized
treatment is possible, as shown by the following theorem.

Theorem (Floquet-Lyapunov Theorem). Consider the system of linear differential equations

d

dt
xptq “ Hptqxptq, (2.2)

where Hptq is a time-periodic continuous matrix function with period T , i.e.,

Hpt ` T q “ Hptq, for all t . (2.3)

Then, the fundamental solution matrix (the propagator) Uptq1 , i.e. the solution to the matrix
differential equation

d

dt
Uptq “ HptqUptq with Up0q “ I , (2.4)

can be expressed as

Uptq “ P ptqe
rHt , (2.5)

where P ptq is a T -periodic matrix, i.e. P pt ` T q “ P ptq and rH “ 1
T
logUpT q is a constant

matrix.

1For a linear first order ODE the propagator Uptq can be used to determine the solution for given initial
conditions xp0q “ x0, by xptq “ Uptqx0. Thus the propagator completely determines the time evolution of the
system. While in classical mechanics this concept is not necessarily introduced, the propagator, or time-evolution
operator has an essential role in quantum mechanics and the mathematical treatment of ODEs.
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(a) (2 point) Prove the Floquet-Lyapunov theorem, i.e. show (2.5).2

(b) (2 point) Perform the variable transformation W ptq “ P ptq´1Uptq to show that

d

dt
W ptq “ rHW ptq (2.6)

and conclude that the long-term evolution and stability is determined by rH instead of P .
Under what conditions is the solution stable?3

2.3 Dyson Series and Magnus Expansion

Now we know which time-independent quantity is of interest to us for determining the stability
of the Kapitza pendulum. However, we still cannot compute UpT q analytically, but need
to employ approximations. The standard method for perturbative expansion of differential
equations of the form (2.4) is the so called Picard iteration or Dyson series, where we write

Uptq “

8
ÿ

k“0

U pkq
ptq , (2.7)

with U pkqptq “ Op||H||kq and U p0q “ I.

(a) (1 point) Show that this ansatz (2.7) yields an order by order representation with

U pkq
ptq “

ż t

0

dt1

ż t1

0

dt2 ¨ ¨ ¨

ż tk´1

0

dtk Hpt1qHpt2q . . . Hptkq . (2.8)

(b) (1 point) Show that if H commutes for different times, i.e. rHptq, Hpt1qs “ 0 for all t and
t1, then Uptq can be written via the exponential

Uptq “ exp

ˆ
ż t

0

Hpt1q dt1
˙

, (2.9)

and argue why this is not the case for (2.1).

In general, these perturbative approach is not optimal, since important properties of the system
might be not conserved, such as symplecticity in classical hamiltonian systems or unitarity in
quantum mechanical systems. Therefore a different approach is more promising to obtain
better and more physical approximation of the system. This leads to the concept of Magnus
expansion.

In the Magnus Expansion the evolution operator Uptq of the system is expressed as a proper
matrix exponential by defining Ωptq :“ logUptq and thus Uptq “ exp pΩptqq. Assuming that
Ω can be written as an infinite sum in orders of H, we write Ωptq “

ř8

k“1Ωkptq with Ωk “

Op||H||kq.

(c) (1 point) Show that Ω1,Ω2 and Ω3 can be expressed as4

Ωp1q
ptq “ U p1q

ptq

Ωp2q
ptq “ U p2q

ptq ´
1

2
pΩp1q

ptqq
2

Ωp3q
ptq “ U p3q

ptq ´
1

2

`

Ωp1q
ptqΩp2q

ptq ` Ωp2q
ptqΩp1q

ptq
˘

´
1

6
pΩp1q

ptqq
3 .

(2.10)

2Hint: The differential equation (2.4) with initial conditions uniquely defines the propergator U . It might
be helpful to prove Upt` T q “ UptqUpT q first.

3Hint : Think about the boundedness of P and the eigenvalues of rH.
4Hint : Use Taylor expansion and gather the terms of the same order.
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2.4 Stability Analysis of Kapitza’s Pendulum

With these theoretical results we can now analyze the stability of Kapitza’s pendulum in lin-
earized form (see (2.1)) with a time-dependent pivot point y0ptq “ A cospωtq with fast oscillation
frequency ω of the pivot point, and small amplitude A. With the previous sections we know
that the long term evolution is governed by rH by Floquet analysis and with the Magnus ex-
pansion we have that rH “ 1

T
ΩpT q. So let’s determine the effective (averaged) evolution of

Kapitza’s pendulum and determine its stability.

(a) (2 points) Show that the effective time-independent evolution matrix for and A, 1
ω

! 1
up to third order is given by

rH˘ “
Ω˘pT q

T
«

Ω
p1q

˘ pT q ` Ω
p2q

˘ pT q ` Ω
p3q

˘ pT q

T
“

„

0 1

´1
2

`

Aω
ℓ

˘2
¯ ω2

0 0

ȷ

, (2.11)

where T “ 2π
ω

is the period of the oscillating pivot point.5 Note that Ω
p2q

˘ pT q “ 0 and you
do not need to calculate this term.

(b) (1.5 point) Convert the effective first-order ODE obtained above back into a second-order
equation to obtain the effective second order differential equation. Analyze the stability
of both stationary points and interpret the results. Derive conditions on the stability and
compute the frequency of the pendulum.

5Hint : You need to neglect small terms of A, 1
ω ! 1 to get the result. You can neglect terms of A,Aω0, Aω

2
0

for small amplitudes A and fast frequencies ω. Some terms cancel each other anyway and some have to be
neglected. Note that you cannot neglect Aω.
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3 Relativistic Particle in a Box

10 points Martin Napetschnig, TU Munich

[1, 2, 3, 4] The particle in a box is a well-known problem of non-relativistic quantum mechanics
that you are probably familiar with from your courses. In this exercise, you will work out the
treatment of a relativistic particle in a box. You will first derive a relativistically covariant
evolution equation, the Klein-Gordon equation. Then, you have to settle whether a ’box’, i.e.
an infinite square well, can actually contain one and only one particle forever. This seem-
ingly stupid question caused intense debates among the most brilliant minds back in the 1930s,
including Niels Bohr, Arnold Sommerfeld and Fritz Sauter, after Oscar Klein brought up a
famous paradox - the Klein paradox - according to which high potential barriers for relativistic
particles seem to reflect more particles than are incoming!

You can keep or skip all factors of the speed of light c in your calculation, but do it con-
sistently! The Lagrange function of a relativistic point particle in one dimension for a spinless
particle with charge q and mass m is given by

Lpx, 9xq “ ´mc2
c

1 ´
9x2

c2
´ V pxq . (3.1)

(a) (1 point) To verify the non-relativistic limit, derive the equations of motion to first order

in
`

9x
c

˘2
. You should recover a familiar result.

(b) (1.5 points) Find the Hamilton function Hpp, xq. For p “ 0 “ V you should recover
another familiar result.

(c) (0.5 points) With the Hamiltonian found we now consider operators H Ñ Ĥ “ iℏ B

Bt
,

x Ñ x̂, p Ñ p̂ “ ´iℏ B

Bx
. It is more convenient to work with the squared version of

the Hamiltonian for the quantum mechanical evolution equation. Show that the squared
Schrödinger equation is given by

ˆ

iℏ
B

Bt
´ V̂ px̂q

˙2

Ψpt, xq “

ˆ

´ℏ2c2
B2

Bx2
` m2c4

˙

Ψpt, xq (3.2)

(d) (0.5 points) From now on consider the case of an electrostatic potential V pxq “ qV0 “

const. Show that
Ψpt, xq “ e´ i

ℏEt
´

Ae
i
ℏkx ` Be´ i

ℏkx
¯

(3.3)

is a solution to (3.2), where A,B, k do not depend on x or t. Find the expression for k.

Now consider the situation of a particle moving from left to right, scattering off a potential
well of height qV0, as sketched in Figure 3.1. Depending on the hierarchy between E & V0, in
region II there are 3 different regimes

• Weak potential: E ą qV0 ` mc2

• Intermediate potential: qV0 ´ mc2 ă E ă qV0 ` mc2

• Strong potential: E ă qV0 ´ mc2
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Figure 3.1: Particle scattering off the potential well of height qV0, V0 ą 0. The energy of the
particle is positive and the particle is initially moving from left to right.

(e) (2 points) The terms containing the coefficients A and B in (3.3) describe left- and
right-moving states. For each of the three listed regimes, write down whether AII and BII

multiply with left-moving states, right moving states or exponentially decaying states6.7

(f) (2 points) Given that Ψpt, xq and d
dx
Ψpt, xq must be continuous at the well, find the

matching relations between AI, BI, AII and BII in the strong potential regime and derive
the reflectivity and transmissitivity r and t. You should find 2 equations for 2 unknowns.8

Figure 3.2: In the limit V0 Ñ 8, a
particle inside the potential well is
reflected from the walls and thereby
stays in the box, fixing the boundary

conditions.

(g) (1.5 points) Calculate the reflection coefficient
R “ |r|2 and the transmission coefficient T “

1 ´ R. Do your results make sense? Do you
have an idea how to resolve the paradox? You
may notice that T ‰ |t|2. Does this surprise
you? Give expressions for R and T in the limit
V0 Ñ 8.

(h) (1 point) As you should have found in point 7,
an infinitely high barrier is fully reflective and
conserves particle number, thus making our box
’save’. Consider now a particle trapped in such
a box, as sketched in fig. 3.2. Find the eigen-
functions and eigenenergies of the system. Make
a suitable Taylor expansion of the eigenenergies
to recover the non-relativistic energy levels for a
particle in a box En “ n2π2ℏ2

2mL2

6Exponentially growing states are unphysical because Ψpt, xq would not be normalizable.
7Hint : A left-moving state is a state for which the group velocity vG :“ BE

Bp is negative, while for right-moving
states it is positive.

8Hint : In region I, you can normalize AI “ 1 and interpret BI ” r as the amplitude of the wave reflected from
the well. In region II, you can set the coefficient for the left-moving wave found in point (e) to zero (because
there should be no particle flux from right to left in region II), while the other coefficient can be interpreted as
the transmittivity t.
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4 Ion Trap Chips

15 points Michael Pfeifer, Universität Innsbruck

Ion traps are devices used to confine electrically charged particles. In this exercise, we will look
at Paul traps that use (partially time-dependent) electrical fields for ion confinement. Micro-
fabricated ion traps (ion trap chips) lie at the heart of some of the world’s most advanced
quantum computers. In this exercise, we will explore some of the fundamentals of macroscopic
Paul traps and ion trap chips.

(a) Drawing of a macroscopic Paul trap with ions
(blue) and a laser beam (red). From:

https://www.uibk.ac.at/exphys/qo/research/
trappedions

(b) Drawing of an ion trap chip from: P. Holz
et al., Adv. Quantum Technol. 3 (2020).

Figure 4.1: Macroscopic Paul trap and ion trap chip.

4.1 Macroscopic Paul Traps

(a) (1 point) Show that it is not possible to stably confine an electrically charged particle us-
ing only electrostatic fields, i.e. it cannot be maintained in a stable stationary equilibrium
using only electrostatic fields. This result is called Earnshaw’s theorem.

We have shown in the previous exercise, that it is impossible to confine ions using only elec-
trostatic fields. But we can do so using alternating electric fields, possibly in combination with
static electric fields.

(b) (2 points) Consider the four infinitely long rods in figure 4.2 with linear charge densities
˘λptq “ ˘λ0 cosΩt. Calculate the electrical potential φpt, x, yq close to the center up to
second order in x, y. Assume R ! d.

(c) (0.5 points) Derive the classical equations of motion of an ion of charge e and mass m
in the electric potential φpt, x, yq from above, neglecting any motion in the z-direction.
For the setting in figure 4.2, analyze the equations of motion for Ω “ 0. Are charged
particles in the center confined in the x and y directions in this case?
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Figure 4.2: Four infinitely long electrically charged rods extending in z-direction with line
charges ˘λptq.

The alternating electric field φpt, x, yq “ φpx, yq cosΩt leads to a confining force on a charged
particle of charge e and mass m in the x, y-plane. This confining force can be described by an
effective potential

ψpx, yq “
e

4mΩ2
|∇⃗φpx, yq|

2. (4.1)

(d) (0.5 points) Write down the quantum mechanical Hamiltonian of an ion of charge e and
mass m in the potential ϕtotpx, yq “ ψpx, yq, using the φpx, yq found in sub-problem (b),
and using ladder operators ai, a

:

i for the vibrational degrees of freedom. Neglect again any
motion in the z-direction. Assume the internal degrees of freedom of the ion to be that of
a two-level system. What are the oscillation frequencies?

4.2 Micro-fabricated Ion Traps

It turns out that ions cannot only be trapped using macroscopic Paul traps with three-
dimensional electrode arrangements, but also using electrodes arranged in a plane. This opens
up the exciting possibility of micro-fabricating ion traps using standard CMOS fabrication
techniques.

(a) (4 points) Consider an infinitely long electrode extending between x1 ď x ď x2 in the
x, z-plane, shown in figure 4.3. The electrode extends between x1 and x2 in x-direction
and from ´8 to `8 in the z-direction. Assume that the electrode is on the potential V
and the rest of the x, z-plane is grounded. Calculate the electrostatic potential φpx, z, yq

for y ą 0.9 The following integrals might be useful:

ż

1

px2 ` y2 ` pa ´ zq2q
3{2

dz “
z ´ a

px2 ` y2q
a

pa ´ zq2 ` x2 ` y2
` const. (4.2)

9Hint : You may for example use Green’s functions or a Fourier transform in x, to solve for φ. Also think
about the homogeneity in z.
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ż

y

pa ´ xq2 ` y2
dx “ arctan

ˆ

x ´ a

y

˙

` const. (4.3)

ż 8

´8

eika

ik
e´|k|ydk “ ´2 arctan

ˆ

a

y

˙

` π (4.4)

Figure 4.3: Electrode on voltage V extending in the x, z-plane, with the rest of the plane
grounded.

(a’) (1 point) If you cannot derive the potential φpx, yq in part (a), you can request the
solution. To achieve the point you have to show that it is indeed the correct potential
satisfying the boundary condition.

(b) (0.5 points) Assume that the two infinitely long electrodes in the configuration in fig-
ure 4.4 are on the voltage V ptq “ V0 cosΩt and the rest of the x, z-plane is grounded. The
electrodes extend between ´8 and `8 in the z-direction and between ´c ď x ď 0 and
a ď x ď a ` b in the x-direction. This configuration is an example for the rf electrodes of
an ion trap chip. Calculate the electric potential φpx, y, tq of this configuration for y ą 0.
(Neglect for all calculations the z-direction.)

Figure 4.4: Two rf electrodes in the x, z-plane, with the rest of the plane grounded.

(c) (1 point) The effective potential ψpx, yq in configuration of the previous sub-exercise has a
minimum at px0, y0q, with x0 “ ac{pb` cq and ψpx0, y0q “ 0. For the case b “ c, calculate
the ion-surface distance y0. How can you change the ion-surface distance? (Neglect for all
calculations the z-direction.)
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One can write down the formula for the electric potential on such an ion trap chip around the
point px0, y0q in the form:

φpx, yq « φ0 `
κV0
2y20

`

x2 ´ y2
˘

cosΩt, (4.5)

where y0 is the distance of the minimum from the chip surface. The parameter κ is called the
trap efficiency.

