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2	

	19	

Abstract	20	

We	articulate	a	scienti_ic	vision	and	roadmap	for	the	development	of	improved	Earthquake	21	

Rupture	Forecast	models,	which	are	one	of	the	two	main	modeling	components	used	in	22	

modern	seismic	hazard	and	risk	analysis.		One	primary	future	objective	is	to	provide	fully	23	

time-dependent	models	that	include	both	elastic	rebound	and	spatiotemporal	clustering	24	

nationwide,	which	is	particularly	important	for	shorter-term	hazard	and	risk	25	

considerations	(e.g.,	earthquake	insurance	products).	We	also	discuss	the	importance	and	26	

perennial	challenges	associated	with	quantifying	epistemic	uncertainties,	including	those	27	

associated	with	deformation-model	slip	rates,	un-quanti_ied	sampling	errors	with	respect	28	

to	off-fault	seismicity,	and	any	spatial	covariances.	The	need	for	more	physics-based	29	

approaches	is	also	emphasized,	as	is	the	bene_it	of	adding	model	valuation	(quantifying	30	

usefulness)	to	our	veri_ication	and	validation	protocols.		Given	the	multidisciplinary	and	31	

system-level	nature	of	this	activity,	modular	design	is	critical.		Future	updates	will	also	32	

draw	from	best-available	science	by	both	the	United	States	Geological	Survey	and	the	33	

external	community.	The	primary	goal	of	this	paper	is	to	highlight	plans	that	guide	research	34	

and	facilitate	community	engagement	with	model	development,	especially	with	respect	to	35	

lowering	the	entry	barrier	for	early	career	scientists	and	engineers.		The	paper	is	written	so	36	

readers	can	focus	on	the	sections	that	interest	them	most	(see	table	of	contents),	with	the	37	

Introduction	and	Discussion	providing	a	stand-alone	overview	and	summary.	38	
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Introduction	&	Background	112	

	113	

	 The	Congressionally	enacted	Earthquake	Hazards	Reduction	Act	of	1977	and	114	

subsequent	reauthorizations	give	the	United	States	Geological	Survey	(USGS)	statutory	115	

responsibility	to	study,	monitor,	broadcast,	and	forecast	earthquake	activity,	which	it	116	

accomplishes	via	the	USGS	Earthquake	Hazards	Program	(Hayes	et	al.,	2024).	With	respect	117	

to	forecasting,	the	USGS	produces	of_icial	seismic	hazard	assessments,	which	quantify	the	118	

probability	of	future	ground	shaking	levels	throughout	the	country	(see	Figure	1	for	USGS	119	

regions	of	purview).		These	results	are	used	in	various	earthquake	risk	mitigation	efforts,	120	

including	building	code	design	requirements	and	various	types	of	earthquake	insurance	121	

products.		The	USGS	also	participates	in	various	earthquake	risk	analyses,	which	quantify	122	

threats	and	consequences	associated	with	the	built	environment	(e.g.,	Jaiswal	et	al.,	2023).	123	

Seismic	Hazard	Model	Components		124	

	125	

	 As	depicted	in	Figure	2,	modern	seismic	hazard	assessment	relies	on	two	main	126	

modeling	components:	1)	an	Earthquake	Rupture	Forecast	(ERF),	which	de_ines	the	127	

probability	of	every	possible	fault-rupture	event	in	a	region	and	over	a	speci_ied	timespan	128	

(or	a	suite	of	synthetic	catalogs	of	such	events);	and	2)	a	Ground	Motion	Model	(GMM),	129	

which	provides	a	probability	distribution	of	possible	shaking	at	one	or	more	sites	for	a	130	

given	fault	rupture	(or	a	suite	of	synthetic	seismograms,	which	can	be	used	to	infer	a	131	
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7	

probability	distribution).		While	the	division	between	ERFs	and	GMMs	is	somewhat	132	

arti_icial	(i.e.,	these	components	could	eventually	be	merged)	the	distinction	will	133	

nevertheless	remain	both	crucial	and	useful	for	at	least	another	decade.	This	report	is	134	

focused	on	ERF	development,	although	the	themes	addressed	in	this	Introduction	apply	135	

equally	well	to	GMMs.	136	

	 A	few	decades	ago,	both	ERF	and	GMM	models	were	relatively	simple	(e.g.,	a	single	137	

individual	or	group	could	construct	both),	but	today,	as	we	add	more	realism,	these	models	138	

are	much	more	"system	level"	in	terms	of	requiring	integration	and	consistency	among	a	139	

broad	range	of	disciplines	(e.g.,	seismology,	geology,	geodesy,	and	earthquake	physics,	as	140	

illustrated	at	the	top	of	Figure	2).		Furthermore,	while	in	the	past	these	models	primarily	141	

in_luenced	a	single	_lagship	product	(the	National	Seismic	Hazard	Model	(NSHM);	e.g.,	142	

Petersen	et	al.,	2023),	they	are	now	applicable	to	an	increasing	wide	array	of	applications,	143	

such	as	operational	earthquake	forecasting	(real-time	information	on	evolving	event	144	

sequences;	Jordan	and	Jones,	2010;	Jordan	et	al.,	2014),	as	a	Bayesian	prior	for	earthquake	145	

early	warning	(e.g.,	Cua	and	Heaton,	2007),	and	for	hazard	assessments	related	to	tsunamis,	146	

landslides,	and	liquefaction.		147	

Biggest	Potential	Improvements	to	Seismic	Hazard	Models	148	

	149	
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	 All	models	embody	assumptions,	approximations,	and	data	uncertainties,	so	we	are	150	

perpetually	on	the	lookout	for	potential	enhancements.		Currently,	both	ERFs	and	GMMs	151	

have	a	single,	potentially	game-changing	improvement	that	could	be	made.		For	ERFs,	this	is	152	

adding	full	time-dependence.		Thus	far,	our	NSHM	models	have	generally	been	based	on	153	

time-independent	ERFs,	especially	in	terms	of	ignoring	the	spatiotemporal	clustering	of	154	

earthquakes	(e.g.,	aftershocks,	which	can	be	large	and	damaging).		While	these	155	

approximations	are	certainly	more	adequate	for	the	50-year	durations	and	low	exceedance	156	

probabilities	considered	in	typical	building	codes	(the	traditional	use	of	NSHMs;	e.g.,	157	

Building	Seismic	Safety	Council,	2020;	Luco	et	al.,	2015),	time-dependent	effects	may	be	158	

consequential	for	the	shorter-term	hazard	or	risk	estimates	relevant	to,	for	example,	159	

earthquake	insurance	and	catastrophe	bonds	(e.g.,	Goda	et	al.,	2014),	response	and	160	

recovery	efforts		(e.g.,	Gerstenberger	et	al.,	2014;	Bazzurro	et	al.,	2006),	and	building	codes	161	

for	temporary	structures	(e.g.,	Mohammadi,	2008).	Time-dependence	may	also	be	162	

impactful	for	the	higher	50-year	exceedance	probabilities	in	building	codes	governing	the	163	

retro_it	of	existing	structures	(e.g.,	American	Society	of	Civil	Engineers,	2023),	the	design	of	164	

tall	buildings	(e.g.,	Paci_ic	Earthquake	Engineering	Research	Center,	2017),	and	community	165	

resilience	(e.g.,	NIST-FEMA,	2021;	Blowes	et	al.,	2023).			166	

	 Figure	3	illustrates	how	spatiotemporal	seismicity	clustering	in_luences	earthquake	167	

rates	(and	the	probability	of	large	events	by	proxy)	over	a	100-year	period,	revealing	not	168	

only	order-of-magnitude	rate	increases	following	large	events,	but	relatively	quiet	times	as	169	
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well	(see	caption	for	details).		The	general	rule	of	thumb	is	that	every	earthquake	has	about	170	

a	5-10%	chance	of	being	followed	by	something	even	larger	in	the	week	that	follows	171	

(Reasenberg	and	Jones,	1989,	1994),	which	has	been	borne	out	by	numerous	large-event	172	

sequences.	This	means	the	1-year	likelihood	of	fatalities	and	_inancial	losses	can	increase	by	173	

an	order	of	magnitude	following	a	large	mainshock,	whereas	earthquake	loss	modelers	174	

typically	_ind	10%	changes	actionable	(e.g.,	Field,	Porter,	et	al.,	2017).		Our	current	of_icial	175	

hazard	models	ignore	this	time	dependence,	which	is	why	the	2023	USGS	NSHM	explicitly	176	

states	that	applicability	is	restricted	to	return	periods	above	~475	years	(Petersen	et	al.,	177	

2023).		Addressing	this	limitation	is	a	major	theme	of	this	paper.		178	

	 With	respect	to	GMMs,	the	most	impactful	improvement	will	be	to	relax	the	so-called	179	

"ergodic"	assumption	(Anderson	and	Brune,	1999),	which	basically	means	developing	180	

rupture-	and	site-speci_ic	GMMs	(or	path-speci_ic	models	if	"path"	implicitly	includes	181	

source	and	site	effects).		The	seismic-hazard	calculation	for	a	site	involves	considering	the	182	

ground	motion	produced	by	every	possible	earthquake	rupture	(de_ined	by	the	ERF).		183	

Therefore,	we	would	ideally	have	multiple	realizations	of	the	ground	motion	produced	at	184	

each	site	and	for	each	rupture.	Unfortunately	(from	a	predictability	perspective),	only	a	tiny	185	

fraction	of	ERF-represented	ruptures	has	actually	occurred,	and	those	that	have	produced	186	

observed	data	at	only	a	tiny	fraction	of	sites.		Thus,	empirical	GMMs	have	been	forced	to	187	

aggregate	the	limited	data	by	magnitude,	distance,	and	a	few	other	variables,	and	to	apply	188	

the	consequent,	collective	variability	to	that	assumed	for	each	unique	rupture	and	site	189	
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combination.		Were	we	ever	to	obtain	a	suf_icient	number	of	recordings,	however,	we	would	190	

surely	discover	that	ground	motions	for	each	speci_ic	rupture	and	site	combination	are	191	

systematically	higher	or	lower,	and	less	variable,	than	implied	by	this	"ergodic"	model.		192	

Efforts	to	relax	this	assumption	have	demonstrated	that	doing	so	can	have	a	dramatic	193	

in_luence	on	inferred	hazard	(e.g.,	Wang	and	Jordan,	2014;	Abrahamson	et	al.,	2019).	194	

Uncertainty	Quanti]ication		195	

	196	

	 The	hazard	and	risk	posed	by	an	earthquake	generally	increases	with	magnitude,	which	197	

poses	a	perennial	challenge	in	that	the	paucity	of	larger	magnitude	events	means	we	are	198	

constructing	and	testing	models	with	sparse	datasets.	One	consequence	and	challenge	is	a	199	

need	to	quantify	forecasting	uncertainties,	especially	given	inevitable	modeling	200	

assumptions,	approximations,	and	input-data	limitations.		Such	uncertainties	are	referred	201	

to	as	"epistemic"	(due	to	a	lack	of	knowledge,	which	means	they	could	be	reduced	with	202	

further	study)	in	contrast	to	"aleatory"	uncertainty	(intrinsic	variability	built	into	a	model	203	

representing	luck	of	the	draw,	which	cannot	be	reduced	with	more	information).	This	204	

distinction	is	model	dependent	in	that	aleatory	uncertainty	can,	for	example,	get	converted	205	

to	epistemic	as	more	parameters	are	added	to	a	model	(see	Marzocchi	and	Jordan	(2018)	206	

for	an	advanced	discussion).			207	
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	 The	bottom	line	is	an	ERF,	or	any	model	for	that	matter,	is	limited	and	questionable	208	

without	some	indication	of	epistemic	uncertainties.		These	are	traditionally	represented	209	

with	a	logic	tree,	in	which	branches	represent	the	set	of	options	and	relative	weights	(the	210	

likelihood	of	being	correct)	for	each	uncertain	model	element	(see	Figure	5	of	Petersen	et	211	

al.	(2023)	for	an	example).	The	result	is	some	generally	large	number	of	alternative	models	212	

representing	the	range	of	possibilities.		Ideally	this	set	is	mutually	exclusive	and	collectively	213	

exhaustive,	but	this	is	usually	dif_icult	to	achieve	due	to,	for	example,	unanticipated	214	

correlation	among	branches	and	unknown	unknowns	(missing	branches).		Full-disclosure	215	

obligations	dictate	that	we	nevertheless	do	the	best	we	can,	and	while	we	continually	make	216	

signi_icant	progress,	de_ining	an	adequately	complete	and	computationally	manageable	set	217	

of	branches		remains	a	grand	and	perennial	challenge.		A	practical	manifestation	is	that	our	218	

forecasting	uncertainties	are	generally	still	growing	with	each	new	model,	whereas	we	219	

want	to	get	to	where	new	research	reduces	overall	uncertainties.	A	related	challenge	is	that	220	

regions	with	less	information	may	imply	less	uncertainty,	whereas	the	opposite	should	be	221	

true.				222	

Physics-Based	Modeling		223	

	224	

	 Another	consequence	and	challenge	due	to	limited	large-magnitude	data	is	a	need	for	225	

more	physics-based	modeling	approaches,	which	effectively	enable	inferences	where	we	226	

lack	adequate	observations	to	constrain	statistical	models.		However,	physics-based	227	
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modeling	presents	its	own	set	of	challenges	including:	having	an	adequate	understanding	228	

and	numerical	representation	of	the	physical	process;	developing	and	maintaining	229	

advanced	computational	platforms;	access	to	rapidly	evolving	high-performance-computing	230	

facilities;	management	and	processing	of	massive	data	sets;	representing	and	propagating	231	

epistemic	uncertainties;	and	maintaining	reproducibility.		For	these	reasons,	the	USGS	relies	232	

heavily	on	external	collaborations	to	develop	and	maintain	such	capabilities.		Ultimately,	233	

physics-based	models	could	be	used	directly	for	hazard	and	risk	estimation,	but	this	is	234	