(d) (1 point) Determine κ for the given configuration for b “ c.

4.3 Double-wells

By using 3 rf electrodes, one can create a (radial rf-) double-well potential in the x, y-plane
above an ion trap chip.
Consider in one dimension (x), in the two separate wells of a double-well potential, two quantum
mechanical, charged particles A and B. They have charge QA and QB, respectively, and mass
m. In equilibrium, they have a distance s0 from each other and oscillation frequencies ωA and
ωB at their respective potential minima.

(a) (2.5 points) Determine the coupling strength ℏΩex between the two particles A and B
to lowest order.
Note: Use the ”rotating wave approximation”, i.e. a:

ia
:

i “ 0, aiai “ 0, where the a:

i , ai
(i “ A,B) are the creation and annihilation operators of phonons in the potential minima.

(b) (0.5 points) Write down the quantum mechanical Hamiltonian of this double-well system
using ladder operators ai, a

:

i , considering only the phononic modes of the double wells and
ignoring the internal degrees of freedom of the trapped charged particles.

As a model of the interaction of two trapped particles in a double-well potential, consider now
two classical particles/blocks A and B, both of mass m, as shown in figure 4.5. They are
coupled to walls with springs of coupling constants kA and kB and to each other with a spring
of coupling constant c.

Figure 4.5: Two blocks A, B with springs.

(c) (0.5 points) Calculate the eigenfrequencies.

(d) (1 point) Consider the case kA “ kB “ k. Assume that the particle A is displaced by
xAp0q “ A0 at t “ 0, while the other particle is initially at rest, and then let to oscillate.
After which time tex is the kinetic energy fully transferred from particle A to particle B
for the first time?
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5 Hyperfine Qubits in Trapped Neutral Atoms

10 points Johannes Krondorfer, TU Graz

Neutral atom traps are among the most promising platforms for quantum computing. In these
systems, qubits are typically encoded in the fine or hyperfine structure of the atom, taking
advantage of their long-lived states and well-characterized interactions with external fields.
Their precise level structure and weak environmental coupling make them ideal candidates
for applications ranging from quantum computing to atomic clocks and quantum simulations.
Here, we will consider simple two and three level models to describe the basic principles of
optical dipole traps and single qubit operations for hyperfine (i.e. nuclear spin) qubit encoding
in alkaline earth or alkaline earth-like atoms, such as 87Sr or 171Yb.

|𝑔⟩

|𝑒⟩
Δ

𝜔 𝜔0

Figure 5.1: Two-Level system in an external field. Definition of variables and states.

5.1 A Two Level Atom in a Laser Field

To warm up, we consider a simple two-level atom in a laser field and study the dynam-
ics for different laser parameters. The general internal Hamiltonian of the two-level system

t|gy , |eyu“̂t
“

0 1
‰T
,
“

1 0
‰T

u in dipole approximation is given by

H “ ℏω0σ
:σ ´

`

Dσ:
` D˚σ

˘

¨ Epx, tq , (5.1)

with the atomic lowering operator σ “ |gy xe| “̂

„

0 0
1 0

ȷ

, the dipole element D “ xe| d̂ |gy and

the electric field amplitude Epx, tq. An illustration is provided in Figure 5.1. For now, we
assume that the atomic motion can be neglected and approximate the electric field as space
independent, i.e. Epx, tq “ Eptq “ E0 cospωtq.

(a) (1.5 points) Transform the Hamiltonian (5.1) into the rotating frame by applying the
unitary transformation V ptq “ eiωtσ

:σ. Apply the rotating wave approximation (RWA),
i.e. 1 ` e˘2iωt « 1, to obtain a time independent Hamiltonian of the form

H 1
“ ´ℏ∆σ:σ `

ℏ
2

`

Ωσ:
` Ω˚σ

˘

, (5.2)

and determine the parameters ∆ and Ω.10

10Hint: Think about how to correctly apply a time dependent unitary transformation to the Hamiltonian.
Note that the time dependent schrödinger equation has to be satisfied for the transformed state |ψ1y “ V ptq |ψy.
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(b) (0.5 points) Rewrite the Hamiltonian as a linear combination of Pauli matrices11 and the

unit matrix, i.e.

H 1
“ α1 `

ℏrΩ

2

rΩ

rΩ
¨ σ , (5.3)

with σ “ pσx, σy, σzq.

(c) (1 point) Show that for a unit vector n the following relation holds for the Pauli matrices12

exppiθn ¨ σq “ cospθq1 ` in ¨ σ sinpθq . (5.4)

(d) (1 point) Compute the time evolution operator Uptq “ e´ i
ℏH

1t and the excited state
population ρeeptq “ | xe|Uptq |ψ0y |2 for the initial state |ψ0y “ |gy. Sketch it for ∆ “

0,Ω{2,Ω, 2Ω, 5Ω.

5.2 Optical Lattices

After the atoms have been pre cooled using techniques like Doppler cooling and magneto optical
traps, they can be loaded into optical lattices, where the atoms see a confining potential simply
by interacting with the laser field. To describe this behavior we have to introduce the spatial
degrees of freedom and write the Hamiltonian as

H “
p2

2m
´ ℏ∆σ:σ `

ℏ
2

`

Ωpxqσ:
` Ωpxq

˚σ
˘

, (5.5)

where the state vector is now written as |ψy “ ψepx, tq |ey ` ψgpx, tq |gy. For simplicity, we
consider only one spatial dimension.

(a) (0.5 points) Derive the Schrödinger equation for the coefficients ψepx, tq and ψgpx, tq.

(b) (1 point) Apply an adiabatic approximation (Btψepx, tq « 0, ∆˘
p2

2m
« ∆) for the excited

state population to obtain an effective Hamiltonian for the ground state evolution

Heff “
p2

2m
` Veffpxq . (5.6)

(c) (2 points) For two red detuned (∆ ă 0) counter propagating laser beams

Epx, tq “ E`px, tq ` E´px, tq “
E0

2
pcospkx ´ ωtq ` cospkx ` ωtqq “ E0 cospkxq cospωtq ,

we obtain a standing wave as trapping potential, i.e. Ωpxq “ Ω0 cospkxq as illustrated in
the left part of Figure 5.2.13

(i) Estimate the number of vibrational levels of a trapped atom.

(ii) How must the laser beams be selected to obtain an effective potential moving with
constant velocity v.

(iii) How must the laser beams be selected to obtain an effective potential that is accel-
erating.

(iv) Estimate the maximal acceleration such that the atoms remain trapped.

11The Pauli matrices are given by σx “ σ ` σ:“̂

„

0 1
1 0

ȷ

, σy “ iσ ´ iσ:“̂

„

0 ´i
i 0

ȷ

, σz “ σ:σ ´ σσ:“̂

„

1 0
0 ´1

ȷ

12The (anti-)commutation relations for the Pauli matrices are rσn, σms “ 2iϵnmkσk and tσn, σmu “ 2δnm.
13Hint : You may use the adiabatic approximation Epx, tq « E0 cospkptqx´

şt

0
ωpt1q dt1q « cospkx´

şt

0
ωpt1q dt1q

which is valid if 9ω ! ω2 and δω{c ! ω{c “ k.
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|𝑒⟩

|𝑔1⟩

|𝑔2⟩

Δ1 Δ2

𝜔1 𝜔2𝜔0,1 𝜔0,2

Figure 5.2: Illustration of standing wave potential for trapped atoms (left) and internal three
level structure (right), with hyperfine ground states |g1y, |g2y and excited state |ey.

5.3 Hyperfine Transitions for Trapped Atoms

Now that we have trapped the atoms in an optical lattice (see Figure 5.2, we need schemes for
how to manipulate the hyperfine states, in which we want to encode a qubit. We only discuss
the realization of single qubit operations, as two qubit gates are theoretically more challenging.
The problem for hyperfine states is that transitions cannot be driven directly by optical laser
fields due to the small energy splitting in the electronic ground state and the violation of
optical selection rules. However, transitions in the hyperfine levels (nulcear spin states) of the
electronic ground state can be driven by two-photon Raman processes, whose principle we will
derive below.

We consider the three level system t|g1y , |g2y , |eyu as depicted on the right side of Figure 5.2.
Assume that two laser fields are applied, one coupling |g1y to |ey, the other coupling |g2y to |ey.
Setting the energy of the excited state |ey to zero, the Hamiltonian is then given by

H “ ´ℏω0,1|g1yxg1|´ℏω0,2|g2yxg2|´

´

D1σ
:

1 ` D˚
1σ1

¯

¨E1px, tq´

´

D2σ
:

2 ` D˚
2σ1

¯

¨E2px, tq , (5.7)

with σα “ |gαy xe|. Let’s assume E1px, tq “ E0,1 cospω1tq and E2px, tq “ E0,2 cospω2tq. Via
unitary transformations V1ptq “ e´iω1t|g1yxg1| and V2ptq “ e´iω2t|g2yxg2| we transform into the
respective rotating frame and by applying the rotating wave approximation we obtain the
Hamiltonian

H 1
“ ´ℏ∆|eyxe| ` ℏp∆1 ´ ∆q|g1yxg1| ` ℏp∆2 ´ ∆q|g2yxg2|

`
ℏ
2

´

Ω1σ
:

1 ` Ω˚
1σ1

¯

`
ℏ
2

´

Ω2σ
:

2 ` Ω˚
2σ1

¯

,
(5.8)

where we applied an additional energy shift of ´∆ to all levels, with ∆ “ p∆1 ` ∆2q{2.

(a) (0.5 points) For the ansatz |ψptqy “ ψ1ptq |g1y ` ψ2ptq |g2y ` ψeptq |ey, write down the
time-dependent Schrödinger equation.

(b) (2 points) Assuming that ∆ " |∆1 ´ ∆2| we can make an adiabatic approximation
Btψe « 0 to obtain an effective two level system. Find the resonance condition for the
effective two-level system and the effective Raman Rabi frequency ΩR, i.e. the oscillating
frequency of the effective two-level system at resonance.
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6 Schrödingers Cat

10 points Markus Aichhorn, TU Graz

The superposition principle states that if |ϕay and |ϕby are two possible states of a quantum
system, then also p|ϕay`|ϕbyq{

?
2 is a possible state. We call this superposition. When applied

to macroscopic systems, however, this leads to paradoxical situations. One of the most famous
of these paradoxa is Schrödingers cat, where the cat is in a superposition of dead and alive. We
will investigate whether such a state is in practice detectable.

𝐸𝛼

| ⟩| ⟩ +

ℏ𝜔

Figure 6.1: Schematic illustration of a cat state in the harmonic oscillator.

The basis of this example is the harmonic oscillator, which can realize macroscopic states,
as we will see below. It is defined as

Ĥ “
1

2m
p̂2 `

mω2

2
x̂2 (6.1)

As it is well known, this problem can be solved by introducing ladder operators. We define
X̂ “ x̂

a

mω{ℏ and P̂ “ p̂{
?
mωℏ, and with that

â “
1

?
2

pX̂ ` iP̂ q, â:
“

1
?
2

pX̂ ´ iP̂ q, N̂ “ â:â (6.2)

(a) (1 point) Check that if one works with functions of the dimensionless variables X and P ,
one has

P̂ “ ´i
B

BX
, X̂ “ i

B

BP

From the relation â |0y “ 0, and replacing â by X̂ and P̂ , calculate the wave function of
the ground state ψ0pXq and ψ0pP q. Do not normalize the result.

A special state is the eigenstate of the annihilation operator â, i.e. â |αy “ α |αy. This coherent
state has quasi-classical properties. It can be expanded in terms of |ny, the eigenstates of the
number operator N̂ , as follows

|αy “ e´|α|2{2
ÿ

n

αn

?
n!

|ny . (6.3)

An important property of |αy is that it fulfills ∆x “
a

ℏ{p2mωq and ∆p “
a

mℏω{2, i.e.
∆x∆p “ ℏ{2.
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(b) (1 point) Following the same procedure as above, calculate the wave function ψαpXq of

the coherent state |αy, as well as ψαpP q. Again, normalisation is not necessary.

(c) (2.5 points) Suppose we have the system in a coherent state |α0y with α0 “ ρeiϕ at
time t “ 0. Show that the system is at later times in a coherent state which can be
written as e´iωt{2 |αptqy. Calculate xxyt and xpyt. Now take |α| " 1, look at ∆x{xxymax

and ∆p{xpymax, and argue why this can be called a quasi-classical state.

(d) (0.5 points) Consider a classical numerical example: We take now an ideal pendulum of
length 1 meter and weight 1 gram. At time t “ 0 the pendulum is at rest at xxymax “ 1µm.
What is the corresponding value of αpt “ 0q and the relative uncertainty on its position
∆x{xxymax?

We now define a cat state as follows,

|ψcy “
1

?
2

`

e´iπ{4
|αy ` eiπ{4

|´αy
˘

(6.4)

(e) (0.5 points) Suppose now α purely imaginary, i.e. α “ iρ. Discuss qualitatively the
physical properties of the composition of state (6.4) (position, momentum). For a value
|α| " 1, in what sense can this state be considered a concrete realization of the Schrödinger
cat type of state?

We now study the properties of the cat state (6.4) in exactly this limit, |α| " 1 with α “ iρ,
and we set p0 “ ρ

a

mℏω{2.

(f) (2 points) Calculate the (non-normalized) probability distribution for the position and
the momentum of the system.

(g) (0.5 points) A physicist (Alice) prepares N independent systems all in the state (6.4)
and measures the momentum of each of these systems. The measuring apparatus has a
resolution δp which fulfills ∆p “

a

mℏω{2 ! δp ! p0. Draw qualitatively the histogram
of the results of the N measurements for N " 1.

(h) (0.5 points) Another physicist (Bob) claims that the measurements of Alice have not
been done on a superposition of states as in (6.4), but on a non-paradoxical statistical
mixture of states, that is to say half of the N systems are in state |αy, and the other half
in |´αy. Assuming this is true, does one obtain the same probability distribution for the
momentum as for the previous question for the N measurements?

(i) (1 point) In order to settle the matter, Alice now measures the position of the N indepen-
dent systems, all prepared in state (6.4). Draw the shape of the resulting distribution of

measured events, assuming that the resolution of the measuring apparatus is δx !

?
ℏ{2mω

ρ
.

Can Bob obtain the same result concerning the N position measurements assuming he is
dealing with a statistical mixture?

(j) (0.5 points) Considering the numerical value obtained in the case of a simple pendulum
in question 4), evaluate the resolution δx which is necessary in order to tell the difference
between a set of N systems in a superposition (6.4) from a statistical mixture of states?
Can this be done in practice?
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7 Boltzmann Machine

8 points Johannes Krondorfer, TU Graz

The 2024 Nobel Prize in Physics recognized John J. Hopfield and Geoffrey Hinton for their
foundational work on neural networks and machine learning — including the development of
the Boltzmann Machine. This model applies principles from statistical mechanics to machine
learning: configurations have energies, and learning adjusts these energies to match observed
data. Boltzmann Machines introduced core ideas that shaped modern machine learning —
energy-based models, expectation matching, and deep generative architectures. Their quantum
extensions now aim to model entangled or coherent systems. In this problem, you will explore
how Boltzmann Machines perform learning as free energy minimization, both in the classical
and quantum setting, to approximate the distribution of given data.