probably	at	least	a	decade	away.		For	now,	we	use	them	to	help	guide	the	functional	form	of	235	

more	empirical,	traditional	models.		Nevertheless,	it	is	hard	to	imagine	an	activity	that	will	236	

have	a	greater	impact	on	what	earthquake	hazard	models	look	like	20	years	from	now	given	237	

the	rarity	of	large,	damaging	events.	238	

Basic	Research		239	

	240	

	 A	key	to	success	with	respect	to	the	above	model-development	challenges	is	having	a	241	

strong	and	robust	earthquake	research	program,	both	with	respect	to	identifying	and	242	

testing	the	various	scienti_ic	hypotheses	underpinning	the	range	of	viable	models,	but	also	243	

with	respect	to	developing	more	physics-based	approaches.		This	obviously	includes	focus	244	

on	model	elements	deemed	"best-available	science"	(de_ined	in	Jordan	et	al.	(2023))	with	245	

respect	to	current	applications,	but	also	more	exploratory	or	curiosity-driven	science	to	246	

enable	unanticipated	innovations.		It	is	also	important	to	recognize	that	system-level	ERF	247	
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and	GMM	models	serve	not	only	practical	applications,	but	also	form	a	crucial	basis	for	248	

investigating	and	testing	scienti_ic	hypotheses.		More	speci_ically,	the	process	of	combining	249	

insights	from	different	disciplines	(system-level	model	construction)	often	reveals	250	

incompatibilities	that	trigger	new	investigations	that	help	resolve	outstanding	questions	251	

much	more	ef_iciently	than	siloed	disciplines	ever	could.	252	

Veri]ication,	Validation,	and	Valuation		253	

	254	

	 Another	key	to	ERF	development	is	having	robust	veri_ication,	validation,	and	valuation	255	

protocols.		Veri_ication	ensures	our	models	are	implemented	as	intended	(e.g.,	code	256	

debugging).		Validation	is	the	extent	to	which	the	models	are	consistent	with	nature,	which	257	

is	challenging	given	a	paucity	of	data	at	the	large	magnitudes	that	dominate	hazard,	as	258	

discussed	more	below.			259	

	 Valuation	is	a	relatively	new	concept	(e.g.,	Jordan	et	al.,	2011)	born	out	of	the	Box	quote	260	

"all	models	are	wrong	...	some	are	useful"	(Box,	1980).		More	speci_ically,	given	all	models	261	

embody	assumptions,	approximations,	and	data	uncertainties,	perhaps	the	most	relevant	262	

question	is	whether	a	new	or	competing	model	represents	value	added	(e.g.,	does	the	263	

increased	usefulness	outweigh	the	cost	of	development	and	maintenance?).		The	answer	to	264	

this	question	depends	on	the	particular	use	(e.g.,	building	codes,	earthquake	insurance,	265	

catastrophe	bonds).	As	already	noted,	our	NSHMs	have	effectively	been	tailored	for	building	266	
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codes	(time-independent,	individual	site	hazard	curves).		More	speci_ically,	questions	arose	267	

following	the	release	of	the	2023	NSHM	(Petersen	et	al.,	2023)	on	whether	the	model	is	268	

appropriate	for	shorter-term	and/or	spatially	distributed	hazard	and	risk	metrics,	which	269	

represents	a	signi_icant	issue	for	the	insurance	community	(e.g.,	Jordan	et	al,	2023).	270	

Broader	valuation	depends	on	having	an	operationalized	ability	to	compute	an	adequate	271	

range	of	hazard	and	risk	metrics	during	model	development,	which	is	currently	a	work	in	272	

progress.	Such	valuations	also	identify	which	uncertain	model	elements	are	most	impactful	273	

with	respect	to	real-world	decisions,	which	feeds	back	to	identifying	which	scienti_ic	274	

studies	might	be	most	impactful.		Current	statements	with	respect	to	high-priority	research	275	

are	largely	based	on	informed	speculation,	whereas	valuation	capabilities	would	sharpen	276	

these	statements	objectively.	277	

	278	

Objectives	Of	This	Document		279	

	280	

	 The	purpose	of	this	ERF-development	roadmap	is	to:	1)	articulate	goals,	priorities,	and	281	

opportunities	(low	hanging	fruit);	2)	identify	and	track	the	various	modular	elements	that	282	

need	to	be	developed	and	integrated;	3)	clarify	how	potential	participants	may	contribute;	283	

and	4)	identify	model	aspects	that	need	particular	attention.		This	effort	builds	on	284	

accomplishments	and	lessons	learned	from	the	time-independent	ERFs	developed	for	the	285	
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USGS	NSHM	(Petersen	et	al.,	2023),	including	and	ERF	model	for	Hawaii	(Petersen	et	al.,	286	

2021),	Alaska	(Powers	et	al.,	2024),	and	the	Conterminous	United	States	(CONUS;	Field	et	287	

al.,	2023).		The	latter,	sometimes	referred	to	as	2023-CONUS-ERF-TI	hereafter,	also	provides	288	

a	comprehensive	overview	of	these	efforts,	including	model	component	and	construction	289	

details,	the	contributions	represented	by	more	than	25	supporting	publications,	and	an	290	

unprecedented	review	process	(e.g.,	Jordan	et	al.,	2023),	the	latter	of	which	was	particularly	291	

in_luential	on	the	views	represented	here.		We	admit	this	is	a	USGS-centric	roadmap	and	292	

acknowledge	that	other	countries	have	some	unique	issues	and	perspectives	(e.g.,	293	

Gerstenberger	et	al.,	2020;	Meletti	et	al.,	2021;	Gerstenberger	et	al.,	2023;	Danciu	et	al.,	294	

2024;	Mizrahi	et	al.,	2024),	which	are	not	addressed	or	debated	here.		We	also	emphasize	295	

that	this	paper	does	not	represent	a	comprehensive	review	of	related	research;	rather,	we	296	

cite	papers	that	provide	more	information	on	each	topics	at	hand.	297	

	 Mindful	that	many	readers	will	not	want	to	read	this	entire	document,	it	has	been	298	

written	so	that	the	Introduction	and	Discussion	sections	stand	alone	with	respect	to	key,	299	

general	points	(leading	to	some	redundancy	for	those	reading	the	entire	document).		There	300	

is	also	an	uneven	level	of	detail	among	sections,	as	our	primary	focus	here	is	on	ERF	301	

construction.		For	example,	we	often	describe	what	is	needed	from	the	various	disciplinary	302	

groups	(e.g.,	improved	slip-rate	uncertainties	from	tectonic	geodesy)	without	detailed	303	

guidance	on	how	to	achieve	these	goals.		Likewise,	we	do	not	elaborate	on	exactly	how	to	304	

improve	model	testing,	the	review	process,	formalized	expert	solicitation	(SSHAC,	Cooke,	305	
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Delphi,	etc.),	product	dissemination	and	public	messaging,	or	exactly	what	types	of	risk	306	

metrics	that	may	deserve	more	scrutiny	during	model	development.		Again,	this	is	partly	to	307	

avoid	discussing	reasonable	debates	surrounding	these	topics,	all	of	which	are	more	308	

general	in	terms	of	being	applicable	to	GMMs	as	well.	Likewise,	we	do	not	discuss	site-309	

speci_ic	hazard	analysis	(in	which	practitioners	go	above	and	beyond	the	NSHM	model	with	310	

more	detailed,	local	information),	other	than	to	note	that	the	USGS	is	open	to	incorporating	311	

what	is	learned	into	our	future	NSHMs.	312	

	 Several	of	our	previously	stated	general	goals	were	largely	accomplished	(Field	et	al.,	313	

2023),	including	a	de-regionalization	of	model-component	development	(to	eliminate	314	

spatial	variability	due	merely	to	differing	opinions),	broader	involvement	of	external	315	

collaborators	and	personnel	across	the	Earthquake	Hazards	Program	(beyond	the	NSHM	316	

project),	and	extensibility	with	respect	to	adding	time	dependence.	317	

Broader	goals	that	were	partially	ful_illed	but	are	still	a	work	in	progress	include:		318	

• More	complete	representation	of	epistemic	uncertainties	319	

• Removal	of	previously	applied	complexities	that	no	longer	provide	added	value		320	

• Maximize	uniformity	of	model	components	and	simultaneous	updates	across	321	

regions	322	

• More	operationalization	of	model-component	development	(i.e.,	push-button	323	

updates)	324	
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• Improved	documentation	with	respect	to	implementation	and	reproducibility	325	

• Enabling	customized	solutions	for	users	(e.g.,	a	consultant	that	wants	to	change	a	326	

slip	rate	constraint	in	a	fault-system	solution)	327	

• Better	robustness	with	respect	to	personnel	departures	328	

All	these	goals	are	discussed	more	extensively	by	Field	et	al.	(2023)	and	exempli_ied	below.	329	

	330	

ERF	Construction	(Main	Model	Elements)	331	

	332	

	 Given	the	system-level	nature	of	ERF	development,	a	modularized	construction	is	333	

critical	to	keep	things	manageable	and	to	enable	different	groups	of	scientists	to	focus	334	

within	their	respective	areas	of	expertise.		The	top-level	model	components	utilized	here,	335	

and	depicted	in	Figure	4,	include	Fault	Model(s),	Deformation	Model(s),	Earthquake	Rate	336	

Model(s),	and	Earthquake	Probability	Model(s).	Figure	4	also	illustrates	that	multi-cycle	337	

physics-based	simulators	could	be	substituted	for	the	earthquake	rate	and	probability	338	

components.		Fault	Models	provide	the	3D	spatial	representation	of	explicitly	modeled	339	

faults.		Deformation	Models	supply	at	least	slip-rate	estimates	on	these	fault	planes,	but	340	

ideally	the	deformation	occurring	off	these	faults	in	surrounding	regions	as	well.		The	341	

Earthquake	Rate	Model	gives	the	long-term	rate	of	every	modeled	earthquake	rupture	in	342	

the	region	(at	some	_inite	discretization	level),	which	is	suf_icient	for	a	time-independent	343	
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ERF.		The	Earthquake	Probability	Model	states	the	likelihood	of	each	rupture	conditioned	344	

on	other	information,	such	as	time	since	last	event	on	faults	and/or	the	behavior	of	nearby	345	

seismicity.		In	sum,	the	consequent	ERF	essentially	provides	the	probability	of	every	346	

modeled	rupture	for	a	speci_ied	timespan	(a	list	of	all	potentially	consequential	events)	or	347	

sets	of	synthetic	catalogs	for	the	timespan	(also	referred	to	as	"stochastic	event	sets"	in	risk	348	

modeling).		Multi-cycle	physics-based	simulators	generate	synthetic	catalogs	by	modeling	349	

the	stress	accumulation	on	faults,	the	frictional	properties	leading	to	rupture,	and	the	stress	350	

transfer	caused	by	each	earthquake.	351	

	 Each	of	these	elements	are	discussed	in	a	dedicated	section	below,	followed	by	further	352	

discussions	of	operational	earthquake	forecasting	(OEF),	model	testing	and	valuation,	the	353	

computational	infrastructure,	and	the	review	process.		Note	that	we	do	not	categorize	354	

discussions	by	tectonic	region	type	(active	crustal,	stable	continental,	subduction	zone,	355	

etc.),	but	rather	mention	any	associated,	unique	challenges	where	appropriate.	356	

	357	

Fault	Models	358	

	359	

	 A	fault	model	comprises	the	three-dimensional	(3D)	geometry	of	explicitly	modeled	360	

faults	(see	Hatem	et	al.	(2022)	and	Thompson	Jobe	et	al.	(2022)	for	recent	examples).		More	361	

speci_ically,	a	fault	model	is	a	list	of	fault	sections	that	collectively	represent	a	viable	362	
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depiction	of	the	known	fault	system	(alternative	interpretations,	meaning	epistemic	363	

uncertainties,	are	represented	with	separate	fault	models).	In	its	simplest	form,	a	fault	364	

section	is	composed	of:	365	

• Fault	trace	(de_ined	by	a	list	of	geographic	locations)	366	

• Average	fault	dip	and	dip	direction	367	

• Average	upper	and	lower	seismogenic	depths	368	

• A	geologically	inferred	average	rake	369	

	370	

	 Fault	sections	vary	widely	in	length,	and	some	can	be	quite	long	(over	200	km)	if	371	

associated	attributes	do	not	vary	along	strike.		More	complicated,	non-planar	fault	surfaces	372	

(e.g.,	subduction	zones	or	listric	faults)	can	be	represented	with	triangular	surfaces,	or	by	373	

de_ining	an	upper	and	lower	fault	trace	(re_lecting	upper	and	lower	seismogenic	depths)	374	

together	with	the	depths	for	a	set	of	points	on	the	fault	surface	(e.g.,	evenly	discretized	375	

when	projected	to	the	Earth	surface).	376	

What's	really	down	there?	377	

	378	

	 The	adage	that	all	models	represent	an	approximation	of	the	real	system	is	especially	379	

true	for	faults.		A	fundamental	challenge	is	our	limited	understanding	of	what	faults	look	380	
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like	at	depth,	including	the	dip	and	its	potential	variation	along	strike.		Is	a	given	fault	a	381	

single,	well-de_ined	surface,	or	a	labyrinth	of	interconnected	micro	surfaces,	and	what	382	

about	connectivity	between	neighboring	faults?		How	much	does	this	vary	throughout	the	383	

system,	or	even	along	a	single	fault?		Efforts	to	constrain	fault	surfaces	at	depth	include	384	

examinations	of	seismicity,	seismic	re_lection	data,	and	borehole	studies,	all	of	which	385	

provide	only	a	limited	view.		With	respect	to	distinguishing	areas	where	faulting	is	highly	386	

distributed,	as	opposed	to	a	well-de_ined	trace,	a	fault-zone	polygon	is	typically	de_ined	387	

(and	sometimes	centered	on	a	proxy	fault).		The	question	of	where	one	fault	ends	and	388	

another	begins	is	critical	with	respect	to	the	likelihood	of	multi-fault	ruptures,	raising	the	389	

issue	of	exactly	how	to	best	represent	such	uncertainties.			390	

What	level	of	detail?	391	

	392	

	 Information	on	surface	fault	traces	can	be	relatively	detailed,	especially	when	393	

documented	immediately	following	a	(large)	earthquake	that	ruptured	to	the	Earth	surface.		394	

In	addition	to	whether	this	detail	projects	to	depth,	as	already	noted,	there	is	also	the	395	

question	of	how	repeatable	it	is	between	earthquakes	(versus	more	chaotic	behavior	due	to	396	

shallow	geologic	heterogeneities	and	free	surface	effects).		Sensitivity	tests	show	that	397	

hazard	maps	are	generally	insensitive	to	these	details,	mostly	because	ground-motion	398	

models	effectively	smooth	results	over	several	kilometers.	However,	greater	detail	will	399	
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presumably	be	in_luential	and	appropriate	for	fault	displacement	hazard	and	when	utilizing	400	

more	physics-based	models.			401	

How	many	faults	to	include?	402	

	403	

	 Given	every	earthquake	is	caused	by	fault	rupture,	and	we	acknowledge	that	404	

earthquakes	can	occur	almost	anywhere	(modeled	with	off-fault	gridded	seismicity	405	

discussed	below),	there	are	certainly	many	more	faults	than	possibly	can	be	identi_ied.		406	

Also,	some	of	those	we	know	about	may	be	dormant	or	insigni_icant	with	respect	to	hazard.		407	

On	the	other	hand,	adding	a	fault	to	a	fault	model	may	be	consequential	in	terms	of	408	

increasing	inferred	hazard.		Decisions	on	which	faults	to	include	are	often	based	on	409	

subjective	judgements,	time	constraints,	and/or	resource	limitations.		Valuation	analyses	410	

and	sensitivity	tests	would	help	make	such	decisions	more	quantitative,	although	we	would	411	

need	to	ensure	that	such	interpretations	are	applicable	for	all	hazard	and	risk	metrics	of	412	

potential	interest.	413	

Upper	and	lower	seismogenic	depths?	414	

	415	

	 Upper	and	lower	seismogenic	depth	is	another	consequential,	yet	poorly	understood	416	

concept.		It	is	meant	to	de_ine	the	bounds	of	dynamic	rupture,	meaning	any	fault	offset	417	

occurring	above	and	below	this	range	represents	stable	slip	that	does	not	generate	418	
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damaging	seismic	waves.		One	problem	is	this	boundary	is	probably	not	abrupt,	but	rather	a	419	

zone	of	transition	between	stable	and	unstable	slip.		Another	is	the	possibility	that	this	zone	420	

varies	between	earthquakes	(e.g.,	larger	earthquakes	may	reach	below	the	lower	421	

seismogenic	depth	due	to	conditional	stability	of	dynamic	rupture).		These	questions	are	422	

intertwined	with	how	creep	is	handled	in	deformation	models	and	how	scaling	423	

relationships	convert	rupture	area	to	magnitude,	both	of	which	are	discussed	below.		424	

	425	

Alternative	Fault	Models?	426	

	427	

	 All	the	above	uncertainties	can	be	represented	by	de_ining	alternative	Fault	Models	and	428	

assigning	a	relative	probability	that	each	is	correct	(logic-tree	branches	representing	429	

epistemic	uncertainties).		That	said,	the	number	of	alternative	Fault	Models	was	actually	430	

reduced	to	zero	in	the	latest	NSHM,	mostly	because	the	impact	of	available	options	was	431	

generally	minimal	with	respect	to	several	hazard	and	risk	metrics	(Field	et	al.,	2023).		This	432	

reversal	does	not	mean	these	uncertainties	are	negligible,	but	rather	re_lects	the	triage	433	

mode	with	respect	to	addressing	the	most	consequential	issues.		In	addition,	one	should	not	434	

presume	that	the	insensitivities	inferred	for	limited	set	of	hazard	and	risk	metrics	435	

examined	thus	far	will	apply	to	all	other	metrics.	Furthermore,	many	of	these	questions	will	436	

be	much	more	relevant	for	physics-based	models,	including	the	sensitivity	of	multi-fault	437	
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ruptures	to	geometric	and	jump-distance	details	between	faults.		Alternatively,	physics-438	

based	models	may	be	our	best	hope	for	addressing	some	of	the	questions	raised	here,	such	439	

as	how	dynamic	rupture	transitions	to	stable	slip	near	upper	and	lower	seismogenic	440	

depths.			441	

	 In	summary,	it	is	essential	to	remain	vigilant	with	respect	to	fault	model	uncertainties	442	

(e.g.,	by	conducting	sensitivity	tests	with	alternative	representations),	but	also	to	443	

acknowledge	that	there	will	always	be	upper	limits	on	what	we	will	ever	know	(and	plan	444	

ERF	development	accordingly).		445	

	446	

Deformation	Models	447	

	448	

	 Deformation	Models	provide,	for	a	given	Fault	Model,	slip-rate,	rake,	and	creep-rate	449	

estimates	for	each	fault	section,	plus	the	spatial	distribution	of	"off-fault"	deformation	(if	450	

produced	by	the	model).		Those	utilized	in	the	western	U.S.	portion	of	the	2023-CONUS-451	

ERF-TI	are	described	in	a	special	issue	of	Seismological	Research	Letters	(see	Pollitz	et	al.	452	

(2022)		for	the	overview	paper).		The	inputs	to	these	models,	in	addition	to	a	Fault	Model,	453	

are	typically	the	following:	454	

	455	
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1) Geologic	slip-rate	estimates,	including	uncertainties,	at	points	on	faults	(e.g.,	Hatem	456	

et	al.,	2022),	which	are	either	explicit	constraints	if	site-speci_ic	geologic	studies	are	457	

available,	or	categorical	proxy	estimates	if	studies	are	lacking	(based	on	analogous	458	

faults).	459	

2) Global	Positioning	System	(GPS)	velocity	vectors	(e.g.,	Zeng,	2022a).	460	

3) "Ghost	transient"	corrections	for	time-dependent	effects	caused	by	viscoelastic	461	

relaxation	following	large	historic	events	(Hearn,	2022)	462	

4) Fault	creep	inferences	(e.g.,	Johnson	et	al.,	2022).	463	

	464	

The	_ive	different	deformation	models	developed	for	the	2023-CONUS-ERF-TI	highlight	465	

several	issues	that	warrant	further	study.		First,	there	was	often	a	very	high	and	466	

consequential	degree	of	variability	among	models	in	terms	of	best-estimate	slip	rates,	467	

governed	largely	by	how	much	each	model	was	forced	to	match	the	geologic	slip-rate	468	

constraint.	Models	that	weighted	mean	geologic	values	heavily	were	largely	in	agreement,	469	

whereas	those	that	were	less	stringent	(e.g.,	with	a	more	uniform	prior	with	respect	to	470	

geologic	uncertainties)	were	more	variable.		Results	from	the	latter	were	often	referred	to	471	

as	"outliers",	but	this	does	not	necessarily	mean	they	are	wrong	(as	re_lected	by	the	fact	472	

that	such	models	were	given	low	but	non-zero	weight).	473	

	474	
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Better	Epistemic	Uncertainty	Representation	in	Deformation	Modeling	475	

	476	

	 The	fundamental	question	is	how	any	underdetermined	slip	rates	are	being	handled,	477	

particularly	if	geologic	uncertainties	are	large	and	GPS	constraints	are	sparse.		In	this	case,	478	

there	will	be	a	range	of	slip	rates	that	_it	the	data	equally	well	(the	so-called	null	space	from	479	

inverse	theory).		To	borrow	an	example	from	Field	et	al.	(2023),	consider	two	closely	480	

spaced	parallel	faults	with	no	geologic	slip-rate	constraints	(or	very	large	uncertainties),	481	

but	nestled	between	two	GPS	stations.		These	faults	would	exhibit	a	near-perfect	slip-rate	482	

tradeoff	in	terms	of	satisfying	the	GPS	deformation	(e.g.,	a	maximum	slip	rate	on	one	with	a	483	

minim	on	the	other,	or	vice	versa,	or	any	linear	combination	of	these	two	models,	would	_it	484	

the	data	equally	well).		To	re_lect	such	tradeoffs,	multiple	realizations	from	each	485	

deformation	model	would	be	required	to	map	out	the	complete	range	of	viable	models	486	

(effectively	representing	the	slip-rate	covariance	between	faults).		Instead,	we	presently	487	

have	a	"best	estimate"	from	each	of	the	_ive	western	U.S.	models,	and	it	is	highly	doubtful	488	

that	this	set	represents	the	complete	range	of	possibilities.	489	

	490	

Improved	ghost	transient	corrections	491	

	492	
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The	deformation	models	for	the	2023	NSHM	effort	accounted	for	ghost	transients	493	

contributed	by	earthquake	cycles	on	separate	source	areas	for	the	southern	San	Andreas	494	

Fault	(SAF),	the	northern	SAF,	and	the	Cascadia	megathrust	(Hearn,	2022).	This	correction	495	

accounts	for	time-dependent	deformation	during	any	individual	cycle	and	quanti_ies	the	496	

transient	at	a	given	time	(e.g.,	the	GPS	observation	periods	used	for	the	input	data)	497	

referenced	to	the	expected	secular	deformation	contributed	by	that	cycle.	While	the	498	

employed	corrections	in	the	2023	NSHM	effort	covered	major	fault	cycles	and	improved	the	499	

deformation	models’	_it	to	the	data,	questions	arise	as	to	the	accuracy	of	the	correction	and	500	

whether	cycles	from	additional	faults,	e.g.,	along	the	northern	Eastern	California	Shear	Zone	501	

(cycles	of	1872	Owens	Valley-type	earthquakes),	would	be	further	signi_icant	contributions.	502	

Resolving	these	questions	will	require	examination	of	more	sophisticated	viscoelastic	503	

deformation	structures,	numerical	models	that	employ	these	structures,	and	assembly	of	504	

relevant	parameters	describing	additional	earthquake	cycles	(e.g.,	Guns	et	al.,	2021;	Young	505	

et	al.,	2023).	506	

Usefulness	of	off-fault	deformation?	507	

	508	

	 Four	of	the	western	U.S.	deformation	models	also	provided	estimates	of	off-fault	509	

deformation	(meaning	distributed	diffuse	deformation	that	is	not	accounted	for	by	510	

explicitly	modeled	faults).		Figure	14	of	Pollitz	et	al.	(2022)	or	Figure	4	of	Johnson	et	al.	511	

(2023)	reveal	a	high	degree	of	off-fault	variability	between	models.		Unfortunately,	and	as	in	512	
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the	previous	UCERF3	effort	(Field	et	al.,	2014),	it	is	not	clear	how	much	of	the	implied	513	

features	are	real	versus	artifacts	of	model	assumptions	and	approximations;	hence,	this	514	

information	could	not	be	used	to	estimate	the	rate	of	off-fault	seismicity	(as	an	alternative	515	

to	the	traditional	smoothed-seismicity	approach	discussed	below).		This	is	consistent	with	516	

recommendations	of	the	deformation	model	review	team	(Johnson	et	al.,	2023),	who	also	517	

discuss	what	it	might	take	to	improve	such	estimates.	518	

	 The	previous	UCERF3	effort	also	had	the	intriguing	implication	that	30%	to	60%	of	the	519	

off-fault	moment	rate	predicted	by	deformation	models	must	be	aseismic	(the	maximum	520	

magnitudes	required	to	satisfy	full	moment	rates	were	unrealistically	high).		Not	only	was	521	

this	issue	never	resolved,	but	it	has	not	yet	even	been	fully	examined	for	the	new	522	

deformation	models.	Another	question	is	the	extent	to	which	block	rotations	that	can	soak	523	

up	shear	strain	without	contributing	to	fault	slip	rates.			524	

	525	

Earthquake	Rate	Models	526	

	 	527	

	 An	earthquake	rate	model	gives	the	long-term	rate	of	every	modeled	earthquake	528	

rupture	in	a	region	and	at	some	level	of	space-time	discretization.	The	model	is	essentially	a	529	

list	of	“sources,”	where	each	source	represents	a	collection	(or	list)	of	related	ruptures.	The	530	

two	main	types	of	sources	are	off-fault	gridded	seismicity	and	fault-based	sources,	where	531	
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the	latter	is	further	divided	into	classic	fault	sources,	fault-zone	sources,	and	fault-system	532	

solutions	(the	last	one	to	represent	multi-fault	ruptures).		Field	et	al.	(2023)	give	an	in-533	

depth	description	of	each	source	type,	as	well	as	implementation	details	for	those	utilized	534	

in	the	2023-CONUS-ERF-TI.		We	do	not	repeat	descriptions	of	classic	fault	sources	here	535	

because	they	are	simple	and	also	represented	in	the	fault-system-solution	framework.		536	

Advantages	of	the	latter	include	automatic	computing	of	various	diagnostics	(e.g.,	implied	537	

slip	rates),	accommodating	time	dependence	when	desired,	and	applicability	to	fault	538	

systems	in	any	type	of	tectonic	region.		Fault-zone	sources	are	also	conceptually	simple,	539	

thus,	we	do	not	discuss	their	implementation	details	either.	540	

	 A	fault-system	solution,	which	represents	the	rate	of	large	earthquakes	throughout	an	541	

interconnected	fault	system,	is	speci_ied	by:	542	

	543	

1) a	list	of	fault	subsections	(same	_inite-surface	representation	as	described	in	Fault	544	