𝑏1

𝑏2 𝑏3

𝑏𝑁−1
𝑏𝑁

𝑤12

𝑤23

𝑤1𝑁

𝑤𝑁−1𝑁

𝑤13

𝑤1𝑁−1

𝑤3𝑁𝑤2𝑁

𝑤2𝑁−1

𝑤3𝑁−1

Figure 7.1: Illustration of a Boltzmann machine as an undirected graph, with edge weights
wij and node weights bi.

7.1 Classical Boltzmann Machine

A Boltzmann Machine is a stochastic neural network inspired by statistical physics. It consists
of binary variables si P t´1, 1u, representing the state of unit i, connected by symmetric
interactions, as illustrated in Figure 7.1. The system defines a probability distribution over
configurations based on an energy function

Epsq “ ´
ÿ

iăj

wijsisj ´
ÿ

i

bisi , (7.1)

with s “ ps1, s2, . . . , sNq P t´1, 1uN , symmetric wij P R, and bi P R.

(a) (0.5 points) Define the probability of a state s as

P psq “
1

Z
e´βEpsq . (7.2)

Determine Z appropriately and compute the information ´ logP psq.
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We define the entropy S as expected information, i.e.

S :“ ´
ÿ

sPt´1,1uN

P psq logP psq , (7.3)

and the free energy as

F :“ ´
1

β
logZ . (7.4)

(b) (0.5 points) Show that F “ xEyP ´ 1
β
S, where x.yP is the expectation with respect to P .

In the context of machine learning the thus defined system is used to model the distribution of
given data Pdata. The parameters of the model pwij, biq should be adjusted such that P « Pdata.
For that purpose we want to minimize the so-called Kullback-Leibler (KL) divergence

DpPdata||P q :“
ÿ

s

Pdatapsq log
Pdatapsq

P psq
, (7.5)

which measures the deviation of the probability distributions Pdata and P .

(c) (1 point) Show that DpPdata||P q ě 0 and DpPdata||P q “ 0 if and only if Pdata “ P .

(d) (0.5 points) Show that minimization of the KL-divergence is equivalent to maximization
of the log-likelihood xlogP yPdata

.

(e) (1.5 points) In order to optimize the parameters of the model, we can perform gradient
descent. For that purpose compute explicitly the update rule for the parameters θ “ wij, bi

θ Ð θ ´ η
B

Bθ
DpPdata||P q , (7.6)

with learning rate η. Interpret the result, what does the learning procedure correspond to?

In practice, Boltzmann Machines are used not just to learn distributions, but to generate
samples s „ P « Pdata after training. However, since P psq cannot be computed exactly for
large systems due to the intractability of the partition function Z, we rely on approximate
sampling techniques. The most commonly used is Gibbs sampling, a Markov chain Monte
Carlo (MCMC) method where variables are updated sequentially according to their conditional
probabilities P psi|s´iq, where s´i denotes s without si. Over time, the chain converges toward
the target distribution P psq.

(f) (1 point) Compute the conditional probability

P psi “ 1|s´iq “
1

1 ` e´αx
, (7.7)

by explicitly identifying α and x in terms of the model parameters and the current state.
This expression is known as the sigmoid function, widely used in computer science.
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7.2 Quantum Boltzmann Machine

In a Quantum Boltzmann Machine, the classical binary variables si P t´1, 1u are replaced
by a quantum two-level system t|´1y , |1yu as computational basis, and the energy function is
generalized to a Hamiltonian H acting on a Hilbert space. The state of the system is described
by a density matrix

ρ “
1

Z
e´βH , Z “ trte´βH

u , (7.8)

where trt.u “
ř

n xn| . |ny for some basis |ny of the underlying Hilbert space. This defines
a quantum generalization of the Boltzmann distribution, where H is a Hermitian operator,
possibly non-diagonal in the computational basis.

The principle from above remains the same and we define entropy

S :“ ´trtρ log ρu , (7.9)

and free energy

F :“ ´
1

β
logZ . (7.10)

(a) (0.5 points) Show that F “ trtρHu ´ 1
β
S.

Analogously to the classical case we define the quantum Kullback-Leibler energy between a
data density operator ρdata and the model density operator ρ as

Dpρdata}ρq “ tr tρdataplog ρdata ´ log ρqu , (7.11)

for which the same properties hold as in the classical case.

(b) (1 point) Assume we have a Hamiltonian of the form H “
ř

µ θµOµ, where Oµ are
hermitian observables. Compute explicitly the update rule for the parameters

θµ Ð θµ ´ η
B

Bθµ
Dpρdata||ρq , (7.12)

and compare the result with the classical one.

(c) (1.5 points) Consider a Hamiltonian of the form

H “ ´
ÿ

iăj

wijσ
z
i σ

z
j ´

ÿ

i

biσ
z
i , (7.13)

with symmetric wij P R, bi P R and σz
i the z-Pauli matrix at position i.14 Argue why this

system in the computational basis t|´1y , |1yu for each state is not more powerful than the
classical analog and provide an extension that takes the quantum nature into account.

14The z-Pauli matrix is given by σz “

„

1 0
0 ´1

ȷ

, where the i-th position refers to the i-th ”particle”. More

explicitly this means that σz
i “

i´1
hkkkkkkkkikkkkkkkkj

I b I b ¨ ¨ ¨ b I bσz b

N´i
hkkkikkkj

I ¨ ¨ ¨ b I.
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8 The Precession of Mercury
A Practical Approach to Geodesics in General Relativity

14 points Matthias Diez, TU Graz & KFU

Figure 8.1: Perihelion precession

In the formalism of general relativity it can be
quite tedious to deal with all the indices. In this
problem, we want to take an easier approach to
get the equations of motions of a massive parti-
cle when a specific metric is given. We explicitely
want to calculate the fraction of perihelion pre-
cession of mercury that may be accounted for by
general relativity. The line element in general rel-
ativity is ds2 “ gµνdx

µdxν .

8.1 The Geodesic Equation

In order to derive the geodesic equation, usually we try to minimize the action
şx2

x1
ds

0 “ δ

ż x2

x1

ds “ δ

ż x2

x1

a

gµνdxµdxν “ δ

ż u2

u1

c

gµν
dxµ

du

dxν

du
du , (8.1)

where the final equality holds if the curve is parametrized with u.

(a) (1 point) Derive from the variation of ds the Geodesic equation of motion and write it
as:

d2

du2
xµ ´ Γµ

ρν

dxρ

du

dxµ

du
“ 0 , (8.2)

with the Christoffel-Symbol,

Γµ
ρν “

1

2
gµλrBρgλν ` Bνgλρ ´ Bλgρνs. (8.3)

Hereby it is useful to use the normalization condition of the four-velocity for a massive
particle, gµν

dxµ

ds
dxν

ds
“ 1, what would the normalization condition for a Photon be?

(b) (1 point) Show, using the Euler-Lagrange equations , that the Lagrangians L “

b

gµν
dxµ

ds
dxν

ds

and L “ L2 lead to the same equations of motion.

8.2 The Schwarzschild Metric

Next we will consider the well known Schwarzschild metric, which is a good description for a
”2 body-problem” in our solar system. This metric can be written as (units: G = 1, c=1)

ds2 “

ˆ

1 ´
2M

r

˙

dt2 ´

ˆ

1 ´
2M

r

˙´1

dr2 ´ r2pdθ2 ` sin2 θdϕ2
q . (8.4)

(a) (0.5 points) Identify the Lagrangian L in equation (8.4).

(b) (1 point) Identify the constants of motion of L.
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(c) (1 point) Sketch how you would determine the Christoffel Symbols by comparing the

equations of motion directly with equation (S8.4), without using expression (8.3) and
explicitly calculate in this way one of the Christoffel symbols.

8.3 Classical Treatment

Before we try to discuss the relativistic case any further, let us look at Newtonian orbits. For
this we consider to be in a plane, and use polar coordinates.

(a) (0.5 points) Write down the non-relativistic kinetic energy of a particle in polar coordi-
nates.

(b) (0.5 points) Write down the Lagrangian of a particle moving in one plane of a central
potential, generated by a body with mass M and identify the constants of motion.

(c) (0.5 points) Express, 9r2 in terms of r and the constants of motion (Hint replace 9ϕ with
an expression related to angular momentum).

(d) (1 point) In a next step we introduce a new variable p :“ 1
r
and replace the derivatives

with respect to t with respect to 9ϕ. This should give;

pp1
pϕqq

2
` ppϕq

2
“ Appϕq ` B (8.5)

Determine the constants A and B.

(e) (1 point) Now take the derivative on both sides of this equations with respect to ϕ and
solve the differential equation for p.

8.4 Relativistic Treatment

Let us now use the constants of motion we defined before

(a) (1.5 points) Use gµν
dxµ

ds
dxν

ds
“ 1 the constants of motion from L, and θ “ π

2
to express 9r2.

(b) (0.5 points) In a next step we introduce again p :“ 1
r
, and replace the derivatives with

respect to s with respect to ϕ.

(c) (1 point) Derive both sides of this equation with respect to ϕ and you should get:

p2
pϕq ` ppϕq “ C ` Dppϕq

2 (8.6)

Determine the constants C and D.

(d) (1 points) Justify why the term Dp2 can be seen as a small perturbation for Mercury.

(e) (2 points) Use the Newtonian solution from equation (8.5) in the additional Term Dp2

and write down the differential equation for the first order perturbation pp1q. Use the
particular solution yp of

y2
pxq ` ypxq “ Ap1 ` 2B ` B cos pxqq, yp “ A

ˆ

1 ` Bx cospxq ` B

„

1

2
´

1

6
cospxq

ȷ˙

.

(8.7)

and determine an expression for the precession of mercury, (i.e. how far the focci rotate
for one revolution). (Hint: The approximation cospϕ´ βq “ cosϕ cos β ` sinϕ sin β might
be useful.
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9 Pulsar Electrodynamics

10 points Martin Napetschnig, TU Munich

[5] Pulsars are among the most extreme objects in our universe. Pulsars are rapidly spinning
neutron stars (NS). These are compact objects (size of „ Op10 kmq), which are formed at
the end of a stars lifecycle, if the stars mass is about 1.2 ´ 3.6M@. As you will show soon,
neutron stars are fastly rotating (can be as fast as milliseconds!), are permeated with a very
high magnetic field and send pulsating radiation around their rotation axis, that we can detect
on Earth and on Earth bound satellites. Pulsars are used as reliable ’clocks’ in astronomy.
In fact, in 2023 an array of so-called pulsar timing arrays (PTAs) has been used to detect a
stochastic nHz gravitational wave background for the first time. Neutron stars are an active
field of research and there is still a lot to explore. In this exercise, you will analytically derive
some of the characteristic properties of pulsars.

If you feel more comfortable using Gauss (cgs) units instead of SI, there will be no points
deducted for wrong factors of µ0 & c.

9.1 Pulsar Characteristics

Figure 9.1: Sketch of the pulsar. The magnetic moment µ⃗ is tilted from the rotation axis by a
constant angle α.

(a) (0.5 points) Given a star with total mass M , angular rotation velocity Ω and radius R,
calculate the minimal period that it can have by equating the centrifugal to the gravita-
tional force (on the equator). Insert numbers for our Sun and a typical neutron star and
give an answer about whether their measured periods are close to their minimum period
or not.

(b) (0.5 points) During a stellar collapse to a NS, the mass of the star remains constant,
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while it’s radius shrinks drastically. Using that angular momentum and magnetic flux are
conserved, find the relation between the initial and final rotation velocity

Ωf

Ωi
and the initial

and final magnetic field
Bf

Bi
as a function of Ri

Rf
. How much would the magnetic field of our

Sun be enhanced if it kept its mass and would shrink to a NS? (Our Sun is actually too
light for this, but if it was twice as heavy it could do so).

(c) (2 points) We take the rotation axis of the pulsar to be the z-axis. The magnetic field
far away from the pulsar is modeled as a dipole field with a definite magnetic moment µ⃗,
which is pointing in a direction tilted by a fixed angle α from the z-axis and rotating with
the pulsar (see fig. 9.1).
The pulsar is loosing a lot of energy via radiation, which will cause it to spin down. Put
differently, the energy for the emission of radiation needs to be supplied by the kinetic
energy of the pulsar. The radiated power is given by the dipole radiation formula:

P “ ´
µ0

12πc3

ˇ

ˇ

ˇ

:⃗µ
ˇ

ˇ

ˇ

2

(9.1)

Calculate the kinetic energy loss per time dE
dt

for a rigid full sphere rotating with constant
mass and radius. Equate your result to (9.1) and find a relation between the period P “ 2π

Ω

and it’s rate of change 9P . 15

(d) (1 point) Astronomers observe pulsars and can measure the present values 9P0 & P0 and
purely from this information infer the age of the pulsar T . Show that they are no better
than you and provide a formula T pP0, 9P0q.

16

Useful constants: R@ „ 7 ˆ 108m, M@ „ 1.9 ˆ 1030 kg, P@ „ 2.3 ˆ 106 s (27 days), B@pR@q “

10´4T, GN “ 6.67 ˆ 10´11 m3

kgs2
, RNS „ 104m, MNS „ M@, PNS „ 10´3 ´ 1 s, BNSpRNSq “

104 ´ 1011T.

9.2 The Aligned Rotator

To study the magnetosphere of the pulsar, we now specialize to the case where the internal
magnetic field inside the pulsar is aligned with the rotation axis, i.e. B⃗in||Ω⃗||µ⃗. This model
is called the aligned rotator 17. As of (9.1), in this case there is no dipole radiation emitted,
but as you are going to show now, there is an inevitable outflow of particles that will cause
an additional source of radiation. The pulsar is modeled as a rigid, conducting full sphere
that has an internal magnetic field B⃗in “ B0e⃗z. The region outside the sphere is vacuum
(ρout “ j⃗out “ 0). I recommend to use standard spherical coordinates, where the angle θ is
defined as the angle α before.

15Hint : Parametrize µ⃗ “ µ e⃗µptq with |e⃗µ|2 “ 1 and insert it into (9.1).
16Hint : Assume the period has increased by a lot, i.e. P0 ąą Pinitial.
17The non-aligned rotator has been solved in a very thorough calculation by Armin J. Deutsch in 1955
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Figure 9.2: Left: Computer simulations of the charge distribution around the pulsar.
Magnetic field lines are black, the GJ boundary line that you calculate in point (c) is dashed.

Taken from Crinquand 2021.
Right: Similar to the left plot. Open and closed field lines are shown together with θPC that

you derive in point (d). The GJ boundary is again the dashed line. Moreover, the light
cylinder distance RL is also shown. Taken from Venter, 2008. In these sources Ω “ ´Ωe⃗z,

such that the charges are opposite to our case.

(a) (2 points) Outside the pulsar, the magnetic field B⃗out is a dipole field. The corresponding
vector potential reads

A⃗pr⃗q “
µ0

4π

µ⃗ ˆ r⃗

r3
“
µ0

4π
∇⃗ ˆ

µ⃗

r
(9.2)

Calculate B⃗out from (9.2) and show that it is given by

B⃗out “
µ0

4π

µ⃗ r2 ´ 3pµ⃗ ¨ r⃗q r⃗

r5
(9.3)

In case you can not derive this, proceed with (9.3) for the next points. Give its components

in the basis vectors of spherical coordinates using the vector identities stated below: B⃗out “

Bre⃗r `Bθe⃗θ `Bϕe⃗ϕ. By matching the B⃗ field inside and outside the star at the polar caps
(θ “ 0,˘π), find the relation between µ and B0.

(b) (1 point) Mathematically, field lines are curves rpθq satisfying

dr

Br

“
rdθ

Bθ

(9.4)

Find rpθq up to an integration constant K that we will use later. Each value of K ’labels’
a field line. This result is generic for dipole fields and gives them the ’toroidal’ shape (see
also fig. 9.2).
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(c) (2 points) Our initial assumption was that the pulsar is in vacuum. However, upon

calculating the electric field strength on the surface (which we will not do), one finds that
the electric forces are much stronger than gravity, such that charged particles are extracted
of the pulsar and form a corotating magnetosphere consisting of a fully conducting plasma
that rotates with the pulsar. Find the charge density ρpr, θq using that in a fully conducting
plasma the Lorentz force has to vanish in combination with Maxwells equations/Gauss law

(∇⃗ ¨ E⃗ “ . . .). You should recover a famous result first found by Goldreich & Julian in
1969:

ρGJ “ ´2ε0pΩ⃗ ¨ B⃗q (9.5)

For which values of θ we have positive/negative charges in the magnetosphere? At which
value of θ is the boundary line between the two regimes? 18

(d) (1 point) It is not surprising that our approximations are doomed to fail sooner or later.
The assumption of a corotating plasma at larger and larger distances has to break down
because physics dictates a fundamental speed limit to the orbital velocity of the plasma
particles. What is the maximum distance RL at which the orbital velocity reaches its
maximally allowed upper value? This value is called the radius of the light cylinder.
Magnetic field lines that bend back ’soon enough’ to not touch the light cylinder are
closed field lines. They bend and feed back into the star (see figure 9.2). Field lines
which start at a too low angle do not bend before reaching the light cylinder, their fate is
beyond our theoretical control. These field lines are called open field lines. They can be
an additional source of radiation and/or charged particles. Find the critical angle at the
polar cap θPC , below which one has open field lines. To do so, use your result for the field
line rpθq that you derived before.

One may need the following conversions between unit vectors in Cartesian and spherical coor-
dinates:

¨

˝

e⃗x
e⃗y
e⃗z

˛

‚“

¨

˝

sin θ cosϕ cos θ cosϕ ´ sinϕ
sin θ sinϕ cos θ sinϕ cosϕ

cos θ ´ sin θ 0

˛

‚

¨

˝

e⃗r
e⃗θ
e⃗ϕ

˛

‚ (9.6)

This is a short reminder of some useful vector identities:

∇⃗ ˆ ∇⃗ ˆ A⃗ “ ∇⃗p∇⃗ ¨ A⃗q ´ ∆A⃗, (9.7)

A⃗ ˆ pB⃗ ˆ C⃗q “ B⃗pA⃗ ¨ C⃗q ´ C⃗pA⃗ ¨ B⃗q, (9.8)

pA⃗ ˆ B⃗q ˆ C⃗ “ B⃗pA⃗ ¨ C⃗q ´ A⃗pB⃗ ¨ C⃗q, (9.9)

∇⃗ ˆ pA⃗ ˆ B⃗q “ pB⃗ ¨ ∇⃗qA⃗ ` A⃗p∇⃗ ¨ B⃗q ´ pA⃗ ¨ ∇⃗qB⃗ ´ B⃗p∇⃗ ¨ A⃗q (9.10)

∇⃗ ¨ pA⃗ ˆ B⃗q “ B⃗ ¨ p∇⃗ ˆ A⃗q ´ A⃗ ¨ p∇⃗ ˆ B⃗q, (9.11)

∆
1

|r⃗ ´ r⃗1|
“ ´4πδp3q

pr⃗ ´ r⃗1
q, (9.12)

εijkε
ijk

“ 3! “ 6, (9.13)

e⃗r ˆ e⃗θ “ e⃗ϕ (9.14)

e⃗θ ˆ e⃗ϕ “ e⃗r (9.15)

e⃗ϕ ˆ e⃗r “ e⃗θ. (9.16)

18Hint : The electric field is stationary, i.e. does not depend on time and there are no currents outside the
pulsar, j⃗out “ 0. Moreover, (9.11) might be useful.
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S1 Problem Quartet

12 points Matthias Diez, TU Graz & KFU

S1.1 Bouncing Balls

(a) Momentum and energy conservation give us:

m1v ´ m2v “ m1v1 ` m2v2 (S1.1)

m1
v2

2
` m2

v2

2
“ m1

v21
2

` m2
v22
2

(S1.2)

combining these two equations leads to

v ` v1 “ v2 ´ v (S1.3)

and from this we end up after reinsertion at:

v1 “
m1 ´ 3m2

m1 ` m2

v “
1 ´ 3a

1 ` a
v (S1.4)

v2 “
3m1 ´ m2

m1 ` m2

v “
3 ´ a

1 ` a
v (S1.5)

where we used a = m2{m1.

(b) The maximum velocity v2 is reached for a Ñ 0, and this gives v2 “ 3v

(c) If a “ 1
3
ball 1 comes to rest according to equation (S1.5) and from this we directly get

v2 “ 2v

(d) We have seen that if ball 1 bounces off ball 2 and is much lighter it gains exactly v. In
the co-moving system of ball 1, ball two moves with velocity -2v before the collision and
is reflected with velocity 2v after the collision. Thus the lab frame ball two moves with
velocity v2 “ 3v. The third ball then moves with velocity ´4v in the comoving frame
of ball 2 before the collision. It is then reflected with 4v, and in the lab frame we get
v5 “ 4v ` 3v “ 7v

S1.2 Falling Conductor Loop

From height h to l the conductor is freely falling, this means it arrives with velocity vzpt0q “

´
a

2gph ´ lqat at the top of the non zero magnetic field area at a time t0 “
a

2ph ´ lq{g. After
entering due to Faraday’s law the induced voltage is

U “ ´
dϕ

dt
“ ´Bw

dz

dt
(S1.6)

Therefrom the induced current is:

I “
U

R
(S1.7)
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and this induced current leads to a Lorentz force on the loop which is:

F “ ´
Bw2vz
R

ez (S1.8)

The equation of motion for the loop is then:

m
dvz
dt

“ ´mg ´
B2w2vz
R

(S1.9)

We can solve this equation by separation of variables:

´

ż vzptq

vzpt0q

dv1
z

g ` αv1
z

“

ż t

t0

dt1. (S1.10)

with α “ B2w2

mR
Solving the integrals on both sides and rearranging gives:

vzptq “ ´
g

α

“

1 ´ e´αpt´t0q
‰

` vzpt0qe´αpt´t0q (S1.11)

S1.3 Fata Morgana

Snell’s law gives
npY q sin θ0 “ npzq sinpθpzqq . (S1.12)

Furthermore we can use the trigonometric identity

sin θ “
tan θ

?
1 ` tan2 θ

“
1

?
1 ` cot2 θ

, (S1.13)

and cot θ “ dz
dx

to arrive at a differential equation

dz

dx
“

d

npzq2

npY q2 sin θ20
´ 1 , (S1.14)

describing the trajectory of the light beam. As the problem is symmetric we find the conditions
that at x “ 0 the derivative of z vanishes and zpx “ 0q ą H. We can then solve equation
(S1.14) by separation of variables:

ż z

Y

dz1 1
b

p1`Az1q2

p1`Ayq2 sin θ20
´ 1

“

ż x

´D

dx1 (S1.15)

This integral can be solved by substituting coshpuq “ 1`Az
1`Ay sin θ0

, leading to

zpxq “
1

A

„

p1 ` Ay sin θ0q cosh

ˆ

px ` DqA

1 ` Ay sin θ0
` cosh´1

„

1

sin θ0

ȷ˙

´ 1

ȷ

. (S1.16)

The condition that dz
dx

px “ 0q vanishes gives

A “
sin θ0 ´ 1

zp0q ´ y sin θ0
. (S1.17)

With the help of a computer one can then try to solve the last two equations for A.
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S1.4 Water Reservoir

We use the bernoulli equation with:

ρ

ˆ

1

2
v21 ` ghptq

˙

“
1

2
ρv2A (S1.18)

When we assume that r is much smaller than the radius of the water surface, we may say that
v1 ! vA and can therfore be neglected. Thus the velocity of the water leaving the reservoir is

vA “
a

2ghptq (S1.19)

The current water volume in the reservoir is

V “
1

3
Rphptqq

2πhptq “
1

3
k2πh3ptq (S1.20)

The change in volume is
dV

dt
“ k2πh2

dh

dt
(S1.21)

This is equivalent to the amount of water flowing out, which is:

I “ ´r2πvB “ ´r2π
a

2ghptq (S1.22)

We then get by separation of variables:

ż hptq

h0

h1 3
2dh1

“ ´

ż t

0

r2

k2

a

2gdt1 (S1.23)

which results in.

h “ h0

˜

1 ´
5r20

?
2g

2k2h
5
2
0

t

¸
2
5

(S1.24)

The velocity at a distance d is

vdptq “
a

vAptq2 ` 2gd “
a

2gphptq ` d. (S1.25)

We use the continuity equation:

rdptq2πvdptq “ r2vAptq (S1.26)

Therefrom we have:

rdptq “ r

d

vAptq

vdptq
“ r

ˆ

1 `
d

hptq

˙´ 1
4

(S1.27)

Plugging in (S1.24) we end up with:

rdptq “

¨

˝1 `
d

h0

˜

1 ´
5r20

?
2g

2k2h
5
2
0

t

¸
2
5

˛

‚

´ 1
4

(S1.28)
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S2 Kapitza’s Pendulum

13 points Johannes Krondorfer, TU Graz

S2.1 Equations of Motion

(a) We use the angle θ as generalized coordinate and write x “ ℓ sinpθq and y “ y0 ´ ℓ cospθq.
With that we get

T “
m

2
p 9x2 ` 9y2q “

mℓ2

2
9θ2

V “ mgpy0 ´ ℓ cospθqq .
(S2.1)

By using the Lagrange function L “ T´V and the Euler-Lagarange equation d
dt

BL

B 9θ
´ BL

Bθ
“ 0,

we get
mℓ2:θ ` mgℓ sinpθq “ 0 , (S2.2)

and thus
:θ “ ´

g

ℓ
sinpθq (S2.3)

(b) The stationary points are easily found by computing :θ “ 0 which is solved by θ “ nπ with
n P Z. By linearization we perform a stability analysis of θ “ 0 and θ “ π.

θ “ 0: For small angles sinpθq « θ by Taylor expansion. Thus, we get the linearized equation

:θ “ ´
g

ℓ
θ , (S2.4)

which has sinpω0q and cospω0q solutions, with ω0 “
a

g
ℓ
. So θ “ 0 is stable.

θ “ π: By setting ϕ “ θ ´ π we get sinpϕ ` πq « ´ϕ. Thus we have

:ϕ “
g

ℓ
ϕ , (S2.5)

which has real exponential solutions and is thus unstable.

(c) Now we use the time dependent pivot point y0ptq. The equations remain the same, but
one has to take the time dependence of y0ptq into account. This yields

T “
m

2
p 9x2 ` 9y2q “

m

2
pℓ2 cospθq

2 9θ2 ` p 9y0 ` ℓ sinpθq 9θq
2
q

“
m

2
pℓ2 cospθq

2 9θ2 ` ℓ2 sinpθq
2 9θ2 ` 2 9y0ℓ sinpθq 9θ ` 9y20q

“
mℓ2

2
9θ2 ` mℓ 9y0 sinpθq 9θ `

m

2
9y20

(S2.6)

where the term not depending on θ or 9θ is irrelevant. The potential V is the same as
before, but with time dependent y0ptq. For the Euler Lagrange equation we thus get

0 “
d

dt

BL

B 9θ
´

BL

Bθ

“

´

mℓ2:θ ` mℓp:y0 sinpθq ` 9y0 cospθq 9θq

¯

´

´

mℓ 9y0 cospθq 9θ ´ mgℓ sinpθq

¯

“ mℓ2:θ ` mℓp:y0 ` gq sinpθq .

(S2.7)
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Thus we can write

:θ “ ´
:y0 ` g

ℓ
sinpθq . (S2.8)

The additional appearing term :y0 clearly acts as an additional acceleration due to the
forced movement of the pendulum.

(d) Similar to the linearization before we can write sinpθq « θ for θ ! 1 and sinpϕ ` πq « ´ϕ

for ϕ ! 1 and θ “ ϕ`π. Thus, by defining x0 “ θ, ϕ and x1 “ 9x0 “ 9θ, 9ϕ we get the system
of equations

d

dt
x “

„

0 1

¯
:y0`g
ℓ

0

ȷ

x , (S2.9)

where the ` is for the expansion around 0 and the ´ is for the expansion around π. So
we have α˘ptq “ ¯

:y0ptq`g
ℓ

.

S2.2 Floquet-Lyapunov Theorem

(a) To prove the Floquet-Lyapunov theorem we first prove the identity Upt`T q “ UptqUpT q.
For that we define V ptq “ Upt ` T qU´1pT q and compute the derivative

d

dt
V ptq “

d

dt
Upt ` T qU´1

pT q “ Hpt ` T qUpt ` T qU´1
pT q “ HptqV ptq , (S2.10)

and V p0q “ UpT qU´1pT q “ I, and thus V ptq “ Uptq as it satisfies the same defining

differential equation. Now in order to show the theorem we define P ptq “ Uptqe´ rHt and
show P is T -periodic by

P pt ` T q “ Upt ` T qe´ rHpt`T q
“ UptqUpT qe´ rHT e´ rHt

“ UptqUpT qU´1
pT qe´ rHt

“ Uptqe´ rHt
“ P ptq ,

where we have used e´ rHT “ e´ logUpT q “ U´1pT q. This concludes the proof of the theorem.

(b) First we apply the transformation and write U “ PW , and thus

HPW “ HU “ 9U “ 9pPW q “ 9PW ` P 9W

“ HPW ´ P rHW ` P 9W ,

ñ 9W “ rHW

where we used 9P “
9

pUe´
Ą

tqH “ 9Ue´ rHt ´ Ue´ rHt
rH “ HP ´ P rH. The differential equation

for W has constant coefficients, so standard stability arguments apply: W ptq is stable iff

the spectrum of rH is a subset of the left half plane, i.e. σp rHq Ď tz P C |Repzq ď 0u,
because then ||W || ď C for some constant C. For the stability of U the situation does not
change, since P is periodic, invertible and continuous we can estimate

||Uptq|| “ ||P ptqW ptq|| ď ||P ptq||||W ptq|| ď max
τPr0,T s

||P pτq||||W ptq||

||W ptq|| “ ||P ptq´1Uptq|| ď ||P ptq´1
||||Uptq||

ñ ||Uptq|| ě ||P ptq´1
||

´1
||W ptq|| ě min

τPr0,T s
||P pτq

´1
||

´1
||W ptq|| .