Models	section	above)	545	

2) a	list	of	fault	ruptures	(each	of	which	has	a	magnitude,	long-term	rate,	average	rake,	546	

and	a	_inite	rupture	surface	de_ined	as	a	list	of	utilized	subsections).		547	

	548	

The	rates	of	ruptures	can	be:	1)	prescribed	by	imposing	a	speci_ic	magnitude-frequency	549	

distribution	(MFD)	for	simple	fault	systems;	2)	based	on	an	inversion	that	is	constrained	to	550	
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match	a	variety	of	data	constraints;	or	3)	inferred	from	multi-cycle	physics-based	simulator	551	

results	(e.g.,	Shaw	et	al.,	2018;	Milner	et	al.,	2021).	552	

	553	

Inversion-Based	Fault	System	Solutions	554	

	555	

Inversion-based	solutions	are	the	most	general,	_lexible,	reproducible,	and	comprehensive	556	

with	respect	to	representing	a	full	range	of	viable	models	(epistemic	uncertainties).	The	557	

model	usually	applies	to	"supra-seismogenic"	ruptures	(i.e.,	length	≥	full	down-dip	width)	558	

and	event	rates	are	inferred	by	satisfying	various	data	constraints	using	inverse	theory	559	

(Figure	5).		The	literature	on	this	approach	is	now	extensive	(Andrews	and	Schwerer,	2000;	560	

Field	and	Page,	2011;	Field	et	al.,	2014;	Page	et	al.,	2014;	Valentini	et	al.,	2020;	Field	et	al.,	561	

2020a,	Field	et	al.,	2023,	and	Milner	and	Field,	2023)	and	we	believe	this	type	of	model	has	562	

received	much	more	scrutiny	than	classic	fault	sources.		Furthermore,	with	recent	563	

enhancements	such	as	full	adjustability	with	respect	to	segmentation	and	multifault	564	

ruptures	(Milner	and	Field,	2023),	future	work	might	amount	to	_ine	tuning	and	(hopefully)	565	

trimming	some	of	the	present	epistemic	uncertainties.		Field	et	al.	(2023)	provide	a	566	

comprehensive	overview	and	Milner	and	Field	(2023)	state	important	implementation	567	

details,	which	are	not	repeated	here.		Instead,	we	focus	on	the	main	ingredients	and	568	

possible	re_inements.	569	
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	570	

De#ining	the	Rupture	Set	(Plausibility	Filter)	571	

	572	

	 Starting	from	a	deformation	model	(and	the	associated	fault	model),	a	crucial	step	is	573	

de_ining	the	set	of	viable	ruptures	using	a	"plausibility	_ilter"	because	otherwise	the	set	can	574	

become	unmanageable	for	large	fault	systems.	The	latest	approach,	developed	by	Milner	et	575	

al.	(2022),	utilizes	Coulomb	favorability	metrics	and,	so	far,	no	major	issues	have	been	576	

identi_ied.		That	said,	we	do	_ind	speci_ic	cases	that	some	question,	usually	a	blockage	to	577	

throughgoing	rupture	that	geologists	would	like	to	relax	(e.g.	due	to	a	fault	gap	being	too	578	

large	or	coulomb	incompatibility	with	respect	styles	of	faulting).	Exceptions	can	be	made,	of	579	

course,	but	we	also	want	to	keep	things	reproducible	by	avoiding	ad	hoc	or	"hard	coded"	580	

exceptions.	Further	enhancements	can	be	made	to	the	plausibility	_ilter,	such	as	imposing	a	581	

maximum	rupture	length	(e.g.,	Rodriguez	Padilla	et	al.,	2024),	but	it	is	also	important	to	582	

keep	in	mind	that	no	set	of	rules	will	be	perfect,	especially	given	inherent	fault-model	583	

uncertainties.	584	

Treatment	of	Fault	Creep	585	

	586	

	 Creep	estimates,	where	available	(e.g.,	Johnson	et	al.,	2022),	are	used	to	de_ine	a	creep	587	

fraction	for	each	fault	within	each	deformation	model	(speci_ied	relative	to	the	slip	rate).		588	
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Creep	fraction	is	then	used	to	set	the	aseismicity	factor	and	coupling	coef#icient,	which	are	589	

applied	as	a	fractional	reduction	of	seismogenic	area	and	slip	rate,	respectively.	For	the	590	

2023	NSHM,	the	_irst	40%	of	fractional	creep	de_ines	a	rupture-area	reduction	and	the	591	

remainder	a	slip-rate	reduction	as	follows:	592	

	593	

𝑖𝑓	𝑐𝑟𝑒𝑒𝑝	𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ≤ 0.4:	594	

𝑎𝑠𝑒𝑖𝑠𝑚𝑖𝑐𝑖𝑡𝑦	𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑐𝑟𝑒𝑒𝑝	𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛	595	

𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 1.0	596	

𝑖𝑓	𝑐𝑟𝑒𝑒𝑝	𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 > 0.4:	597	

𝑎𝑠𝑒𝑖𝑠𝑚𝑖𝑐𝑖𝑡𝑦	𝑓𝑎𝑐𝑡𝑜𝑟 = 0.4	598	

𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 1.0 −
1

1 − 0.4 (𝑐𝑟𝑒𝑒𝑝	𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 − 0.4)	599	

	600	

Area	reductions	are	accomplished	by	lowering	the	upper	seismogenic	depth	(surface	601	

creep),	and	a	default	creep	fraction	of	0.1	is	typically	applied	where	data	are	lacking.		Here	602	

again,	no	major	problems	have	been	identi_ied,	but	this	may	be	more	about	our	limited	603	

understanding	of	creep	and	its	rupture	manifestations	than	having	an	unquestionable	604	
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model.		We	also	need	to	make	sure	GMMs	are	making	consistent	assumptions	(e.g.,	with	605	

respect	to	depth	to	top	of	rupture).	606	

	607	

Scaling	Relationships	608	

	609	

	 The	magnitude	of	each	rupture	is	determined	from	rupture	area	using	an	empirical	610	

scaling	relationship,	with	the	latest	options	applied	in	the	U.S.	being	speci_ied	by	Shaw	611	

(2023)	and	summarized	in	Field	et	al.	(2023).		Three	of	the	models	utilize	a	functional	form	612	

of	M=log(A)+c,	where	M	and	A	are	magnitude	and	area	(km2)	and	c	is	constant	with	values	613	

of	4.1,	4.2,	or	4.3	(equally	weighted)	for	plate	boundary	and	intraslab	events.			A	"Width	614	

Limited"	model	is	also	applied,	for	which	magnitudes	scale	with	rupture	length	at	lower	615	

magnitudes	and	with	down-dip	width	at	higher	magnitudes	(Shaw,	2023).			616	

	 Scaling	relations	are	also	used	to	de_ine	the	average	slip	for	each	rupture	(used	for	617	

satisfying	slip	rates	in	the	inversion),	with	three	options	being	de_ined	for	NSHM	2023:	1)	618	

that	implied	from	moment	(𝐷!"# = (10$.&'().*&)/(𝜇𝐴),	where	𝜇	is	shear	modulus);	2)	square-619	

root	length	scaling	(𝐷!"# = 0.22√𝐿,	where	L	is	length	(km));	and	3)	constant	stress	drop	620	

scaling	(e.g.,	Shaw,	2023).		Differences	between	these	models	re_lect	assumption	regarding	621	

the	depth	of	rupture	for	larger	events;	the	_irst	option	(1)	assumes	ruptures	do	not	622	

penetrate	below	the	depth	of	microseismicity,	producing	a	larger	average	slip	than	typically	623	
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observed	at	the	surface,	whereas	the	other	two	options	assume	surface	slip	is	consistent	624	

with	that	at	depth	and	that	large	ruptures	must	therefore	penetrate	below	microseismity	625	

depths	(e.g.,	King	and	Wesnousky,	2007;	Zielke	et	al.,	2020).	626	

	 We	believe	this	set	of	models	adequately	covers	the	range	of	possibilities,	so	further	627	

work	will	hopefully	trim	some	options,	perhaps	based	on	physics-based	modeling.		One	628	

exception	is	a	possible	slip-rate	dependence	(Anderson	et	al.,	2021)	Another	is	with	respect	629	

to	large,	multifault	ruptures,	for	which	scaling	might	be	different	(observations	are	sparse).		630	

There	also	remains	an	alternative	hypothesis	that	slip	at	a	point	on	a	fault	is	independent	of	631	

rupture	magnitude	(Hecker	et	al.,	2013),	so	further	study	is	in	order.	632	

	633	

Average	Slip	Along	Rupture	634	

	635	

	 In	satisfying	fault	slip	rates	from	the	chosen	deformation	model,	assumptions	need	to	be	636	

made	about	how	average	slip	is	distributed	along	the	rupture	length.		We	have	traditionally	637	

applied	one	of	two	options:	a	tapered	rainbow	(Sin1/2;	Weldon	et	al.,	2007)	model	versus	a	638	

uniform	(boxcar)	model.		Only	the	latter	option	was	applied	in	the	2023	NSHM	because	639	

implied	differences	were	generally	negligible,	and	applying	the	tapered	model	demands	640	

careful	consideration	of	how	slip	rates	transition	along	strike	as	well.		However,	the	biggest	641	

question	is	whether	either	of	these	models	applies	to	large,	multifault	ruptures,	which	642	
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might	exhibit	tapers	at	jumping	points	(multiple	rainbows).		Physics-based	simulators	643	

could	also	be	useful	in	addressing	this	question.	644	

Paleoseismic	Event-Rates	645	

	646	

	 Another	important	set	of	inversion	constraints	are	paleoseismically	inferred	event	rates,	647	

the	derivation	of	which	requires	careful	geologic	interpretations	and	advanced	statistical	648	

analyses	(see	McPhillips	(2022)	for	a	recent	example).		If	these	constraints	are	at	odds	with	649	

slip	rates,	their	in_luence	can	be	adjusted	to	provide	a	range	of	models	(epistemic	650	

uncertainties).	An	important	element	of	this	constraint	is	de_ining	the	probability	of	missed	651	

events	(the	fraction	of	ERF	ruptures	that	might	have	gone	undetected	at	the	paleoseismic	652	

site).	We	have	thus	far	applied	a	simple	model,	with	a	key	parameter	calibrated	from	a	653	

single	San	Andreas	fault	paleoseismic	site.	However,	the	probability	of	missed	events	likely	654	

varies	from	site	to	site,	according	to	the	local	depositional	environment	and	character	of	655	

faulting.	Another,	antithetic	type	of	uncertainty	stems	from	the	potential	over-656	

interpretation	of	the	number	of	inferred	events	at	a	paleoseismic	site,	which	would	also	be	657	

site	dependent	(McPhillips,	2022).		Better	quanti_ication	of	these	uncertainties	would	658	

improve	our	rupture	forecasts,	and	might	also	help	to	address	the	so-called	"paleo	hiatus"	659	

problem	in	California	(Biasi	and	Scharer,	2019).	660	

Target	MFDs	and	b-value	Branches	661	

	662	
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	 Solving	for	the	rate	of	ruptures	from	slip	rate	and	paleoseismic	event	rates	is	an	663	

inherently	underdetermined	problem,	meaning	there	is	a	wide	range	of	models	that	_it	the	664	

data	equally	well	(the	null	space).		We	therefore	need	a	mechanism	to	control	where	each	665	

inversion	lands	in	this	null	space	so	we	can	de_ine	a	representative	set	of	viable	models	666	

(epistemic	uncertainty).	We	can	achieve	this	by	specifying	a	target	MFD	shape	for	each	fault	667	

section,	and	thus	far	we	have	assumed	a	Gutenberg	Richter	distribution	and	speci_ied	the	668	

target	b-value	(the	slope	of	the	distribution	in	log-linear	space).		By	adjusting	the	b-value	669	

over	a	range	of	values	(e.g.,	between	0.0	and	1.0),	we	effectively	consider	a	range	of	total-670	

rate	models	that	are	believed	to	cover	an	adequate	range	of	models	in	terms	of	hazard	671	

implications	(and	note	that	the	b-value	=	0.0	case	produces	a	system-wide	MFD	with	b-672	

value	≈	1.0	due	to	varying	fault	sizes).			673	

	 	To	date	applications	have	assumed	that	on-fault	b-values	are	correlated	across	the	674	

region,	which	may	not	be	correct.		Adjacent	fault	sections	most	certainly	have	correlated	b-675	

values	(because	they	participate	in	the	same	larger	events),	but	it	is	also	reasonable	to	676	

presume	that	distant	faults	are	not	correlated.		Assuming	full	correlation	is	more	677	

reasonable	for	site-speci_ic	hazard	curves	because	they	are	typically	in_luenced	by	just	a	678	

few	nearby	faults.		However,	the	assumption	is	more	questionable	for	spatially	distributed	679	

hazard	and	risk	estimates	(e.g.,	average	annual	statewide	losses),	so	one	might	at	least	want	680	

to	lower	the	weights	on	extreme	branches.		Better	yet,	we	would	de_ine	a	speci_ic	b-value	681	

correlation	structure,	but	unfortunately	it	is	not	obvious	how	to	do	so.		Additionally,	there	682	
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may	be	certain	well-studied	faults	(or	categories	of	faults,	such	as	those	in	a	particular	683	

region	and	of	a	certain	faulting	style)	that	warrant	different	weighting	of	the	b-value	684	

branches.		In	the	meantime,	we	should	explore	implications	of	current	assumptions	with	685	

respect	to	spatially	distributed	hazard	and	risk	metrics	(a	work	in	progress).	686	