And thus we have
C 1

||W || ď ||U || ď C2
||W || (S2.11)

which means that the stability of U is determined by W and thus by rH.
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S2.3 Dyson Series and Magnus Expansion

(a) We insert the ansatz (2.7) into the ODE (2.4) and gather terms of the same order in H.
This yields

8
ÿ

k“1

d

dt
U pkq

ptq “

8
ÿ

k“0

HU pkq
ptq

ñ
d

dt
U pkq

ptq “ HU pk´1q
ptq , for k ě 1 .

So we get

U p1q
ptq “

ż t

0

Hpt1q dt1

U pkq
ptq “

ż t

0

U pk´1q
pt1q dt1 ,

and thus we directly obtain (2.8).

(b) In principle we can just start with (2.8) and integrate every time t1, . . . , tk from 0 to t.
However, we have to correct multiple appearing terms by dividing with k!, which is the
number of possible permutations of the Hptiq. With that we can write

U pkq
ptq “

1

k!

ˆ
ż t

0

Hpt1q dt1
˙k

, (S2.12)

and thus

Uptq “

8
ÿ

k“0

U pkq
ptq “

8
ÿ

k“0

1

k!

ˆ
ż t

0

Hpt1q dt1
˙k

“ exp

ˆ
ż t

0

Hpt1q dt1
˙

. (S2.13)

Alternatively one can just show that the exponential ansatz satisfies the differential equa-
tion (2.4). For our linearized pendulum, however, this is not the case since the system
matrix does not commute for different times, instead we have

„„

0 1
α˘ptq 0

ȷ

,

„

0 1
α˘pt1q 0

ȷȷ

“ pα˘pt1q ´ α˘ptqq

„

1 0
0 ´1

ȷ

.

(c) To compute the first few terms of the Magnus expansion it is easiest to expand on both
sides of the equation

exppΩptqq “ Uptq

ô expp

8
ÿ

k“1

Ωpkq
ptqq “

8
ÿ

k“0

U pkq
ptq

ô I ` Ω1
`

1

2
Ω2

`
1

6
Ω3

` Op||H||
4
q “ I ` U p1q

` U p2q
` U p3q

` Op||H||
4
q

ô

Ωp1q`

Ωp2q ` 1
2
pΩp1qq2

Ωp3q ` 1
2
pΩp1qΩp2q ` Ωp2qΩp1qq ` 1

6
pΩp1qq3`

Op||H||4q

“

U p1q`

U p2q`

U p3q`

Op||H||4q

.

Now simple rearrangement yields the result (2.10).
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S2.4 Stability Analysis of Kapitza’s Pendulum

(a) To compute rH˘ we compute the individual terms, noting that Ω
p2q

˘ pT q “ 0. We have

Ω
p1q

˘

T
“

1

T

ż T

0

„

0 1
α˘pt1q 0

ȷ

dt1 “

„

0 1
¯ω2

0 0

ȷ

,

where we used
1

T

ż T

0

:y0pt
1
q dt1 “ 0 .

So we only have U p3qpT q left to calculate, which is given by

U p3q
pT q “

ż T

0

dt1

ż t1

0

dt2

ż t2

0

dt3

„

0 1
α˘pt1q 0

ȷ „

0 1
α˘pt2q 0

ȷ „

0 1
α˘pt3q 0

ȷ

“

ż T

0

dt1

ż t1

0

dt2

ż t2

0

dt3

„

0 α˘pt2q
α˘pt3qα˘pt1q 0

ȷ

.

And we have
ż T

0

dt1

ż t1

0

dt2

ż t2

0

dt3 α˘pt2q “

ż T

0

dt1

ż t1

0

dt2 t2α˘pt2q

“ ¯

ż T

0

dt1

ż t1

0

dt2 t2

ˆ

Aω2

ℓ
cospωt2q ` ω2

0

˙

“ ¯
Aω2

ℓ

ż T

0

dt1

ż t1

0

dt2 t2 cospωt2q
loooooooooomoooooooooon

t1 sinpωt1q

ω
`

cospωt1q

ω2 ´ 1
ω2

¯
ω2
0T

3

6

“ ¯
ω2
0T

3

6
˘

2AT

ℓ
,

where we used that
şT

0
dt1

t1 sinpωt1q

ω
“ ´ T

ω2 . For the other term we get
ż T

0

dt1

ż t1

0

dt2

ż t2

0

dt3 α˘pt1qα˘pt3q

“

ż T

0

dt1

ˆ

¯
Aω2

ℓ
cospωt1q ¯ ω2

0

˙

˘A
ℓ
cospωt1q¯A

ℓ
¯

ω2
0t

2
1

2
hkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkj

ż t1

0

dt2

ż t2

0

dt3

ˆ

¯
Aω2

ℓ
cospωt3q ¯ ω2

0

˙

“ ´
A2ω2T

2ℓ2
`

2Aω2
0T

ℓ
`
ω4
0T

3

6
,

With that we have everything together and calculate

Ωp3q
“ U p3q

´
1

6
pΩp1q

q
3

“

«

0 ¯
ω2
0T

3

6
˘ 2AT

ℓ

´A2ω2T
2ℓ2

`
2Aω2

0T

ℓ
`

ω4
0T

3

6
0

ff

´
1

6

„

0 T
¯ω2

0T 0

ȷ3

“

«

0 ¯
ω2
0T

3

6
˘ 2AT

ℓ

´A2ω2T
2ℓ2

`
2Aω2

0T

ℓ
`

ω4
0T

3

6
0

ff

´
1

6

„

0 ¯ω2
0T

3

ω4
0T

3 0

ȷ

“

„

0 ˘2AT
ℓ

´A2ω2T
2ℓ2

`
2Aω2

0T

ℓ
0

ȷ

.
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In total we get

rH˘ «
Ωp1q˘ ` Ω

p3q

˘

T

“

„

0 1 ˘ 2A
ℓ

¯ω2
0 ´ A2ω2

2ℓ2
`

2Aω2
0

ℓ
0

ȷ

«

„

0 1

´1
2

`

Aω
ℓ

˘2
¯ ω2

0 0

ȷ

.

(b) Transforming the equation back into a second order differential equation we get

:θ˘ “

˜

´
1

2

ˆ

Aω

ℓ

˙2

¯ ω2
0

¸

θ˘ . (S2.14)

The solution is stable if ´1
2

`

Aω
ℓ

˘2
¯ ω2

0 ă 0, which is the case if
`

Aω
ℓ

˘2
ą ¯2ω2

0. This is
always the case for the initially stable point θ0 “ 0. For θ0 “ π this can be achieved by
suitably adjusting A and ω. This yields new frequencies of the pendulum as

ω2
˘ “

1

2

ˆ

Aω

ℓ

˙2

˘ ω2
0 if

ˆ

Aω

ℓ

˙2

ą ¯2ω2
0 (S2.15)
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S3 Relativistic Particle in a Box

10 points Martin Napetschnig, TU Munich

(a) Apart from the irrelevant constant mc2, the Lagrange function is

Lpx, 9xq 9“
m 9x2

2
´ V pxq ` O

˜

ˆ

9x

c

˙4
¸

(S3.1)

This leads to m:x “ ´BxV pxq, Newton’s second law.

(b)

p “
BL

B 9x
“ γm 9x “ m

9x
b

1 ´ 9x2

c2

, (S3.2)

p2

m2
“ 9x2

ˆ

1 `
p2

m2c2

˙

, (S3.3)

9xppq “
c p

a

m2c2 ` p2
(S3.4)

Then

Hpp, xq “ p 9xppq ´ Lpx, 9xppqq, (S3.5)

“
c2p2

a

m2c4 ` c2p2
`

m2c4
a

m2c4 ` c2p2
` V pxq, (S3.6)

“
a

c2p2 ` m2c4 ` V pxq (S3.7)

For p “ 0 “ V pxq, we recover H “ E “ mc2, Einsteins formula.

(c) Not much to show here: pH ´ V qΨ “
?
. . .Ψ ñ pH ´ V q2Ψ “ . . .Ψ

(d) One can easily see that (3.3) solves (3.2) if k “ ˘1
c

a

pE ´ qV q2 ´ m2c4

(e) We calculate first the group velocity for all cases (using E “
a

c2p2 ` m2c4 ` qV0):

vG :“
BE

Bp
“

c2 p
a

c2p2 ` m2c4
“

c2 p

E ´ qV0
(S3.8)

Now, we see that:

• Weak potential: Here, AII corresponds to a right-moving and BII to a left-moving
state, as we are used to. This is also the case for AI and BI

• Intermediate potential: In these cases, k is imaginary and AII is an exponentially
decaying state while BII would be exponentially growing and is thus unphysical.

• Strong potential: Chapeau who gets this right! As E ´ qV0 ă 0, the roles of AII and
BII are reversed! AII is left-moving and BII is right-moving.
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(f) For this problem I can put the wall at the origin(x “ 0). The first derivative of Ψ can

have a kink, but must be continuous. Thus the procedure is valid. We know already
that r “ BI. From the previous point we also derived that AII “ 0, since it describes
left-moving states. This leaves us with t “ BII. From the matching of Ψ and Ψ1 one gets:

1 ` r “ t, (S3.9)

kp1 ´ rq “ ´k1t (S3.10)

with k “ 1
c

?
E2 ´ m2c4 and k1 “ 1

c

a

pE ´ qV0q2 ´ m2c4. One then finds

r “
k ` k1

k ´ k1
, (S3.11)

t “
2k

k ´ k1
(S3.12)

This is all for this point. It should be pointed out that if the roles of AII “ 0 Ø BII “ 0
are exchanged, k1 Ø ´k1 and one treats the case of the weak potential regime, which is
completely analogous to the usual thing we do in the QM lectures.

(g) Both k and k1 are real numbers, so

|t|2 “ t2 “
4k2

pk ´ k1q2
, (S3.13)

R “ |r|2 “
pk ` k1q2

pk ´ k1q2
, (S3.14)

T “ 1 ´ R “ ´4
kk1

pk ´ k1q2
, (S3.15)

T ă 0 (S3.16)

R ą 1 (S3.17)

The very last line is the essence of the Klein paradox. We seem to get more stuff reflected
than we sent in. Moreover, less than zero is transmitted, which is also counter-intuitive. In
case of the weak potential regime, k1 Ø ´k1 and we obtain the regular results that we are
familiar with: 0 ă R, T ă 1 & R` T “ 1. In the intermediate potential regime, k1 “ iκ is
complex and R “ 1, T “ 0. The fact that T ‰ |t|2 is a generic result and is not specific to
our example. What is conserved is the probability flux v|Ψpt, xq|2 „ k

m
|Ψpt, xq|2. For the

reflection coefficient R “
kR
kI

|r|2 “ 1|r|2, where kI “ k “ kR, while for the transmission

coefficient T “
kT
kI

|t|2 “ ˘k1

k
|t|2. The sign of k1 now depends on whether one is in the

weak or in the strong potential regime. In the weak one k1 ą 0, 0 ă T ă 1, while in the
strong one k1 ă 0, T ă 0. As an aside, conservation of probability is ensured in all cases
via R ` T “ |r|2 ` ˘k1

k
|t|2 “ 1. We see in (S3.14) that for V0 Ñ 8, limk1Ñ8R “ 1. This

is what we wanted: The infinite square well is fully reflective, but it does not reflect
more than what is incident.
The resolution of the apparent paradox is that in region II, the wavefunction is actually de-
scribing a negative energy solution, i.e. antiparticles. Solid State physicists might prefer to
think about it as a reversed biased pn-junction (Zener diode) where V0 would be the built-
in voltage. The potential barrier is large enough to source particle-antiparticle/electron-
hole pairs (qV0 ą mc2). Antiparticles have negative charge and feel a potential dip
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instead of a well. This causes a negative charge current to the right, equivalent to a posi-
tive charge current to the left, explaining the negative transmission coefficient. Particles
are repelled by the potential and get pushed to the left, adding up with the fully reflected
incident beam, thus accounting for R ą 1.

(h) The eigenfunctions are completely analogous to the non-relativistic case.

Ψpt, xq “ A sinpkxqe´ i
ℏEt . (S3.18)

The cos solution does not allow Ψpt, x “ 0q “ 0. Since Ψpt, x “ Lq “ 0 Ñ k “ nπ
L
, n P N.

For the normalization we need to solve

|A|
2

ż L

0

dx sin2
pk xq “ 1 “ (S3.19)

|A|
2

ˆ

L

2
´

1

2k
cospkxq sinpkxq|

x“L
x“0

˙

ñ (S3.20)

A “

c

2

L
,ñ (S3.21)

Ψpt, xq “

c

2

L
sin

´

nπ
x

L

¯

e´ i
ℏEnt (S3.22)

where En are obtained by plugging (S3.22) into (3.2) with the result:

En “ mc2
c

1 ´
ℏ2π2n2

m2c2L2
(S3.23)

The suitable expansion parameter is the Compton wavelength of the particle (versus the
system size L): λC “ ℏ

mc
. We can Taylor expand (S3.23) and find:

En “ mc2 `
ℏ2π2n2

2mL2
` O

˜

ˆ

λC
L

˙4
¸

(S3.24)

As long as the box size is much larger than the Compton wavelength, the non-relativistic
result is an excellent approximation.
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S4 Ion Trap Chips

15 points Michael Pfeifer, Universität Innsbruck

S4.1 Macroscopic Paul Traps

(a) Consider an electrostatic field φpx⃗q in free-space. It must satisfy the Laplace equation
∆φpx⃗0q “ 0 at all points x⃗0.
In terms of the Hessian matrix pHφqi,jpx⃗0q “ pBiBjφqpx⃗0q, we can write the Laplace equa-
tion as trHφpx⃗0q “ 0. But since the trace is the sum of the eigenvalues of a matrix, this
means that the Hessian of the potential φ has either at least one negative eigenvalue or
all eigenvalues are zero at the point x⃗0.
Hence, the potential φ cannot have a minimum at x⃗0 and, therefore, one cannot stably
confine an electrically charged particle in this potential.

(b) Electric potential of an infinitely long cylinder of radius R with line charge λ:

φprq “
λ

2πε0
ln

´ r

R

¯

(S4.1)

Hence, for the shown configuration:

φpx, y, tq “
λptq

2πε0

˜

´ ln

˜

a

pd ´ xq2 ` y2

R

¸

´ ln

˜

a

pd ` xq2 ` y2

R

¸

` ln

˜

a

x2 ` pd ´ yq2

R

¸

` ln

˜

a

x2 ` pd ` yq2

R

¸¸

.

(S4.2)

Therefore:

φpx, y, tq “
λptq

4πε0
ln

ˆ

px2 ` pd ´ yq2qpx2 ` pd ` yq2q

ppd ´ xq2 ` y2qppd ` xq2 ` y2q

˙

. (S4.3)

Taylor expansion around x “ 0, y “ 0 up to second order:

φpx, y, tq “ φp0, 0, tq `
Bφ

Bx

∣∣∣∣
x“0,y“0

x `
Bφ

By

∣∣∣∣
x“0,y“0

y `
B2φ

BxBy

∣∣∣∣
x“0,y“0

xy

`
1

2

B2φ

Bx2

∣∣∣∣
x“0,y“0

x2 `
1

2

B2φ

By2

∣∣∣∣
x“0,y“0

y2.

(S4.4)

Evaluating the terms:
φp0, 0, tq “ 0, (S4.5)

Bφ

Bx

∣∣∣∣
x“0,y“0

“ 0,
Bφ

By

∣∣∣∣
x“0,y“0

“ 0, (S4.6)

B2φ

BxBy

∣∣∣∣
x“0,y“0

“ 0,
B2φ

Bx2

∣∣∣∣
x“0,y“0

“
8

d2
,

B2φ

By2

∣∣∣∣
x“0,y“0

“ ´
8

d2
. (S4.7)

Putting this together, we obtain:

φpx, y, tq “
λptq

πε0
px2 ´ y2q “

λ0 cosΩt

πε0
px2 ´ y2q. (S4.8)
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(c) The equations of motion are given by:

m:x “ ´e
Bφ

Bx
“ ´

2λ0e cosΩt

πε0d2
x, (S4.9)

and

m:y “ ´e
Bφ

By
“

2λ0e cosΩt

πε0d2
y. (S4.10)

For Ω “ 0, the equations of motion become:

m:x “ ´
2λ0e

πε0d2
x, m:y “

2λ0e

πε0d2
y. (S4.11)

We see that a charged particle will harmonically oscillate in the x-direction, but will be
unconfined in the y-direction.

(d) Using the given equation for the effective potential ψ:

ψpx, yq “
e

4mΩ2
|∇⃗φpx, yq|

2
“

e

mΩ2

λ20
π2ε20

`

x2 ` y2
˘

. (S4.12)

The classical Hamiltonian for the motion of the ion in the trap is hence given by:

H “
p2x ` p2y
2m

` eψpx, yq “
p2x ` p2y
2m

`
e2

mΩ2

λ20
π2ε20

`

x2 ` y2
˘

“
p2x ` p2y
2m

`
1

2
mω2

px2 ` y2q,

(S4.13)
with

ω “
?
2
e

mΩ

λ0
πε0

. (S4.14)

Quantizing x “
a

ℏ{2mωpa:
x`axq, px “ i

a

ℏmω{2pa:
x´axq and y “

a

ℏ{2mωpa:
y`ayq, py “

i
a

ℏmω{2pa:
y ´ ayq, we obtain:

H “ ℏω
ˆ

a:
xax `

1

2

˙

` ℏω
ˆ

a:
yay `

1

2

˙

. (S4.15)

Assuming two internal states |gy, |ey of energies Eg, Ee, we obtain for the quantum-
mechanical Hamiltonian of the system:

H “ Eg|gyxg| ` Ee|eyxe| ` ℏω
ˆ

a:
xax `

1

2

˙

` ℏω
ˆ

a:
yay `

1

2

˙

, (S4.16)

where the oscillation frequencies in x- and y-direction are equally ωx “ ωy “ ω “
?
2 e
mΩ

λ0

πε0
.

S4.2 Micro-fabricated Ion Traps

(a) We want to solve the electrostatic problem:
#

∆φ “ 0 in Hě0,

φpx, z, yq “ fpx, zq for y “ 0
(S4.17)

in Hě0 “ tpx, z, yq|y ě 0u with

fpx, zq “

#

V for x1 ď x ď x2,

0 otherwise
. (S4.18)
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There are different ways to solve it. We will use Green’s function. The Green function in
Hě0 is, by the method of mirror charges, given by:

Gpx, z, y, x1, z1, y1
q “

1

4π

˜

1
a

px ´ x1q2 ` pz ´ z1q2 ` py ´ y1q2
´

1
a

px ´ x1q2 ` pz ´ z1q2 ` py ` y1q2

¸

(S4.19)
Using Green’s theorem in the form

ż

BV

´

φ∇⃗G ´ G∇⃗φ
¯

¨ dS⃗ “

ż

V

pφ∆G ´ G∆φq d3r, (S4.20)

we obtain with the property ∆Gpr⃗, r⃗1q “ ´δpr⃗ ´ r⃗1q:

φpr⃗q “
1

ε0

ż

V

d3r1ρpr⃗1
qGpr⃗, r⃗1

q `

ż

BV

fpr⃗1
q∇⃗r1Gpr⃗, r⃗1

q ¨ dS⃗r1 , (S4.21)

which becomes for ρpr⃗q “ 0 in Hą0:

φpx, z, yq “

ż x2

x1

dx1

ż 8

´8

dzfpx, zq
B

By1

ˇ

ˇ

ˇ

ˇ

y1“0

Gpx, z, y, x1, z1, y1
q. (S4.22)

Plugging in:

B

By1

ˇ

ˇ

ˇ

ˇ

y1“0

Gpx, z, y, x1, z1, y1
q “

1

2π

y

ppx ´ x1q2 ` pz ´ z1q2 ` y2q3{2
(S4.23)

and hence:

φpx, z, yq “
V

2π

ż x2

x1

dx1

ż 8

´8

dz1 1

ppx ´ x1q2 ` pz ´ z1q2 ` y2q3{2
, (S4.24)

φpx, z, yq “
V

π

ż x2

x1

dx1 y

px ´ x1q2 ` y2
. (S4.25)

Finally:

φpx, z, yq “ φpx, yq “
V

π

ˆ

arctan

ˆ

x2 ´ x

y

˙

´ arctan

ˆ

x1 ´ x

y

˙˙

. (S4.26)

Alternative Solution:

We consider Laplace’s equation in two dimensions:

B2ϕ

Bx2
`

B2ϕ

By2
“ 0. (S4.27)

Given boundary conditions at y “ 0:

ϕpx, 0q “ V pxq, (S4.28)

where V pxq is a prescribed function (e.g., a strip potential).

The Fourier transform of ϕpx, yq is defined as:
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ϕ̃pk, yq “

ż 8

´8

ϕpx, yqe´ikx dx. (S4.29)

Applying the Fourier transform to Laplace’s equation:

F
„

B2ϕ

Bx2

ȷ

` F
„

B2ϕ

By2

ȷ

“ 0. (S4.30)

Since differentiation in x corresponds to multiplication by ´k2 in Fourier space:

p´k2qϕ̃pk, yq `
B2ϕ̃

By2
“ 0. (S4.31)

Rearranging:

B2ϕ̃

By2
´ k2ϕ̃ “ 0. (S4.32)

This is a standard second-order differential equation with the general solution:

ϕ̃pk, yq “ Apkqe´|k|y. (S4.33)

The term e|k|y is excluded to ensure the solution does not diverge as y Ñ 8.

Using the boundary condition ϕ̃pk, 0q “ Ṽ pkq, we get:

ϕ̃pk, yq “ Ṽ pkqe´|k|y. (S4.34)

To obtain ϕpx, yq in real space:

ϕpx, yq “
1

2π

ż 8

´8

Ṽ pkqe´|k|yeikx dk. (S4.35)

For a conducting strip of length L “ x2 ´ x1, the boundary condition is:

V pxq “

#

V, x1 ď x ď x2,

0, otherwise.

The Fourier transform of this function is:

Ṽ pkq “ V

ż x2

x1

e´ikx dx “ V
e´ikx1 ´ e´ikx2

´ik
. (S4.36)

Substituting into the inverse Fourier integral:

ϕpx, yq “
V

2π

ż 8

´8

e´ikx1 ´ e´ikx2

´ik
e´|k|yeikx dk. (S4.37)

This integral was given leading to:
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ϕpx, yq “
V

π

„

tan´1

ˆ

x ´ x1
y

˙

´ tan´1

ˆ

x ´ x2
y

˙ȷ

. (S4.38)

—

We now evaluate the integral:

I “

ż 8

0

sinpakq

k
e´bk cospckq dk. (S4.39)

Using Euler’s formula:

cospckq “
eick ` e´ick

2
, (S4.40)

we write:

I “
1

2

ż 8

0

sinpakq

k
e´bk

peick ` e´ick
q dk. (S4.41)

Splitting:

I “
1

2
rI1 ` I2s , (S4.42)

where

I1 “

ż 8

0

sinpakq

k
e´pb´icqk dk, I2 “

ż 8

0

sinpakq

k
e´pb`icqk dk. (S4.43)

Using sinpakq “ eiak´e´iak

2i
:

I1 “
1

2i

ż 8

0

eipa`cqk ´ eipa´cqk

k
e´bk dk. (S4.44)

A standard integral result is:

ż 8

0

epiα´bqk

k
dk “ ´ lnpb ´ iαq. (S4.45)

Applying this,

I “
1

π

”

tan´1
´c ` a

b

¯

´ tan´1
´c ´ a

b

¯ı

. (S4.46)

—

(b) Using the result from the previous exercise, we obtain:

φpt, x, yq “
V0
π

cos pΩtq

ˆ

arctan

ˆ

a ` b ´ x

y

˙

´ arctan

ˆ

a ´ x

y

˙

` arctan

ˆ

c ` x

y

˙

´ arctan

ˆ

x

y

˙˙

.

(S4.47)
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(c) Because of the relation ψpx, yq “ e

4mΩ2 |∇⃗φpx, yq|2 for the effective potential, the desired
minimum px0, y0q of the effective potential ψ is as well an extremum of the electric potential

φpx, yq, where ∇⃗φpx0, y0q “ 0.
Calculating Bφpx0, yq{By “ 0 for b “ c yields:

y0 “
1

2

a

apa ` 2bq, (S4.48)

i.e. the ion-surface separation depends on the electrode sizes. One can therefore change
y0 by changing the electrode sizes a, b.

(d) Taylor expansion of φ around px0, y0q:

φpx, yq “ φpx0, y0q`
Bφ

Bx

∣∣∣∣
px0,y0q

x`
Bφ

By

∣∣∣∣
px0,y0q

y`
1

2

B2φ

Bx2

∣∣∣∣
px0,y0q

x2`
1

2

B2φ

By2

∣∣∣∣
px0,y0q

y2`
B2φ

BxBy

∣∣∣∣
px0,y0q

xy`...

(S4.49)
Because of the form of φpx0, y0q given in the problem statement, it suffices to evaluate B2

xφ
at x0 “ a{2 and y0 “

a

apa ` 2bq{2:

B2φ

Bx2

∣∣∣∣
px0,y0q

“
V

π

8b

pa ` bq2
a

apa ` 2bq
“
V0
y20

1

4
apa`2bq

8b

πpa ` bq2
a

apa ` 2bq
“
V0
y20
κ, (S4.50)

and thus:

κ “
2b

πpa ` bq2

a

apa ` 2bq. (S4.51)

S4.3 Double-wells

(a) C.f. Brown, K., Ospelkaus, C., Colombe, Y. et al.: Coupled quantized mechanical oscilla-
tors. Nature 471, 196–199 (2011), https://doi.org/10.1038/nature09721

The Coulomb interaction potential for the two trapped charged particles of charges QA, QB

in the two potential wells separated by a distance s0 is given by (+ Taylor expansion):

UpxA, xBq “
1

4πε0

QAQB

s0 ´ xA ` xB
«
QAQB

4πε0s0

ˆ

1 `
xA ´ xB

s0
`
x2A
s20

`
x2B
s20

´
2xAxB
s20

˙

,

(S4.52)
where xA and xB are the displacements of the particles from the minima in the double-well
potential.

The term proportional to xAxB representes the lowest order coupling between the motions
of the particles in the potential minima, hence:

Uc « ´
QAQB

2πε0s30
xAxB. (S4.53)

The particles oscillate with harmonic frequencies ωA, ωB in their respective wells:

xA “

c

ℏ
2mωA

´

a:

A ` aA

¯

, xB “

c

ℏ
2mωB

´

a:

B ` aB

¯

. (S4.54)

Therefore:

Ûc “ ´
QAQB

4πε0ms30

ℏ
?
ωAωB

´

a:

A ` aA

¯ ´

a:

B ` aB

¯

. (S4.55)

44



Pauli
Using the ”rotating wave approximation” given in the problem statement, this becomes:

Ûc «« ´
QAQB

4πε0ms30

ℏ
?
ωAωB

´

a:

AaB ` aAa
:

B

¯

“ ´ℏΩex

´

a:

AaB ` aAa
:

B

¯

. (S4.56)

We therefore obtain for the coupling strength:

ℏΩex “ ℏ
QAQB

4πε0m
?
ωAωBs30

. (S4.57)

(b) The harmonic oscillations of the particles in their respective wells contribute each a term

ℏωi

´

a:

iai ` 1{2
¯

to the Hamiltonian. Together with the expression of the coupling strength

between the particles in the double-well potential, derived in the previous sub-problem,
this becomes:

H “ ℏωA

ˆ

a:

AaA `
1

2

˙

` ℏωB

ˆ

a:

BaB `
1

2

˙

´ ℏΩex

´

a:

AaB ` aAa
:

B

¯

. (S4.58)

(c) The Lagrangian of the system is given by:

L “
1

2
m 9x2A `

1

2
m 9x2B ´

1

2
kAx

2
A ´

1

2
kBx

2
B ´

1

2
c pxA ´ xBq

2 . (S4.59)

Hence the equations of motion in matrix form:

ˆ

:xA
:xB

˙

“

ˆ

´
kA`c
m

c
m

c
m

´
kB`c
m

˙ ˆ

xA
xB

˙

. (S4.60)

The eigenfrequencies are given by the square-roots of the eigenvalues of the above matrix
system to be:

ω˘ “

g

f

f

f

e

1

m

¨

˝

kA ` kB
2

` c ˘

d

pkA ´ kBq
2

4
` c2

˛

‚. (S4.61)

(d) In the case kA “ kB “ k, the eigenfrequencies of the system become:

ω` “

c

k ` 2c

m
(S4.62)

and

ω´ “

c

k

m
, (S4.63)

with the corresponding eigenvectors:

v⃗` “

ˆ

1
´1

˙

, v⃗´ “

ˆ

1
1

˙

. (S4.64)

Therefore, the solution of the equation of motion is given by:

x⃗ptq “

ˆ

xAptq
xBptq

˙

“ C`v⃗` cos pω`t ` ϕ`q ` C´v⃗´ cos pω´t ` ϕ´q. (S4.65)
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Using the initial conditions, we obtain:

x⃗Aptq “
A0

2
pcos pω`tq ` cos pω´tqq , (S4.66)

and

x⃗Bptq “
A0

2
pcos pω´tq ´ cos pω`tqq . (S4.67)

We want to know the smalles t ą 0, for which:

cos pω`tq ` cos pω´tq “ 0. (S4.68)

We can solve this equation (n P N odd):

ω`t “ ω´t ` nπ. (S4.69)

Since we want the smalles t ą 0 for which this is the case, we choose n “ 1 and obtain:

tex “
π

ω` ´ ω´

. (S4.70)
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S5 Hyperfine Qubits in Trapped Neutral Atoms

10 points Johannes Krondorfer, TU Graz

S5.1 A Two Level Atom in a Laser Field

(a) The correct transformation rule for the Hamiltonian under a time-dependent unitary trans-
formation

H 1
“ V HV :

` iℏ 9V V : . (S5.1)

Obviously the first term of the Hamiltonian commutes with the transformation and we
have

iℏ 9V V “ iℏ ¨ iωσ:σV V :
“ ´ℏωσ:σ ,

and

V σV :
“

„

eiωt 0
0 1

ȷ „

0 0
1 0

ȷ „

e´iωt 0
0 1

ȷ

“ e´iωtσ

V σ:V :
“ eiωtσ: .