Segmentation	Constraints	687	

	688	

	 Segmentation	refers	to	the	extent	to	which	ruptures	are	con_ined	to	individual	faults	689	

versus	being	capable	of	jumping	to	neighboring	faults	(as	multi-fault	ruptures).	An	690	

important	recent	innovation	is	the	addition	of	_lexible	and	ef_icient	segmentation	691	

constraints	that	are	(optionally)	jump-distance	dependent	(Milner	and	Field,	2023).		The	692	

degree	of	segmentation	is	quanti_ied	by	the	fractional	passthrough	rate	(set	to	zero	for	693	

strict	segmentation	and	1.0	for	zero	co-rupture	penalization).	This	is	applied	as	an	694	

inequality	constraint,	meaning	relative	passthrough	rates	can	be	less	but	not	greater	than	695	

the	target	value	(depending	on	the	in_luence	of	other	inversion	data	constraints).		For	the	696	

western	U.S.	portion	of	the	2023-CONUS-ERF-TI,	we	de_ined	_ive	different	logic-tree	697	

branches,	going	from	a	maximally	segmented	(classic)	model	to	a	completely	unsegmented	698	

model	(fault-to-fault	jumps	up	to	15	km),	with	three	intermediate	models	having	various	699	

degrees	of	distance-dependent	passthrough	rates.		Note	that	these	branches	also	re_lect	700	

fault	model	uncertainties.	For	example,	allowing	a	15	km	jump	is	in	part	a	proxy	for	an	701	
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unknown	connector	fault	being	present,	and	preventing	short	jumps	via	the	classic	model	702	

can	be	a	proxy	for	the	connectivity	being	over	estimated.		703	

	 We	believe	this	set	is	a	good	representation	of	the	viable	range,	with	the	current	704	

question	being	whether	any	branches	should	be	trimmed,	or	their	weights	adjusted.		For	705	

example,	there	was	much	discussion	of	whether	the	more	permissive	branches	are	706	

inconsistent	with	a	lack	of	globally	observed	crustal	ruptures	with	lengths	exceeding	500	707	

km	(see	text	regarding	Figure	21	of	Field	et	al.,	2023).		To	this	end,	detailed	surface-rupture	708	

observations	and	statistical	analyses	thereof	(e.g.,	Biasi	and	Wesnousky,	2016,	2017;	709	

Rodriguez	Padilla	et	al.,	2024)	might	be	informative,	but	attempts	thus	far	have	been	710	

hampered	by	questions	like	whether	those	details	project	to	depth	and	that	our	fault	711	

models	generally	lack	such	detail	in	the	_irst	place	(our	simpli_ied	traces	do	not	re_lect	the	712	

detail	we	expect	in	future	large	ruptures).	Questions	also	remain	on	whether	ruptures	can	713	

completely	pass	through	the	San	Andreas	creeping	section,	perhaps	rupturing	the	entire	714	

San	Andreas	fault;	answers	implied	by	our	2023	model	range	from	yes	to	no.		As	with	the	b-715	

value	constraint	above,	we	have	assumed	full	spatial	correlation	with	respect	to	716	

segmentation	branches	(e.g.,	the	classic	model	applies	everywhere),	which	again	may	be	a	717	

questionable	approximation	with	respect	to	spatially	distributed	hazard	and	risk	metrics.		718	

We	did	not	_ind	these	questions	highly	in_luential	with	respect	to	2023	NSHM	results	(time-719	

independent	hazard	curves	at	individual	sites),	but	they	could	be	highly	consequential	with	720	

respect	to	spatially	distributed	hazard	and	risk	metrics	(e.g.,	average	annual	loss	in	721	
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California).		Going	forward,	global	compilations	of	observed	rupture	lengths	and	fault-jump	722	

distances	will	be	important	to	further	constrain	both	these	and	more	physics-based	models.	723	

Implementation	Details	724	

	 	725	

	 While	we	have	asserted	that	fault	system	solutions	are	conceptually	simple,	we	also	726	

admit	that	the	inversion-based	solutions	are	far	from	trivial	and	will	always	remain	a	black	727	

box	for	many	stakeholders.		As	such,	it	is	important	to	interrogate	results	in	every	728	

imaginable	way,	which	we	have	thus	far	accomplished	via	extensive	web-based	solution	729	

reports	(e.g.,	Milner	and	Field,	2023).	So	far,	results	have	passed	muster	with	respect	to	730	

representing	best	available	science	(e.g.,	according	to	the	2023-CONUS-ERF-TI	review	731	

panel;	Jordan	et	al.,	2023).		Considerable	effort	has	also	gone	into	the	computational	732	

infrastructure	in	terms	of	numerical	ef_iciency,	automatization,	and	reproducibility	(Milner	733	

and	Field,	2023).	That	said,	the	remainder	of	this	section	discusses	some	implementation	734	

details	or	features	that	might	bene_it	from	further	re_inement.	735	

	 One	challenge	is	handling	correlation	between	the	b-value	and	fault-segmentation	736	

branches	because	the	latter	has	a	strong	in_luence	on	the	MFD	shape	as	well.		A	variety	of	737	

solutions	were	explored	by	Milner	and	Field	(2023),	several	of	which	worked	equally	well	738	

in	terms	of	equivalent	hazard	implications,	but	it's	possible	that	something	even	better	739	

could	be	developed.			740	
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	 Our	focus	on	supra-seismogenic	ruptures	(full	down-dip	ruptures)	means	that	the	741	

minimum	magnitude	on	some	shallow	dipping	faults	can	be	as	large	as	M	7	(smaller	events	742	

are	treated	as	gridded	seismicity).	In	other	words,	we	no	longer	_loat	ruptures	down	dip,	743	

which	could	be	recti_ied	if	deemed	problematic	(especially	on	subduction	zones,	as	744	

exempli_ied	by	Gerstenberger	et	al.,	2024).	745	

	 We	continue	to	use	simulated	annealing	to	solve	the	inverse	problem,	but	it's	possible	746	

that	an	even	better	numerical	solver	could	be	found	with	respect	to:	computational	747	

ef_iciency;	controlling	where	results	land	in	the	solution	space;	even-_itting	data	(getting	a	748	

range	of	solutions	that	mimic	data	uncertainties);	and	generating	models	with	smoother	749	

MFDs,	minimized	rate	variability	along	strike,	and	better	control	on	the	fraction	of	zero-rate	750	

ruptures.	751	

	 With	respect	to	reducing	fault	slip	rates	by	the	amount	taken	up	by	subseismogenic	752	

ruptures,	we	have	not	yet	found	an	algorithm	for	obtaining	fault-speci_ic	values	753	

(assumptions	required	are	highly	questionable).		Although	the	impact	is	generally	754	

negligible	relative	to	overall	uncertainties,	further	re_inements	here	might	be	value	added.	755	

Adding	Other	Geologic	Constraints	756	

	757	

	 A	signi_icant	enhancement	for	the	next	generation	Earthquake	Rupture	Forecast	engines	758	

would	be	support	for	other	geologic	constraints,	such	as	paleoliquefaction,	tsunami	759	
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inundation,	fragile	geologic	features,	or	paleolacustrine	disturbances	or	deposits,	some	of	760	

which	are	already	used	to	constrain	CEUS	and	subduction-zone	sources	(e.g.,	Thompson	761	

Jobe	et	al.,	2022;	Walton	et	al.,	2021).		A	challenge	is	that	none	of	these	observations	relate	762	

directly	to	rupture	rates,	but	rather	re_lect	ground	shaking	events.		One	approach	is	to	763	

assume	the	observations	only	associate	with	ruptures	on	a	speci_ic	fault	(or	fault	zone),	764	

which	is	effectively	what	has	been	done	to	date.		This	makes	sense	if	strict	segmentation	or	765	

a	characteristic	rupture	is	assumed,	but	the	inversion	approach	relaxes	these	assumptions.		766	

In	general,	there	will	be	many	different	ruptures	that	could	have	produced	the	767	

observations,	so	what	we	ultimately	need	are	models	that	provide	the	probability	of	768	

producing	the	disturbance	given	any	arbitrary	rupture.		Implementing	such	constraints	in	769	

the	inversion	will	be	relatively	easy	compared	to	creating	these	probability	models.		A	more	770	

modest	approach	would	be	to	check	hazard	results	against	such	models	(post	processing	771	

reality	check),	perhaps	leading	to	branch	weight	adjustments.	772	

Gridded	Seismicity	Sources		773	

	774	

	 Gridded	seismicity	or	“background”	sources	represent	the	seismicity	that	is	not	775	

captured	by	explicitly	modeled	faults	(see	Llenos	et	al.	(2024)	for	a	recent	example).		These	776	

are	presently	composed	of:		777	

	778	
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1) A	polygon	de_ining	the	region	and	a	spatial	discretization	interval	to	de_ine	the	grid	779	

cells	(typically	0.1	degrees)	780	

2) A	spatial	probability	distribution	de_ining	the	relative	rate	of	earthquake	nucleation	781	

within	each	grid	cell	782	

3) A	Total	M≥5	Rate	and	b-value	for	the	region	783	

4) An	assumed	maximum	magnitude	for	the	region	(or	spatial	distribution	thereof)	784	

5) A	probability	distribution	of	focal	mechanisms	for	each	grid	cell	785	

6) Rules	for	converting	a	nucleation	point	into	a	_inite	rupture	surface	(usually	786	

application	of	a	random	strike)	787	

	788	

This	type	of	source	is	also	used	to	represent	events	within	a	down	going	subduction	slab.		789	

The	main	ingredients	utilized	in	generating	the	above	elements	are	an	earthquake	catalog,	790	

aftershock	declustering	algorithms,	and	spatial	smoothing	procedures.	791	

Earthquake	Catalogs	792	

	793	

	 Earthquake	catalogs	usually	represent	an	aggregation	of	events	identi_ied	by	seismic	794	

networks	(instrumental	seismicity)	and	those	inferred	from	historical	records	(e.g.,	795	

newspaper	accounts).	Important	steps	in	assembling	a	suitable	catalog	(e.g.,	Mueller,	2019)	796	
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include	the	removal	of	duplicate	events	(recorded	by	multiple	seismic	networks),	797	

explosions	and	other	mining-related	events,	and	perhaps	other	human-induced	798	

earthquakes	(depending	on	how	these	are	handled	in	the	model).		Network	reported	799	

magnitudes	are	generally	converted	to	uniform	moment	magnitudes	and	bias	corrections	800	

are	made	with	respect	to	sampling	events	from	a	Gutenberg	Richter	distribution.		Ideally,	801	

uncertainties	are	provided	for	all	event	attributes.		Finally,	magnitude	incompleteness	802	

estimates	are	needed	to	de_ine	the	probability	that	events	went	undetected	(ideally	as	a	803	

function	of	time,	space,	and	magnitude).	804	

	 Multiple	issues	make	achieving	a	uniform	earthquake	catalog	challenging.		Routinely	805	

determined	magnitudes	are	subject	to	numerous	potential	biases,	which	vary	as	a	function	806	

of	magnitude	type,	space,	time,	and	monitoring	network.	Although	conversion	relationships	807	

have	been	developed	in	some	areas	to	try	to	homogenize	the	available	catalog	magnitudes	808	

to	uniform	moment	magnitudes	(Electric	Power	Research	Institute/Department	of	809	

Energy/Nuclear	Regulatory	Commission,	2012),	these	conversion	relationships	do	not	810	

always	perform	well,	and	biases	of	up	to	0.5	magnitude	units	(equivalent	to	a	factor	of	~3	in	811	

seismicity	rate	for	typical	b-values)	have	been	observed	in	some	cases	(Shelly	et	al.,	2022).		812	

These	biases	can	also	impact	the	estimated	b-values	from	a	catalog.		813	

Fortunately,	avenues	exist	to	improve	catalog	homogeneity.	Although	previous	work	has	814	

mostly	used	a	single	“preferred”	magnitude	for	each	earthquake	in	the	catalog,	for	modern	815	

events	multiple	magnitudes	often	exist,	and	these	magnitudes	could	be	used	together	to	816	
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provide	a	more	stable	converted	moment	magnitude.	Further	use	of	techniques	that	can	817	

directly	compute	moment	magnitude	for	small	events	(e.g.,	Mayeda	et	al.,	2003)	could	also	818	

help	to	calibrate	conversion	relationships	and	reduce	dependency	on	them.	819	

Total	Regional	Rate	and	b-value	Estimates	820	

	821	

	 The	total	magnitude-frequency	distribution	of	a	region	is	usually	assumed	to	follow	a	822	

Gutenberg	Richter	distribution,	which	can	be	speci_ied	by	the	Total	M≥5	Rate,	b-value,	823	

maximum	magnitude,	and	the	shape	of	the	distribution	at	the	largest	magnitudes.		State	of	824	

the	art	for	inferring	b-value	is	the	"b-Positive"	technique	of	van	der	Elst	(2021).		Inferring	825	

Total	M≥5	Rate	is	less	standardized,	often	involving	Monte	Carlo	sampling	algorithms	that	826	

account	for	uncertainties	in	b-value,	event	magnitudes,	and	spatially	and	temporally	827	

variable	magnitudes	of	completeness.		A	particular	concern	is	whether	such	procedures	828	

produced	biased	estimates	in	low-seismicity	regions	(Iturrieta	et	al.,	2024).	829	

Gridded	Seismicity	Spatial	PDFs	830	

	831	

	 Inferring	the	long-term	spatial	probability	density	function	of	seismicity	rates	requires	832	

catalog	declustering,	otherwise	rates	will	be	biased	high	where	larger	events	happen	to	833	

have	occurred	and	biased	low	where	they	have	not	(e.g.,	Frankel,	1995).		Lacking	a	perfect	834	

model	for	aftershock	occurrence,	a	variety	of	catalog	declustering	algorithms	have	been	835	
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adopted,	including	Gardner	and	Knopoff	(1974),	Reasenberg	(1985),	Zaliapin	and	Ben-Zion	836	

(2020),	and	others.	Declustered	catalogs	are	then	smoothed	and	normalized	to	provide	a	837	

spatial	probability	distribution	of	event	nucleation,	typically	using	either	a	_ixed	width,	two-838	

dimensional	(2D)	Gaussian	kernel	(Frankel,	1995)	or	an	adaptive-width,	nearest-neighbor	839	

algorithm	that	provides	a	more	spatially	re_ined	estimate	where	there	is	a	higher	density	of	840	

observed	events	(Helmstetter	et	al.,	2007).	Floor-level	rates	may	be	applied	in	areas	with	841	

very	few	earthquakes.	See	Llenos	et	al.	(2024)	for	recent	examples	of	these	procedures,	and	842	

Llenos	and	Michael	(2020)	for	a	newer,	promising	approach	that	is	particularly	attractive	in	843	

terms	of	being	more	consistent	with	assumptions	made	in	the	fully	time	dependent	models	844	

discussed	below.	845	

	 A	large	uncertainty	that	yet	has	to	be	fully	addressed	is	the	sampling	error	associated	846	

with	this	spatial	distribution	being	inferred	from	one	historical	sample	of	earthquakes.		In	847	

other	words,	is	what	we	have	inferred	from	recent	history	consistent	with	what	we	may	see	848	

in	the	next	equivalent	timeframe,	or	what	is	the	variance	we	should	see	over	10,000	such	849	

samples?		The	fully	time-dependent	models	discussed	below	(including	spatiotemporal	850	

clustering)	are	seemingly	required	to	adequately	address	this	question,	as	they	can	provide	851	

any	number	of	historically	consistent	samples	with	realistic	aftershocks	sequences.		852	

However,	we	will	need	to	operationalize	these	analyses,	and	perhaps	utilize	high-853	

performance	computing,	to	handle	such	large	synthetic	data	sets.	854	
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Maximum	Magnitudes,	Focal	Mechanisms,	and	Finite	Rupture	Surfaces	855	

	856	

	 Assumptions	regarding	maximum	magnitudes	are	generally	based	on	expert	opinion,	in	857	

part	because	they	are	generally	not	that	consequential,	especially	in	areas	dominated	by	858	

fault-based	ruptures.		Nevertheless,	further	investigations	are	probably	warranted,	859	

especially	for	longer	period	ground	motions	in	seismically	quieter	regions.		Approaches	860	

worth	pursuing	include	pooling	data	across	tectonically	similar	regions	(Coppersmith	et	al.,	861	

2012;	Vanneste	et	al.,	2016)	and	extreme	value	theory	(although	Zöller	(2013,	2022)	862	

articulates	challenges	with	the	latter).	863	

	 The	spatial	distribution	of	focal-mechanism	probabilities	is	another	area	of	potential	864	

improvement.		Current	models	generally	specify	the	fraction	of	strike	slip,	reverse,	and	865	

normal	faulting	events	over	large	regions,	and	assuming	a	uniform	probability	of	strike	866	

direction,	so	we	could	certainly	do	better	by	considering	regional	stresses,	earthquake	focal	867	

mechanisms,	and	geologic	fabrics.		Whether	this	would	be	value	added	in	terms	of	hazard	868	

assessment	remains	to	be	seen.	869	

	 A	related	issue	is	how	to	turn	a	nucleation	point	into	a	_inite	rupture	surface,	with	a	870	

number	of	approximate	procedures	currently	being	available.		Although	these	details	may	871	

not	be	hugely	consequential	either,	improvements	may	be	desired	from	an	elegance	872	

perspective	as	we	produce	synthetic	catalogs	from	fully	time-dependent	models	(discussed	873	
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below).		For	example,	are	we	willing	to	tolerate	a	gridded	seismicity	event	that	has	a	874	

rupture	surface	crossing	an	explicitly	modeled	fault	(such	as	the	San	Andreas)?	875	

Merging	Fault	and	Gridded	Seismicity	Source	Models	876	

	877	

	 The	MFD	de_ined	for	gridded	seismicity	represents	the	regional	total,	including	fault-878	

based	sources,	so	it	can	be	important	to	avoid	double	counting.	This	is	now	typically	done	879	

by	subtracting	the	fault-based	MFD	from	the	regional	total	and	applying	the	result	to	880	

gridded	seismicity,	with	perhaps	additional	care	in	terms	of	tapering	the	rate	of	large,	881	

gridded-seismicity	events	in	the	vicinity	of	fault-based	sources.		Although	the	latter	is	not	882	

very	consequential	in	terms	of	implied	hazard,	it	can	be	an	important	requirement	in	terms	883	

getting	fully	time-dependent	models	to	behave	properly.		No	such	corrections	were	made	in	884	

the	CEUS	portion	of	the	2023	NSHM,	leading	to	an	apparent	factor	of	~3	over-prediction	of	885	

rates	at	M≥7.5	(see	Figure	25a	of	Field	et	al.,	2023).		886	

	887	

Earthquake	Probability	Models	888	

	 	889	

	 A	probability	model	gives	the	occurrence	probability	for	each	rupture	(de_ined	in	the	890	

earthquake-rate	model)	for	a	speci_ied	timespan	and	conditioned	on	whatever	other	891	

information	is	available.		As	such,	a	probability	model	represents	a	fully	speci_ied	ERF.	For	892	
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time-independent	ERFs	the	Poisson	model	is	applied,	as	in	all	previous	USGS	NSHMs.	893	

Various	time-dependent	enhancements	are	described	below,	including	fully	time-894	

dependent	models	that	include	spatiotemporal	clustering.		The	latter	produce	synthetic	895	

catalogs	(stochastic	event	sets)	from	which	rupture	probabilities	can	be	inferred.	896	

Long-Term	Time	Dependence	-	Elastic	Rebound	897	

	898	

	 The	most	common	type	of	time-dependence	is	elastic	rebound,	where	the	probability	of	899	

a	large	event	drops	where	and	when	a	fault	has	had	a	large	rupture	and	grows	with	time	as	900	

tectonic	stresses	reload	(Reid,	1910).	A	classic	renewal	model	(e.g.,	Lognormal	or	Brownian	901	

Passage	Time)	is	usually	used	to	represent	the	recurrence-interval	distribution.		The	902	

procedure	becomes	non-trivial	once	a	strict	fault-segmentation	assumption	is	relaxed,	as	903	

overlapping	adjacent	ruptures	can	produce	short	recurrence	intervals	at	points	on	faults,	904	

which	are	generally	inconsistent	with	the	renewal	model	being	assumed	(and	perhaps	905	

biasing	probability	estimates	as	well).		A	solution	to	this	problem	was	developed	for	the	906	

UCERF3	long-term	time-dependent	model	(Field	et	al.,	2015),	based	in	large	part	on	907	

studying	results	from	multi-cycle	physics-based-simulators	(Field,	2015).		Additional	908	

bene_its	of	this	algorithm	include	probability	estimates	even	where	the	date	of	last	event	is	909	

unknown	and	the	option	for	magnitude-dependent	coef_icients	of	variation	(less	periodicity	910	

for	smaller	ruptures).		This	algorithm	remains	best	available	science,	as	we	know	of	no	911	

viable	alternatives	at	this	point.		The	algorithm	is	far	from	perfect,	however.		For	example,	912	
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perhaps	coef_icients	of	variation	should	also	depend	on	fault	maturity	(more	periodicity	on	913	

well-worn	or	higher	slip-rate	faults?).	With	any	such	algorithm,	it	is	important	to	verify	that	914	

Monte	Carlo	simulations	(randomly	sampled	earthquakes	over	long	time	periods)	produce	915	

rates	that	are	consistent	with	what	is	assumed	in	the	_irst	place.		916	

	917	

Short-term	Time	Dependence	-	Spatiotemporal	Clustering	918	

	919	

	 Spatiotemporal	clustering	(aftershocks	and	otherwise	triggered	events)	is	the	other	920	

obvious	time	dependence	to	include.		In	fact,	previous	USGS	NSHMs	have	included	"cluster"	921	

models	where,	for	example,	in	the	latest	model	some	large	New	Madrid,	MO	earthquakes	922	

are	assumed	to	occur	as	doublets	or	triplets,	and	there	is	an	option	where	a	series	of	M	8	923	

events	progress	down	the	Cascadia	subduction	zone.		There	are	no	statements	about	how	924	

quickly	such	events	occur,	other	than	within	the	50-year	forecast	window,	so	it	is	not	clear	925	

how	to	apply	these	models	in	short-term	forecasts.	926	

	 The	Epidemic	Type	Aftershock	Sequence	Model	(ETAS,	Ogata,	1988,	1998)	appears	to	927	

be	the	best	option	for	representing	spatiotemporal	clustering,	at	least	for	now	(discussed	928	

below).		The	signi_icant	challenge	is	merging	this	point-process	model	with	a	forecast	that	929	

includes	_inite	faults.		The	UCERF3-ETAS	model	(Field	et	al.,	2017)	represents	one	attempt	930	

to	do	so,	raising	several	_irst-order	questions	and	issues:	931	
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	932	

• What	is	the	long-term	MFD	near	faults,	and	how	does	this	transition	spatially	933	

into	the	surrounding	region?	934	

• An	elastic-rebound	component	is	apparently	needed	to	suppress	re-rupture	of	935	

the	same	fault	surface	(without	it,	a	triggered	event	will	spatially	overlap	with	936	

the	triggering	event	much	more	than	is	seen	in	nature).	937	

• Can	a	large,	triggered	event	nucleate	from	well	within	the	rupture	area	of	the	938	

triggering	earthquake?	(this	has	a	_irst	order	in_luence	of	conditional	triggering	939	

probabilities	in	UCERF3-ETAS)	940	

• For	implied	long-term	rates	to	match	those	de_ined	in	the	earthquake	rate	model,	941	

one	needs	a	time-dependent	fraction	of	spontaneous	(versus	triggered)	events	942	

due	to	our	limited	knowledge	of	previous	earthquakes,	and	spatial	variability	as	943	

well	in	areas	where	MFDs	are	non	Gutenberg	Richter.	944	

	945	

	 So	far	UCERF3-ETAS	appears	to	produce	realistic	and	plausible	results	(Page	and	van	946	

der	Elst,	2018),	as	illustrated	in	Figure	3.		However,	it	embodies	a	host	of	assumptions	and	947	

approximations,	and	the	implications	of	many	uncertainties	have	yet	to	be	thoroughly	948	

explored.		The	important	point	here	is	that	there	is	lots	of	room	for	potential	improvements.		949	

One	particular	challenge	is	having	rates	implied	by	very	long-duration	simulations	exactly	950	



	 	 	

	

This	draft	manuscript	is	distributed	solely	for	purposes	of	scienti5ic	peer	review.	Its	content	is	deliberative	and	
predecisional,	so	it	must	not	be	disclosed	or	released	by	reviewers.	Because	the	manuscript	has	not	yet	been	
approved	for	publication	by	the	U.S.	Geological	Survey	(USGS),	it	does	not	represent	any	of5icial	USGS	5inding	or	
policy.	

	

50	

match	those	implied	by	the	underlying	long-term	model;	in	fact,	this	may	never	be	possible,	951	

but	these	discrepancies	should	at	least	be	signi_icantly	less	than	overall	epistemic	952	

uncertainties.		Another	challenge	is	representing	epistemic	uncertainties,	especially	953	

because	they	can	evolve	with	time	(e.g.,	aftershock	productivity	estimates)	and	the	954	

ballooning	number	of	branches.		Improving	these	models,	not	to	mention	deploying	them	955	

as	operational	earthquake	forecasts	(discussed	below),	will	also	require	signi_icant	IT-956	

resource	commitments.		We	also	need	to	enlist	multi-cycle	physics-based	simulators	to	957	

address	many	of	the	questions	posed	here.	958	

Induced	Seismicity	959	

	960	

	 Induced	seismicity	refers	to	earthquakes	caused	by	human	activities,	such	as	those	961	

associated	with	oil	and	gas	extraction,	geothermal	energy,	and	CO2	sequestration	(e.g.,	962	

Ellsworth,	2013).		Cochran	et	al.	(2024)	provide	a	comprehensive	overview	and	strategic	963	

vision	with	respect	to	USGS	efforts	in	this	area,	including	state	of	knowledge,	research	964	

activities,	and	efforts	to	quantify	associated	hazards.	Following	an	alarming	increase	in	965	

seismicity	rates	caused	by	expanded	oil	and	gas	operations	in	the	central	United	States	966	

between	2009	and	2015,	three	1-year	induced	seismicity	forecasts	were	published	by	the	967	

USGS	NSHM	(Petersen	et	al.,	2016,	2017,	and	2018).		These	"of_icial"	forecasts	have	so	far	968	

been	based	on	a	pure	gridded	seismicity	model	(described	above),	with	particular	969	

challenges	being	catalog	quality,	distinguishing	induced	from	tectonic	events,	what	type	of	970	
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declustering	is	appropriate	(if	any),	how	to	extrapolate	low-magnitude	b-values	to	higher	971	

magnitudes,	and	whether	the	maximum	magnitude	of	induced	earthquakes	should	be	the	972	

same	as	that	assumed	for	tectonic	events.		Updates	for	such	USGS	induced-seismicity	973	

forecasts	are	on	hiatus	because	seismicity	rates	are	no	longer	increasing	in	Oklahoma	(for	974	

now),	other	competing	priorities	and	limited	resources,	addressing	important	questions	975	

related	to	declustering,	and	taking	a	strategic	pause	to	gauge	actual	uptake	in	user	976	

communities.	977	

	 More	complex	models	have	also	been	explored,	such	as	ETAS	with	a	time-varying	rate	of	978	

spontaneous	events	(Llenos	and	Michael,	2013),	and	more	physics-based	approaches	that	979	

combine	stressing	rate	changes	from	injection	with	rate-and-state-based	friction	models	980	

(e.g.,	Norbeck	and	Rubinstein,	2018;	Rubinstein	et	al.,	2021).		See	Cochran	et	al.	(2024)	for	981	

other	examples.	982	

	 Going	forward,	we	need	to	ensure	that	development	of	these	models	is	well	coordinated	983	

and	integrated	with	other	ERF	developments,	and	that	computational	resources	are	shared	984	

as	much	as	possible.		For	example,	if	we	succeed	in	operationalizing	statistical	seismology	985	

processing	for	the	gridded	seismicity	components,	short-term	forecast	updates	should	986	

become	relatively	effortless.	987	

	988	
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Static	Stress	Change	Models	989	