So in total we get

H 1
“ ´ℏ

∆
hkkkikkkj

pω ´ ω0qσ
:σ ` ℏ

¨

˚

˚

˝

2Ω
hkkkikkkj

´
D ¨ E0

2ℏ
peiωt ` e´iωt

qeiωtσ:
´

D˚
¨ E0

2ℏ
peiωt ` e´iωt

qe´iωtσ

˛

‹

‹

‚

« ´ℏ∆σ:σ `
ℏ
2

`

Ωσ:
` Ω˚σ

˘

(b) It is straight forward to rewrite the transformed Hamiltonian in terms of Pauli-matrices,
by shifting the energy about ´∆{2, which is always possible. Thus we have

H 1
“ ℏ

∆

2
1 ` ℏ

∆

2
σz ` ℏ

Ω1

2
σx ´ ℏ

Ω2

2
σy ,

with Ω1,Ω2 the real and imaginary part of Ω. So we have

α “ ℏ
∆

2
rΩ “

“

Ω1 ´Ω2 ∆
‰T

rΩ “
a

∆2 ` |Ω|2

(c) To prove this identity there are of course several ways. We will use Taylor expansion to
prove it. Separating the odd and even parts of the Taylor expansion of the exponential we
get

exppiθ n ¨ σq “

8
ÿ

k“0

piθq2k

p2kq!
pn ¨ σq

2k
`

8
ÿ

k“0

piθq2k`1

p2k ` 1q!
pn ¨ σq

2k`1

“

8
ÿ

k“0

p´1qkθ2k

p2kq!
` in ¨ σ

8
ÿ

k“0

p´1qkθ2k`1

p2k ` 1q!

“ cospθq1 ` in ¨ σ sinpθq ,
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where we used

pn ¨ σq
2

“
ÿ

i,j

ninjσiσj “
1

2

ÿ

i,j

ninj tσi, σju “ ||n|| “ 1 .

(d) Now it is easy to calculate the time evolution operator

Uptq “ e´ i
ℏH

1t
“ e´i∆{2

˜

cosprΩt{2q1 ` i
rΩ ¨ σ

rΩ
sinprΩt{2q

¸

.

Thus we have

ρeeptq “ |
ipΩ1 ´ iΩ2q

rΩ
sinprΩt{2q|

2
“

|Ω|2

2rΩ2

´

1 ´ cosprΩtq
¯

.

The excited state population is illustrated in Figure S5.1.

Figure S5.1: Excited state occupation ρeeptq “ | xe|Uptq |ψ0y |2 for the initial state |ψ0y “ |gy

scanned for ∆ “ 0,Ω{2,Ω, 2Ω, 5Ω.

S5.2 Optical Lattices

(a) Using the ansatz |ψy “ ψe |ey ` ψg |gy we get

iℏBtψe “
p2

2m
ψe ´ ℏ∆ψe `

ℏ
2
Ω˚ψg

iℏBtψg “
p2

2m
ψg `

ℏ
2
Ωψe

(S5.2)

(b) Applying the adiabatic approximation to the first equation in (S5.2) yields

ψe “
Ω˚

2∆
ψg ,

and inserting this into the second equation, yields

iℏBtψg “
p2

2m
ψg `

ℏ|Ω|2

4∆
ψg ,

which immediately yields the effective potential Veff.
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(c) We have Ωpxq “ Ω0 cospkxq.

(i) By computing a quadratic approximation at a minimum of the effective potential
we get an approximation of

Veffpxq “
ℏΩ2

0

4∆
cospkxq

2
“

ℏΩ2
0

8∆
p1 ` cosp2kxqq «

1

2
m
ℏΩ2

0k
2

2m∆
px ´ π{2kq

2 .

The height of the potential is obviously given by

V max
eff “

ℏΩ2
0

4∆
,

the frequency of the quadratic expansion is

ω2
Q “

ℏΩ2
0k

2

2m∆
,

and the energies of the quadratic potential are given by

EQpNq “ ℏωQpN `
1

2
q.

Thus we can estimate

EQpNq ă V max
eff

ô ℏ2
ℏΩ2

0k
2

2m∆
pN ` 1{2q

2
ă

ℏ2Ω4
0

16∆2

ô pN ` 1{2q
2

ă
mΩ2

0

8ℏ∆

ô N ă

c

mΩ2
0

8ℏ∆
´ 1{2

(ii) To obtain a trapping potential that is moving with constant velocity v we use the
adiabatic approximation for the laser field

Epx, tq “
E0

2
pcospkx ´ ωtq ` cospkx ` ϕptqqq

“ E0 cos

ˆ

k ` k

2
x `

ϕptq ´ ωt

2

˙

cos

ˆ

k ´ k

2
x ´

ϕptq ` ωt

2

˙

,

with ϕptq “ pω ` δωqt. This gives

Epx, tq “
E0

2
pcospkx ` δωtq cospωt ` δωt{2qq .

Since δω ! ω we can approximate

Ωpxq “ Ω0 cospkx ` δωtq .

If we choose δω “ ˘vk.

(iii) By the same arguments as before using ϕptq “
şt

0
ω ˘ kvpt1q dt1, yields

Ωpxq “ E0 cos

ˆ

k

ˆ

x `

ż t

0

vpt1q dt1
˙˙

,

which is just a potential following the acceleration implicit in vptq.
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(iv) To estimate the maximal acceleration we can employ a classical model and calculate

the maximal restoring force of the effective potential

Fmax
eff “ max BxVeffpxq

“ max
ℏkΩ0

4∆
sinp2kxq “

ℏkΩ2
0

4∆
.

So the maximal acceleration can be estimated by

amax “ Fmax
eff {m “

ℏkΩ2
0

4m∆
.

For shallow lattices a more detailed quantum mechanical analysis needs to be per-
formed and the maximal acceleration is much smaller.

S5.3 Hyperfine Transitions for Trapped Atoms

(a) Inserting the ansatz into the time-dependent Schrödinger equation we get

iℏBtψe “ ´ℏ∆ψe `
ℏΩ1

2
ψg1 `

ℏΩ2

2
ψg2

iℏBtψg1 “ ℏp∆1 ´ ∆qψg1 `
ℏΩ˚

1

2
ψe

iℏBtψg2 “ ℏp∆2 ´ ∆qψg2 `
ℏΩ˚

2

2
ψe

(b) Making the adiabatic approximation we obtain

ψe «
Ω1

2∆
ψg1 `

Ω2

2∆
ψg2 .

This yields the effective two level system

iℏBψg1 “ ℏp∆1 ´ ∆qψg1 `
ℏ|Ω1|

2

2∆
ψg1 `

ℏΩ˚
1Ω2

2∆
ψg2

iℏBψg2 “ ℏp∆2 ´ ∆qψg2 `
ℏ|Ω2|

2

2∆
ψg2 `

ℏΩ˚
2Ω1

2∆
ψg1 .

So we get the effective two-level Hamiltonian

Heff “

ˆ

ℏp∆1 ´ ∆q `
ℏ|Ω1|

2

2∆

˙

|ψg1yxψg1 | `

ˆ

ℏp∆2 ´ ∆q `
ℏ|Ω2|

2

2∆

˙

|ψg2yxψg2 |

`
ℏΩ˚

1Ω2

2∆
|ψg1y xψg2 | `

ℏΩ1Ω
˚
2

2∆
|ψg2y xψg1 | .

So we get the Raman Rabi frequency

ΩR “
Ω˚

1Ω2

∆

and the Raman detuning with resonance condition

∆R “ p∆1 ´ ∆2q `
|Ω1|

2 ´ |Ω2|2

2∆
!

“ 0 ,

by setting the effective energies equal.
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S6 Schrödingers Cat

10 points Markus Aichhorn, TU Graz

(a) Recall that p̂ “ ´iℏ B

Bx
and x̂ “ iℏ B

Bp
. For X̂ and P̂ this yields

P̂ “
1

?
mωℏ

p̂ “ ´i
B

Bp
a

mω{ℏ xq
“ ´i

B

BX

X̂ “
a

mω{ℏx̂ “ i
B

Bpp {
?
mωℏq

“ i
B

BP
.

Now we calculate the ground state, as an eigenstate of the annihilation operator, and we
get

xx| â |0y “ xx|
1

?
2

pX̂ ` iP̂ q |0y “ 0

ô pX ` BXqψ0pXq “ 0

ñ ψ0pXq “ e´X2{2

and in momentum space

xp| â |0y “ xx|
1

?
2

pX̂ ` iP̂ q |0y “ 0

ô piBP ` iP qψ0pP q “ 0

ñ ψ0pP q “ e´P 2{2

(b) For a coherent state â |αy “ α |αy, thus we get

1
?
2

pX ` BXqψαpXq “ αψαpXq

i
?
2

pBP ` P qψαpP q “ αψαpP q

yielding

ψαpXq “ e´pX´
?
2αq2{2

ψαpP q “ e´pP`i
?
2αq2{2

(c) We start in the coherent state |α0y with α0 “ ρeiϕ at time t “ 0. For the eigenstates |ny

of the Hamiltonian we have the energy En “ ℏωpn ` 1{2q. So we get

Uptq |α0y “ e´ i
ℏHt

|α0y “ e´ρ2{2
ÿ

n

ρneiϕn
?
n!

e
´i
ℏ Ht

|ny “ e´ρ2{2
ÿ

n

ρneiϕn
?
n!

e´iωnte´iωt{2
|ny

“ e´iωt{2e´ρ2{2
ÿ

n

ρneipϕ´ωtqn

?
n!

|ny “ e´iωt{2
|αptqy ,
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with αptq “ ρeipϕ´ωtq. For the expectation values this gives

xxyt “

c

ℏ
2mω

xαptq| â ` â:
|αptqy “

c

ℏ
2mω

pαptq ` αptq˚
q

“

c

ℏ
2mω

ρ cospωt ´ ϕq “ xmax cospωt ´ ϕq

xpyt “ ´i

c

mℏω
2

xαptq| â ´ â:
|αptqy “ ´i

c

mℏω
2

pαptq ´ αptq˚
q

“ ´

c

mℏω
2

ρ sinpωt ´ ϕq “ ´pmax sinpωt ´ ϕq .

Now if |α| “ ρ " 1 we have

∆x{ xxymax “ 1{ρ ! 1

∆p{ xpymax “ 1{ρ ! 1 .

So the uncertainty is negligible small compared to the extension of the state in position
space as well as in momentum space.

(d) For the ideal pendulum we have ω “
a

ℓ{g « 3.13 s´1. We have p0 “ 0 and thus ϕ “ 0,
and ρ “ xxymax

a

mω
2ℏ « 3.5 ˆ 109 and ∆x

xxymax
« 1.3 ˆ 10´10.

(e) For the cat state |ψcy as in (6.4) with α “ iρ we get

xα|x|αy “ 0

xα|p|αy “ pmax “ ρ
a

mℏω{2

x´α|x| ´ αy “ 0

x´α|p| ´ αy “ ´pmax .

If we interpret the left moving state as ”dead” and the right moving as ”alive” we get a
superposition of two classical-like states, analogous to the Schrödinger cat.

(f) To calculate the probability density in position and momentum space we calculate

PpXq9|e´iπ{4ψαpXq ` eiπ{4ψ´αpXq|
2

9|e´iπ{4e´pX´iρ
?
2q2{2

` eiπ{4e´pX`iρ
?
2q2{2

|
2

94e2ρ
2´X2

cos
´?

2ρX ´
π

4

¯2

(S6.1)

PpP q9|e´iπ{4ψαpP q ` eiπ{4ψ´αpP q|
2

9|e´iπ{4e´pP´ρ
?
2q2{2

` eiπ{4e´pP`ρ
?
2q2{2

|
2

9e´pP´ρ
?
2q2

` e´pP`ρ
?
2q2

(S6.2)

(g) Since the resolution is much larger than the uncertainty of the state itself and much smaller
that the difference in momentum of the two states, Alice will obtain a combination of two
Gaussians with width δp as distribution, one centered at `p0 the other centered at ´p0.
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(h) In momentum space the quantum superposition vanishes as seen in (f). Therefore the

histogram of a classical mixture of the two states will look exactly the same as the mea-
surement of Alice.

(i) When measuring in position space with a resolution δx !

?
ℏ{2mω

ρ
“ ∆x

ρ
. In this case the

resolution is fine enough to resolve the structure of the quantum probability distribution
given in (S6.1), and thus the distribution will have that form. On the other side, if we
consider a statistical mixture of the two coherent states the probability distribution is
given by

PclpXq9|ψαpXq|
2

` |ψ´αpXq|
2

9e2ρ
2´X2

.
(S6.3)

and the interference pattern does not occur. So this measurement can decide whether we
only have a statistical mixture or a quantum superposition.

(j) The resolution that is necessary to see the superposition is δx !

?
ℏ{2mω

ρ
« 10´26, which

is not achievable in practice.
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S7 Boltzmann Machine

8 points Johannes Krondorfer, TU Graz

S7.1 Classical Boltzmann Machine

(a) For proper normalization of P we immediately get Z “
ř

s e
´βEpsq. For the information

we get

´ logP psq “ βEpsq ` logZ “ β

˜

´
ÿ

iăj

wijsisj ´
ÿ

i

bisi

¸

` logZ (S7.1)

(b) This is easily shown by

xEyP ´
1

β
S “

1

β

ÿ

s

pβEpsqP psq ` P psq logP psqq

“
1

β

ÿ

s

pp´ logP psq ´ logZqP psq ` P psq logP psqq

“ ´
1

β
logZ

ÿ

s

P psq “ ´
1

β
logZ “ F

(c) We can bound the logarithm with log x ď x ´ 1 for all x ą 0. For the Kullback-Leibler
divergence this gives

´DpPdata||P q “
ÿ

s

Pdatapsq log
P psq

Pdatapsq

ď
ÿ

s

Pdatapsq

ˆ

P psq

Pdatapsq
´ 1

˙

“
ÿ

s

pP psq ´ Pdatapsqq “ 0 .

Thus DpPdata||P q ě 0. For the bound of the logarithm we have equality if and only if
x “ 1, i.e. Pdata “ P , which shows the statement.

(d) The Kullback-Leibler divergence can be rewritten as

DpPdata||P q “
ÿ

s

pPdatapsq logPdatapsq ´ Pdatapsq logP psqq “ ´ xlogP yPdata
` % ,

and thus minimizing the KL divergence is the same as maximizing the log-likelihood
xlogP yPdata

.