	990	

	 The	1992	Landers	earthquake	and	a	70-year	sequence	of	events	on	the	North	Anatolian	991	

fault	implied	that	static	stress	change	models	might	be	useful	in	forecasting	large,	triggered	992	

events	(e.g.,	King	et	al.,	1994;	Stein	et	al.,	1997;	Parsons	and	Dreger,	2000).		This	approach	993	

computes	the	spatial	distribution	of	stress	change	caused	by	a	main	shock	and	applies	the	994	

rate	and	state	model	of	Dieterich	(1994)	to	infer	event	probabilities.		Although	there	was	995	

hope	this	might	"dramatically	improve	scientists'	ability	to	pinpoint	future	shocks"	(from	996	

the	sub-title	of	Stein	(2003)),	the	jury	is	still	out	on	ultimate	value,	as	Coulomb	rate-and-997	

state	models	rarely	outperform	statistical	models	such	as	ETAS	(Woessner	et	al.,	2011;	998	

Segou	et	al.,	2013;	Catannia	et	al.,	2018).		However,	Mancini	et	al.	(2020)	found	that	physics-999	

based	models	outperform	ETAS	for	the	Ridgecrest	earthquake,	with	accounting	for	faulting	1000	

heterogeneities	and	secondary	triggering	being	critical	to	success.			Furthermore,	our	1001	

assertion	above	that	elastic	rebound	is	needed	to	get	spatiotemporal	clustering	models	to	1002	

work	with	_inite	faults	suggests	that	some	relaxation	process	exists,	implying	there	is	1003	

something	to	static	stress	change.		Parsons	et	al.	(2023)	tested	this	prospectively	following	1004	

the	2008	M7.9	Wenchuan	earthquake	in	China;	as	of	2023,	all	but	one	of	the	subsequent	1005	

shocks	in	the	region	that	caused	casualties	were	identi_ied	as	posing	increased	hazard	in	1006	

2008,	and	the	exception	was	triggered	by	induced	hydraulic	fracturing.		Remaining	1007	

questions	include:	1)	de_ining	fault	orientations	of	potentially	triggered	events;	2)	the	1008	
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competing	in_luence	of	dynamic	triggering	effects	(e.g.,	Parsons,	2002;	Hardebeck	and	1009	

Harris,	2022);	and	3)	the	extent	to	which	we	can	resolve	stress-change	distributions	given	1010	

uncertainties	in	mainshock	slip	and	crustal	heterogeneities,	which	appears	to	cause	an	1011	

underestimation	of	the	observed	degree	of	spatial	clustering	(Hardebeck,	2021).		1012	

Furthermore,	we	need	to	run	such	models	over	multiple	cycles	to	ensure	there	are	no	1013	

systematic	biases;	doing	so	would	make	such	models	consistent	with	the	multi-cycle	1014	

physics-based	simulators	described	below.		1015	

	 A	_inal	application	of	static	stress	transfer	concepts	can	be	applied	to	the	whole	crust	by	1016	

using	fault-based	earthquake	rate	models	to	calculate	the	long-term	stress	effects	of	1017	

slipping	the	model	in	the	surrounding	crust.	If	we	_ind	large	positive	stress	concentrations	1018	

in	regions	where	there	are	no	mapped	faults,	then	we	may	be	missing	seismic	sources	1019	

and/or	the	result	can	be	compared	with	observed	background	(off-fault)	seismicity	as	a	1020	

means	of	model	testing.		1021	

	1022	

Machine	Learning	Approaches	1023	

	1024	

	 In	recent	years,	multiple	research	groups	have	made	progress	in	applying	machine-1025	

learning	models	to	the	temporal	(Dascher-Cousineau	et	al.,	2023;	Stockman	et	al.,	2023)	1026	

and	spatiotemporal	earthquake	forecasting	problem	(Zlydenko	et	al.,	2023).	Future	1027	
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earthquake	rates	can	be	forecast	using	a	neural	point	process	(NPP)	trained	on	past	1028	

seismicity,	and,	with	enough	training	data,	these	machine-learning-based	methods	1029	

outperform	simple	ETAS	formulations	(Dascher-Cousineau	et	al.,	2023;	Stockman	et	al.,	1030	

2023;	Zlydenko	et	al.,	2023).		Machine-learning	formulations	have	the	advantage	of	being	1031	

extremely	_lexible;	they	can	quickly	adapt	to	the	productivity	of	an	ongoing	aftershock	1032	

sequence,	they	infer	non-stationarities	and	irregularities	present	in	earthquake	catalogs,	1033	

and	they	continue	to	improve	with	additional	small	earthquakes,	even	if	catalogs	are	highly	1034	

incomplete	(e.g.,	Stockman	et	al.,	2023).		Some	models	can	also	be	used	to	make	multiple	1035	

synthetic	catalog	continuations,	much	like	ETAS	(Dascher-Cousineau	et	al.,	2023).		NPP	1036	

models	also	require	signi_icantly	less	computational	power	to	train	for	large	datasets	1037	

compared	to	ETAS,	since	they	scale	linearly	with	the	number	of	training	earthquakes	rather	1038	

than	quadratically	(Dascher-Cousineau	et	al.,	2023).	There	are	challenges,	however,	like	1039	

whether	these	models	can	produce	long	synthetic	catalog	continuations	that	remain	1040	

accurate,	and	how	they	perform	with	respect	to	the	larger	(and	rarer)	events	that	in_luence	1041	

seismic	hazard.		1042	

Other	Time	Dependencies	1043	

	1044	

	 Real	earthquakes	almost	certainly	embody	other	time	dependencies,	with	one	obvious	1045	

example	being	earthquake	swarms,	which	represent	sequences	of	seismic	events	that	occur	1046	

in	a	localized	area	over	a	short	period	of	time	without	a	single	outstanding	mainshock.	1047	
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Unlike	typical	earthquake	sequences,	which	have	a	clear	mainshock	followed	by	smaller	1048	

aftershocks,	swarms	consist	of	numerous	earthquakes	of	similar	magnitudes.	Swarms	can	1049	

last	from	days	to	months	and	are	often	associated	with	volcanic	or	geothermal	activity,	1050	

although	they	can	also	occur	in	tectonic	regions.	The	causes	of	earthquake	swarms	are	1051	

diverse,	including	magma	movement,	_luid	injection	or	extraction,	and	tectonic	stress	1052	

adjustments.	Efforts	to	model	such	events	for	hazard	quanti_ication	purposes	include	1053	

Llenos	and	Michael	(2019)	and	Llenos	and	van	der	Elst	(2019).	1054	

	 Other	time	dependencies	are	implied	by	the	paleo	hiatus	discrepancy	identi_ied	by	1055	

David	Jackson	(Biasi	and	Scharer,	2019),	“super	cycles”	,	which	refer	to	clusters	of	large	1056	

events	that	are	separated	by	some	period	of	time	(Grant	and	Sieh,	1994;	Weldon	et	al.,	1057	

2004;	Dolan	et	al.,	2007;	Gold_inger	et	al.,	2013;	Rockwell	et	al.,	2014;	Schwartz	et	al.,	1058	

2014),	and	“mode	switching”,	which	represents	the	idea	that	one	region	or	fault	will	light	up	1059	

for	a	time	and	then	shut	down	as	another	area	lights	up	(Dahmen	et	al.,	1998;	Ben-Zion	et	1060	

al.,	1999;	Zaliapin	et	al.,	2003;	Ben-Zion,	2008,	Hatem	and	Dolan,	2018).		Another	is	1061	

apparent	seismicity	rate	changes	associated	with	strain	accumulation	over	seismic	cycles	1062	

(e.g.,	Zeng	et	al.,	2018)	and	temporal	changes	in	fault	slip	rates	(e.g.,	Wallace,	1987).		1063	

Current	of_icial	probability	models	also	lack	the	ability	for	a	long	rupture	on	one	fault	to	1064	

temporarily	reduce	the	likelihood	of	such	an	event	on	an	adjacent	nearby	fault	(e.g.,	the	1065	

1906	SAF	earthquake	stress	shadowing	the	parallel	Maacama	fault,	which	is	something	1066	

static	stress	models	could	account	for).	The	practical	question	is	whether	these	effects	are	1067	
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signi_icant	with	respect	to	inferred	hazard	and	risk.	Multi-cycle,	physics-based	simulators	1068	

seem	to	be	our	best	hope	for	addressing	such	questions.	1069	

	1070	

Multi-Cycle	Physics-Based	Simulators	1071	

	 	1072	

	 Multi-cycle	physics-based	simulators,	as	described	in	a	special	issue	of	Seismological	1073	

Research	Letters	(https://pubs.geoscienceworld.org/srl/issue/83/6),	are	arguably	our	1074	

best	hope	for	addressing	many	earthquake-forecasting	questions,	especially	given	the	slow	1075	

trickle	of	large-event	observations.		Rather	than	the	traditional	approach	of	inferring	1076	

earthquake	magnitudes	from	fault	area	or	length	using	statistical	scaling	relationships,	and	1077	

associated	frequencies	of	occurrence	by	matching	fault	slip-rate	and/or	paleoseismic	1078	

recurrence	intervals,	these	physics-based	models	apply	tectonic	loading	to	a	fault	system	1079	

and	utilize	frictional	properties	on	those	faults	to	determine	when	and	where	earthquakes	1080	

occur,	with	each	earthquake	transferring	stress	and	thereby	in_luencing	the	occurrence	of	1081	

subsequent	events.		This	approach	effectively	combines	the	earthquake	rate	and	probability	1082	

components	(Figure	4),	and	the	output	is	a	synthetic	catalog	of	earthquakes	covering	1083	

thousands	to	millions	of	years	(or	whatever	is	desired).		1084	

Common	Criticisms	1085	

	1086	
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	 All	models	embody	assumptions,	approximations,	and	input-data	uncertainties,	so	the	1087	

relevant	question	is	whether	such	simulators	are	useful.		A	common	criticism	is	that	there	1088	

is	not	yet	enough	physics	in	the	current	physics-based	simulators.		But	enough	physics	for	1089	

what?		The	potential	usefulness	of	a	model	cannot	be	ascertained	outside	the	context	of	a	1090	

speci_ic	inference,	and	answers	will	certainly	vary	among	different	uses	(i.e.,	inferring	1091	

elastic	rebound	predictability	versus	inferring	the	propensity	of	multi-fault	ruptures).		And	1092	

even	if	we	get	the	physics	and	numerical	approximations	exactly	right,	we	will	still	be	1093	

plagued	by	uncertainties	in	what	faults	look	like	at	depth	(e.g.,	Zielke	and	Mai,	2025).	We	1094	

therefore	cannot	let	perfection	be	the	enemy	of	a	more	useful	model.			1095	

	 That	said,	signi_icant	challenges	remain	with	respect	to	these	models.		Perhaps	the	most	1096	

pressing	is	that	they	generally	ignore,	or	crudely	approximate,	the	in_luence	of	propagating	1097	

seismic	waves	(inertial/dynamic	effects).		They	also	generally	ignore	the	3D	velocity	1098	

structure,	non-elastic	effects	at	depth,	off-fault	yielding,	and	other	things	such	as	the	1099	

in_luence	of	_luids.		Single-cycle	(single-event)	dynamic	rupture	models	(e.g.,	Harris	et	al.,	1100	

2018)	are	better	able	to	represent	such	effects,	but	computational	limits	currently	limit	1101	

such	sophistication	in	the	multi-cycle	models	needed	for	earthquake	forecasting.		The	1102	

relevant	question	is	their	relative	value	in	the	context	of	implied	epistemic	uncertainties	1103	

and	the	cost	of	development	and	maintenance.	1104	

	 The	ultimate	inference	would	be	the	probability	of	future	ruptures,	conditioned	on	what	1105	

we	know	about	past	events.	However,	we	cannot	simply	start	these	models	at	present	1106	
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conditions	and	get	multiple	realizations	of	what	comes	next.		This	is	because	they	must	be	1107	

“spun	up”	for	thousands	of	virtual	years	before	stable	behavior	emerges,	leaving	one	to	1108	

search	for	periods	in	a	simulation	that	match	as	close	as	possible	to	the	historical	record	1109	

(e.g.,	Aalsburg	et	al.,	2010).		In	other	words,	even	if	these	models	were	a	perfect	1110	

representation	of	nature,	there	would	still	be	work	in	terms	of	_iguring	out	how	to	use	them	1111	

to	infer	time-dependent	earthquake	probabilities.			1112	

Potential	Inferences	1113	

	 	1114	

	 A	more	modest	use	of	multi-cycle	physics-based	simulators	is	to	test	various	1115	

implications,	assumptions,	or	epistemic	uncertainties	in	current	ERFs,	such	as	those	1116	

associated	with:	1117	

	1118	

• Average	rupture	rates	1119	

• Multi-fault	rupture	plausibility	(Milner	et	al.,	2022)	1120	

• Scaling	relationships	1121	

• Average	slip	along	rupture,	especially	for	multi-fault	events	1122	

• MFDs	near	faults	(non	Gutenberg	Richter?)	1123	

• In_luence	of	creep	(area	vs	slip-rate	reduction)	and	seismogenic	depths	1124	
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• Elastic	rebound	predictability	(e.g.,	Field	et	al.,	2015)	1125	

• Spatiotemporal	clustering	(e.g.,	is	ETAS	adequate	at	large	magnitudes?)	1126	

• Other	time	dependencies	(mode	switching,	super	cycles,	paleo	hiatus)	1127	

	1128	

	 These	multicycle	simulators	also	represent	our	best	physics-based	option	for	obtaining	1129	

multiple	slip-time-history	realizations	for	speci_ic	ruptures,	which	are	needed	to	address	1130	

ground-motion	questions	such	non-ergodic	effects	and	how	directivity	manifests	for	1131	

multifault	ruptures.	1132	

	1133	

Currently	Viable	Models	1134	

	1135	

	 Multi-cycle	simulators	have	been	around	for	decades	and	continue	to	be	improved	upon.		1136	