(e) To calculate the update we first compute

´
B

Bθ
logP psq “ βBθEpsq `

1

Z
BθZ “ β pBθEpsq ´ xBθEpsqyP q .

So we get

BθDpPdata||P q “ β
`

xBθEyP ´ xBθEyPdata

˘

,
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which means

BbiDpPdata||P q “ β
`

´ xsiyP ` xsiyPdata

˘

Bwij
DpPdata||P q “ β

´

´ xwijyP ` xwijyPdata

¯

.

Thus the update is essentially matching the expectation of model and data distribution
of the computational units of the model. When the model is perfectly trained, i.e. the
gradient is zero, then the expectations are the same for model and true data.

(f) In order to compute the conditional probability we use the definition

P psi “ 1|s´iq “
P psi “ 1, s´iq

P ps´iq
“

P psi “ 1, s´iq

P psi “ 1, s´iq ` P psi “ ´1, s´iq

“
1

1 `
P psi“´1,s´iq

P psi“1,s´iq

.

Furthermore we have

P psi “ ´1, s´iq

P psi “ 1, s´iq
“ exp p´βpEpsi “ ´1q ´ Epsi “ 1qqq “ e´β∆Eps´iq .

So α “ β and

x “ ∆Eps´iq “ 2
ÿ

j‰i

wijsj ` 2bi .

S7.2 Quantum Boltzmann Machine

(a) Analogously to the classical case we compute

trtρHu ´
1

β
S “

1

β
tr t´ρ log ρ ´ ρ logZ ` ρ log ρu “ ´

1

β
logZtrtρu “ F

(b) Analogously to the classical case we perform the derivative with respect to the parameters
θµ, yielding

BθµDpρdata||ρq “ βtr
!

ρdata

´

BθµH ´ xBθµHy
ρ

¯)

“ β
´

xOµyρdata
´ xOµyρ

¯

.

This is essentially the same as in the classical case, but with expectation values of hermitian
operators in a Hilbert space instead of classical statistical expectations.

(c) The given Hamiltonian does not provide an advantage of the quantum system over the
classical one, since it is diagonal in the computational basis. Thus by computing the
matrix elements of the Hamiltonian we get

xs|H |s1
y “ ´δss1

˜

ÿ

iăj

wijsisj `
ÿ

i

bisi

¸

,
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with si P t´1, 1u. This is equivalent to the classical system. To exploit the advantage
of the quantum system we need mixtures and superpositions of the computational basis.
This could be achieved by adding terms like

HI P

#

ÿ

i

Γiσ
x
i ,

ÿ

iăj

Wijσ
x
i σ

x
j ,

ÿ

ij

Tijσ
x
i σ

z
j , . . .

+

.

Superpositions are incorporated since xs|HI |s1y  9δss1
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S8 Precession

14 points Matthias Diez, TU Graz & KFU

S8.1 The Geodesic Equation

(a) The Euler Lagrange equation for L “

b

gµν
dxµ

ds
dxν

ds
is:

B

Bxµ
L “

d

ds

B

B 9xµ
L (S8.1)

where 9xµ “ dxµ

ds
. From this we immediately get:

1

2L
Bµgαβ 9xα 9xβ “

d

ds

ˆ

1

L
gαµ 9xα

˙

(S8.2)

Now we can use that gαβ 9xα 9xβ “ 1, as well as for timelike trajectories of massive particles
and we thus get:

1

2
Bµgαβ 9xα 9xβ “ gµα

d2

ds2
xα `

1

2
Bβgαµ 9xα 9xβ ` Bβgαµ 9xα 9xβ (S8.3)

Additionally we use that gµνgµα” “ δνα and after rearranging we arrive at:

d2

du2
xµ ´ Γµ

ρν

dxρ

du

dxµ

du
“ 0, (S8.4)

(b) We use again the Euler-Lagrange equation, this time for the Lagrangian L2:

d

ds

„

B

B 9xµ
L2

ȷ

“ BµL
2 (S8.5)

Using the product rule we have:

L
d

ds

„

B

B 9xµ
L

ȷ

“ LBµL (S8.6)

where we used that L “ 1 and thus d
ds
L “ 0.

S8.2 The Schwarzschild Metric

(a) The Lagrangian can be read off to be :

L “

ˆ

1 ´
2M

r

˙

9t2 ´

ˆ

1 ´
2M

r

˙´1

9r2 ´ r2p 9θ2 ` sin2 θ 9ϕ2
q (S8.7)

(b) We immediately see that L does not depend on t, ϕ and s. Therefrom we know that B

B 9t
L,

B

B 9ϕ
L and d

ds
L ´ 9xµ BL

B 9xµ are constants of motion. However as we know that gµν 9xµ 9xν “ 1 is

also a constant of motion we find

h “ r2 sin2 θ 9ϕ (S8.8)

k “

ˆ

1 ´
2M

r

˙

9t (S8.9)

1 “

ˆ

1 ´
2M

r

˙

9t2 ´

ˆ

1 ´
2M

r

˙´1

9r2 ´ r2p 9θ2 ` sin2 θ 9ϕ2
q (S8.10)
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(c) In order to get the Christoffel symbols in this specific problem we only need to evaluate the

Euler Lagrange equations for our choice of coordinates and then identify the Christoffel
symbols, eg.:

ˆ

1 ´
2M

r

˙

d2

ds2
t `

2M

r2
9t 9r “ 0 (S8.11)

We can rearrange this:
d2

ds2
t `

2M

r2

ˆ

1 ´
2M

r

˙´1

9t 9r “ 0 (S8.12)

We can read then off Γ0
01 “ M

r2

`

1 ´ 2M
r

˘´1
.

S8.3 Classical Treatment

(a)

T “
m

2

”

9r2 ` r2 9ϕ2
ı

(S8.13)

(b)

L “
m

2

”

9r2 ` r2 9ϕ2
ı

`
mMG

r
(S8.14)

The constants of motion are:

h “ mr2 9ϕ2 (S8.15)

E “
m

2

”

9r2 ` r2 9ϕ2
ı

´
mMG

r
(S8.16)

(c) Rearranging of the equations from above gives:

9r2 “
2pE ´ mMG

r
q ´ h2

mr2

m
(S8.17)

(d) First we use the chain rule to get:
dr

dt
“
dr

dϕ

dϕ

dt
(S8.18)

Furthermore we have:
dp

dϕ
“

d

dϕ

1

r
“ ´

1

r2
dr

dϕ
(S8.19)

Combining these two leads to:
dr

dt
“ ´

dp

dϕ

h

m
(S8.20)

Inserting this in equation (S8.17) gives:
ˆ

dp

dϕ

˙2

` p2 “
2Em

h2
´

2MGm2

h2
p (S8.21)

Therefrom we have:

A “ ´
2MGm2

h2
(S8.22)

B “
2Em

h2
(S8.23)

(S8.24)
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(e) Differentiating both sides with respect to ϕ gives:

2p1p2
` 2pp1

“ Ap1 (S8.25)

From this we have:

p2
` p “

A

2
(S8.26)

This equation is easy to solve, the fundamental solutions are sinϕ and cosϕ. We choose
for the homogeneous part cosϕ and the particular solution is simply A

2
. Thus we get an

ellipse for A ă 0 in polar coordinates:

1

r
“ p “

1

R0

ˆ

cospϕq `
AR0

2

˙

(S8.27)

where R0 and the energy E as well as h depend on the initial conditions.

S8.4 Relativistic Treatment

(a)

9r2 “ k2 ´

ˆ

1 ´
2M

r

˙ „

1 `
h2

r2

ȷ

(S8.28)

(b) Similar to the Newtonian case we use:

dr

ds
“ ´

dp

dϕ
h (S8.29)

and get:

p12
` p2 “

k2

h2
´

1

h2
` 2Mp

„

1

h2
` p2

ȷ

(S8.30)

where p1 “
dp
dϕ
.

(c) By differentiation of both sides we have:

2p1p2
` 2p1p “

2M

h2
p1

` 3Mp2p1 , (S8.31)

dividing by p1 leads to:

p2
` p “

2M

h2
` 3Mp2 (S8.32)

and this gives us for C and D:

C “
2M

h2
(S8.33)

D “ 3M (S8.34)

(d) Justify why the term Dp2 can be seen as a small perturbation for Mercury.
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(e) Using the Newtonian solution in the perturbation we get:

p2
` p “

2M

h2
`

3M3

h4
p1 ` 2e cosϕ ` e2 cos2 ϕq (S8.35)

Of the particular solution the first part adds a minute constant, the third a minute constant
and a periodic wiggle, but the second adds something that is not periodic with 2π and
this is observable as precession. So as our approximate solution we take:

p “
M

h2
p1 ` e cosϕ `

3M2

h2
eϕ sinϕq (S8.36)

«
M

h2
p1 ` e cos

ˆ

ϕ ´
3M2

h2
ϕ

˙

, (S8.37)

where we used: cospϕ ´ βq “ cosϕ cos β ` sinϕ sin β and cos β « 1 and sin β « β for a

small angle β “
3M2ϕ
h2 . Thus the precession ∆ is

∆ “
2π

1 ´ 3M2

h2

´ 2π « 6π
M2

h2
. (S8.38)
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S9 Pulsar Electrodynamics

10 points Martin Napetschnig, TU Munich

S9.1 Pulsar Characteristics

(a)

Pmin “ 2π

c

R3

GM
(S9.1)

I get for the Sun Pmin “ 1.03 ˆ 104 s while I get for the NS with the above values Pmin “

5.85 ˆ 10´4 s. The answer is that the Sun is two orders of magnitude below above their
minimum period, while pulsars are really close to it. The result giving values below ms
can be explained by order 1 factors in the masses and radii of pulsars.

(b) (0.5 points)
Ωf

Ωi
“

Bf

Bi
“

´

Ri

Rf

¯2

. Taking the indicated values gives
Bf

Bi
“

R2
@

R2
NS

„ 4.9 ˆ 105

as a magnification factor for the magnetic field, which is the same as for the angular
momentum.

(c)

µ⃗ “ |µ⃗|

¨

˝

sinα cospΩtq
sinα sinpΩtq

cosα

˛

‚, (S9.2)

d

dt
Ekin “

d

dt

ˆ

IΩ2

2

˙

, (S9.3)

IΩ 9Ω “
2

5
MR2Ω 9Ω “ ´

µ0

12πc3
µ2 sin2 α Ω4, (S9.4)

9Ω “ ´

ˆ

µ0µ
2 sin2 α

12πc3I

˙

Ω3, (S9.5)

9P “

ˆ

µ0µ
2π sin2 α

3c3I

˙

P´1. (S9.6)

(d) We integrate (S9.6):

ż P0

Pinitial

dP P “

ˆ

µ0µ
2π sin2 α

3c3I

˙
ż T

0

dt, (S9.7)

ż P0

Pinitial

dP P “ P0
9P0

ż T

0

dt, (S9.8)

P 2
0

2

ˆ

1 ´
P 2
initial

P 2
0

˙

“ P0
9P0 T Ñ (S9.9)

T „
1

2

P0

9P0

(S9.10)
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S9.2 The Aligned Rotator

(a) Using (9.7) and the index notation:

BiBj
µj

prkrkq
1
2

“ ∇⃗
ˆ

∇⃗ ¨
µ⃗

r

˙

“ (S9.11)

Bi

˜

µjrj

prkrkq
3
2

¸

“ ∇⃗pµ⃗ ¨ r⃗q

r3
“ (S9.12)

µi

r3
´ 3

µjrjri
r5

,ñ (S9.13)

B⃗out “
µ0

4π

µ⃗ r2 ´ 3pµ⃗ ¨ r⃗q r⃗

r5
“ (S9.14)

“ ´
µ0

4π

µ

r3
p2 cos θ e⃗r ` sin θ e⃗θq (S9.15)

In the last line I used (9.6) for e⃗z. The magnetic moment at the pole is given by:

µ “
2πB0R

3

µ0

. (S9.16)

(b) We have
ż

dr

r
“

ż

dθ
Br

Bθ

(S9.17)

“ 2

ż

dθ
cos θ

sin θ
ñ (S9.18)

rpθq “ K sin2 θ (S9.19)

(c) There are two ways to derive this. Ones uses (9.11), the other uses (9.9). I will show first

the latter option here and use also ∇⃗ ¨ B⃗ “ 0 and ∇⃗ ˆ B⃗ “ µ0j⃗out ´ B

Bt
E⃗ “ 0:

0 “ E⃗ ` pΩ⃗ ˆ r⃗q ˆ B⃗, (S9.20)

E⃗ “ ´pΩ⃗ ¨ B⃗qr⃗ ` Ω⃗pB⃗ ¨ r⃗q, (S9.21)

∇⃗ ¨ E⃗ “
ρGJ

ε0
“ ´Bi rriΩjBj ´ BjΩirjs , (S9.22)

ρGJ “ ´ε0 r3ΩjBj ` ΩjriBiBj ´ ΩirjBiBj ´ BiΩis (S9.23)

“ ´ε0

„

2pΩ⃗ ¨ B⃗q `
1

6
εijkε

ijkΩirjpBiBj ´ BjBiq

ȷ

(S9.24)

“ ´2ε0pΩ⃗ ¨ B⃗q ´
ε0
6

pΩ⃗ ˆ r⃗qp∇⃗ ˆ B⃗q,ñ (S9.25)

ρGJ “ ´2ε0pΩ⃗ ¨ B⃗q (S9.26)

The other way is smoother (using also (9.10)):

0 “ E⃗ ` pΩ⃗ ˆ r⃗q ˆ B⃗, (S9.27)

∇⃗ ¨ E⃗ “
ρGJ

ε0
“ ´∇⃗ ¨

”

pΩ⃗ ˆ r⃗q ˆ B⃗
ı

“ (S9.28)

“ ´B⃗ ¨ p∇⃗ ˆ pΩ⃗ ˆ r⃗qq “ (S9.29)

“ ´B⃗ ¨ p3Ω⃗ ´ pΩ⃗ ¨ ∇⃗qr⃗q,ñ (S9.30)

ρGJ “ ´2ε0pΩ⃗ ¨ B⃗q (S9.31)
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After carrying out the scalar product (giving 0.5 P for somebody who does this directly
without computing ρGJ):

ρGJ “ `const
`

2 cos2 θ ´ sin2 θ
˘

„
`

3 cos2 θ ´ 1
˘

(S9.32)

Thus the critical angle at which there are no charges is given by θc “ cos´1p 1?
3
q „ 55˝ „

0.95 rad. We have positive (negative) charges for angles below (above) this value. Of
course, we have 4 quadrants: positive charges for θ P r´55˝,`55˝s and θ P r125˝,`235˝

and negative ones otherwise. Figure 9.2 is unfortunately confusing, because these papers
consider a pulsar spinning in the opposite direction to our case.

(d) The speed limit is Ω ¨ RL ď c Ñ RL “ c
Ω
. Now I use (S9.19)

R

RL

“
sin2 θPC

sin2 π
2

, (S9.33)

θPC „

c

ΩR

c
(S9.34)

The small polar cap region sources open field lines.
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