Here,	we	focus	on	current	models	that	can	accommodate	the	space	and	time	scales	we	are	1137	

interested	in,	meaning	hundreds	of	faults	and	thousands	of	years.		This	means	1138	

approximations	must	be	made,	including	the	abandonment	of	inertial	waves	(analogous	to	1139	

climate	versus	weather	models).		Smaller	scale	tests	should	be	conducted	against	more	1140	

sophisticated	models	to	ensure	consistency	(e.g.,	Harris,	et	al,	2009;	Jiang,	et	al,	2022;	1141	
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Erickson,	et	al,	2023),	although	comparisons	will	eventually	need	to	be	statistical	in	nature	1142	

given	the	effective	stochasticity	of	results	(Tullis,	et	al,	2012).	1143	

	 Given	overall	limitations,	it	would	be	advantageous	to	have	a	wide	variety	of	simulators	1144	

under	development	and	analysis,	both	for	epistemic	uncertainty	quanti_ication	and	1145	

ensemble	forecasting.		Although	the	following	re_lects	the	currently	limited	number	of	1146	

models	(that	we	know	of),	hopefully	this	discussion	will	motivate	other	efforts.			1147	

RSQSim	1148	

	1149	

	 RSQSim	stands	for	Rate	and	State	EarthQuake	Simulator	(Dieterich	and	Richards-1150	

Dinger,	2010;	Richards-Dinger	and	Dieterich,	2012;	Shaw,	2019).		It	models	a	complex	fault	1151	

system	using	rectangular	or	triangular	boundary	elements	with	back	slip.		It	avoids	1152	

repeated	incremental	solutions	of	large	system	of	equations	by	applying	event-driven	1153	

computations	based	on	changes	in	fault	sliding	state,	where	each	element	may	be	in	only	1154	

one	of	three	sliding	states:	1)	Locked	(aging	by	log	time	of	stationary	contact);	2)	1155	

Nucleating	slip	(analytic	solutions	of	the	rate-state	equations	for	accelerating	slip	to	1156	

nucleate	earthquakes,	and	track	the	time-	and	slip-dependent	breakdown	process	at	the	1157	

rupture	front);	and	3)	Earthquake	slip	(quasi-dynamic,	in	which	slip	speed	is	based	on	1158	

shear	wave	impedance).		The	model	is	thereby	currently	able	to	model	millions	of	years	of	1159	

M≥4	earthquakes	throughout	a	large	complex	fault	system.		RSQSim	can	also	model	slow-1160	

slip	events,	fault	creep,	induced	seismicity,	and	the	interaction	of	these	with	normal	tectonic	1161	
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events.		Comparisons	with	fully	dynamic,	_inite-element	simulation	for	individual	ruptures	1162	

(Richards-Dinger	and	Dieterich,	2012)	show	good	agreement,	and	rupture	jumps	between	1163	

disconnected	faults	are	in	good	agreement	with	more	detailed	rupture	modeling.		RSQSim	1164	

also	produces	realistic	spatiotemporal	clustering	(aftershocks	or	Omori	behavior)	as	1165	

inferred	from	interevent	waiting	time	distributions	and	space-time	distributions.	1166	

	 RSQSim	has	already	contributed	to	earthquake	hazard	estimates,	including	elastic	1167	

rebound	inferences	(Field,	2015),	scaling	relationships	(Shaw,	2023),	developing	improved	1168	

rupture	sets	for	fault	inversions	(Milner,	et	al,	2022),	and	fault	segmentation	1169	

parameterizations	(Milner	and	Field	2023).	It	has	also	been	shown	to	replicate	long-term	1170	

hazard	at	the	scale	of	fault	systems	(Shaw,	et	al,	2018).		As	such,	RSQSim	remains	a	leading	1171	

simulator	based	on	capabilities,	validation,	and	applications	to	hazard.	1172	

MCQsim	(Zielke	and	Mai,	2023)	1173	

	1174	

	 MCQsim	stands	for	MultiCycle	EarthQuake	simulator.	Like	RSQSim,	it	uses	triangular	1175	

boundary	elements	that	interact	elasto-statically	to	create	cascading	earthquake	ruptures	1176	

(as	well	as	inter-	and	post-seismic	phases)	on	arbitrarily	complex	fault	geometries.	In	1177	

contrast	to	RSQSim,	MCQsim	uses	a	linear	slip-weaking	law	to	describe	frictional	1178	

breakdown	during	sliding.	Fault	elements	exhibit	unstable,	conditionally	stable	or	stable	1179	

seismogenic	behavior,	based	on	their	strength	relative	to	elastic	properties	of	the	half-space	1180	

and	their	slip-weaking	distance.	As	such,	the	MCQsim	natively	provides	an	upper	and	lower	1181	
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depth	for	the	seismogenic	zone,	further	permitting	incorporation	of	strength	asperities,	1182	

fault	after-slip,	and	partial	locking	(i.e.,	creep).		Coseismic	slip	rates	are	limited	by	a	1183	

radiation	damping	approximation	that	is	continuously	updated	during	the	rupture	phase.	1184	

Yoffe-like	slip	pulses,	similar	to	those	in	dynamic	rupture	simulations,	emerge	from	the	1185	

simulations.		A	nice	feature	of	the	model	is	that	it	optionally	includes	plastic	loading	on	the	1186	

lower	crust,	with	stresses	relaxing	postseismically	on	the	lower	horizontal	surface	below	1187	

the	seismic	faults,	in	a	Maxwellian	exponential	decay.	While	there	is	not	a	nucleation	1188	

process	that	would	lead	to	Omori-law	clustering,	the	viscous	relaxation	process	(also	1189	

present	as	after-slip	on	conditionally	stable	and	stable	elements)	does	enable	some	longer	1190	

time	scale	and	_inite	depth	crust	interactions	to	be	explored.		A	comparison	of	an	individual	1191	

rupture	starting	from	the	same	initial	conditions	against	an	elastodynamic	_inite	element	1192	

code	and	RSQsim	(Richards-Dinger	and	Dieterich,	2012)	shows	good	correspondence	1193	

between	all	three	models	(Zielke	and	Mai,	2023).		The	ability	of	the	model	to	simulate	1194	

complex,	individual	ruptures	and	complex	sequences	of	ruptures	on	complex	fault	1195	

networks	with	a	range	of	geometries	and	rakes	makes	this	a	promising	model.	MCQsim	1196	

model	development	is	ongoing	(e.g.,	implementation	of	H-matrices,	poro-elastic	effects,	1197	

alternative	tectonic	loading,	topography,	and	layered	medium)	to	further	boost	its	1198	

capabilities,	computational	ef_iciency,	and	applicability	to	earthquake	forecasting.	1199	

Tandem	(Uphoff	et	al.,	2022)	1200	

	1201	
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	 Tandem	is	an	open-source	software	package	for	the	simulation	of	earthquake	sequences	1202	

and	aseismic	slip	in	volumetric	domains	accounting	for	complicated	geometries	(e.g.,	1203	

topography,	complex	fault	systems)	and	heterogeneous	subsurface	properties.		It	is	the	_irst	1204	

muti-cycle	earthquake	simulator	to	use	the	Discontinuous	Galerkin	differential	equation	1205	

solver,	and	it	utilizes	the	Portable,	Extensible	Toolkit	for	Scienti_ic	Computation	(PETSc,	1206	

Balay	et	al.,	2023)	for	scaling	and	parallelization	on	a	wide	variety	of	advanced	high-1207	

performance	computing	platforms.		The	model	supports	both	quasi-dynamic	and	fully	1208	

dynamic	rate-and-state	friction	capabilities,	although	the	extent	to	which	the	latter	can	1209	

scale	to	large	fault	systems	remains	to	be	seen.	It	can	handle	complex	curvilinear,	1210	

intersecting	faults	and	inhomogeneous	bulk	material	properties.		It	has	demonstrated	good	1211	

agreement	with	other	codes	in	community	benchmark	problems	(Uphoff,	et	al.,	2022,	1212	

Erickson	et	al.,	2023)	and	in	applications	(e.g.,	Biemiller	et	al.,	2024).	In	recent	work,	1213	

Tandem	has	been	utilized	to	simulate	seismic	cycles	in	subduction	zone	settings,	1214	

introducing	curved	megathrust	geometries	and	variations	in	elastic	parameters	dependent	1215	

on	distance	from	the	trench	and	depth	(Biemiller	et	al.,	2024).	These	variations	signi_icantly	1216	

in_luence	the	behavior	of	earthquake	cycles.	These	simulations	help	to	more	1217	

comprehensively	understand	how	co-seismic,	post-seismic,	and	inter-seismic	deformation	1218	

interact	across	multiple	earthquake	cycles.	1219	

A	Path	Forward	1220	

	1221	
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	 Con_idence	in	inferences	would	certainly	be	bolstered	by	consistency	among	several	1222	

alternative	simulator	models.		The	reality	is,	however,	that	these	models	are	challenging	1223	

and	expensive	to	develop	and	maintain,	as	they	typically	require	collaboration	with	1224	

computer	scientists,	access	to	high-performance	computing,	an	ability	to	curate	and	1225	

document	both	computer	codes	and	results,	and	an	ability	to	reproduce	the	latter.		They	1226	

also	depend	on	inputs	that	are	themselves	dif_icult	to	develop	and	maintain	(e.g.,	detailed	1227	

fault	models).	1228	

	 With	respect	to	not	having	"enough"	physics,	we	need	to	de_ine	smaller-scale	test	1229	

problems	so	they	can	be	compared	against	more	sophisticated	methodologies	(e.g.,	full	1230	

dynamic	models).		To	this	end,	it	would	be	bene_icial	to	have	a	set	of	standard	evaluation	1231	

metrics,	including	whatever	inferences	are	desired	with	respect	to	ERF	development	(e.g.,	1232	

the	list	above).		Again,	we	will	have	greater	con_idence	to	the	extent	that	alternative	models	1233	

agree	with	respect	to	inferences.		For	example,	we	already	noted	that	our	elastic-rebound	1234	

predictability	algorithm	was	inferred	from	a	number	of	simulators,	so	the	challenge	now	is	1235	

whether	a	viable	simulator	can	be	constructed	that	does	not	exhibit	such	behavior.		Even	if	1236	

all	current	models	are	found	lacking	in	terms	of	usefulness,	it	only	means	we	need	to	push	1237	

development	even	harder,	as	we	should	not	give	up	on	our	best	hope	for	improved	ERFs.		1238	

That	said,	these	models	will	always	be	an	approximation	of	the	system,	especially	with	1239	

respect	to	limited	knowledge	of	subsurface	structural	details,	so	inferences	will	need	to	be	1240	

considered	carefully	on	a	case-by-case	basis.	1241	
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	1242	

Operational	Earthquake	Forecasting	(OEF)	1243	

	1244	

	 Operational	Earthquake	Forecasting	(OEF)	aims	to	provide	authoritative,	real-time	1245	

information	on	evolving	earthquake	probabilities,	including	triggered	events	(Jordan	and	1246	

Jones,	2010;	Jordan	et	al.,	2011).		While	it	is	one	thing	to	develop	a	fully	time-dependent	1247	

ERF	(described	above),	it	is	quite	another	to	deploy	it	as	a	continuously	running,	real-time	1248	

system.			1249	

	 The	USGS	has	been	issuing	various	aftershock	warnings	since	the	1980s,	providing	the	1250	

probability	of	aftershocks	above	various	magnitude	thresholds	(Roeloffs	and	Goltz,	2017).		1251	

Signi_icant	progress	has	been	made	in	recent	years	with	respect	to	updating	computer	1252	

codes	to	a	modern	modular	framework,	de_ining	region-dependent	generic	parameters,	1253	

implementing	sequence-speci_ic	parameter	estimation	(especially	for	productivity),	1254	

improving	how	real-time	catalog	incompleteness	is	handled,	implementing	an	automatic	1255	

forecasting	system,	having	a	manual	GUI-based	interface	for	both	computing	and	pushing	1256	

results	to	USGS	web	pages,	implementing	a	tiered-communications	strategy	with	both	1257	

graphics	and	text,	and	versioning	results	for	posterity	and	testing	purposes.		Many	of	these	1258	

capabilities	were	exempli_ied	by	Michael	et	al.	(2019).	1259	
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	 Progress	is	also	being	made	with	respect	to	replacing	the	traditional	Reasenberg	and	1260	

Jones	(1989,	1994)	algorithm	with	an	ETAS	model	because	it	handles	large	aftershocks	1261	

more	elegantly	and	can	more	easily	provide	the	spatial	distribution	of	expected	aftershocks.		1262	

Adopting	an	object-oriented	framework	has	made	this	transition	from	Reasenberg-Jones	to	1263	

ETAS	much	easier	(plug	and	play	with	respect	to	most	downstream	analyses)	and	use	of	1264	

OpenSHA	(Field	et	al.,	2003)	has	made	the	generation	of	hazard	curves	and	maps	relatively	1265	

easy.		To	make	this	work	effective,	user	workshops	held	in	the	United	States,	Mexico,	and	El	1266	

Salvador	focused	on	understanding	user	needs	and	improving	communications	of	1267	

aftershock	forecasts	and	short-term	hazard	maps	(Schneider	et	al.,	2023).	1268	

	 These	aftershock	warnings	are	referred	to	as	Operational	Aftershock	Forecasting	(OAF)	1269	

because	they	address	only	triggered	events.		OEF,	on	the	other	hand,	aims	to	forecast	all	1270	

events	(spontaneous	and	triggered),	with	the	model	of	Gerstenberger	et	al.	(2004)	being	a	1271	

pioneering	example,	and	Spassiani	et	al.	(2023)	being	a	more	modern	(ETAS)	example.	The	1272	

primary	advantage	of	OEF,	versus	OAF,	is	the	ability	to	quantify	probability	gains	with	1273	

respect	long-term	or	pre-mainshock	values	(e.g.,	see	Field	et	al.	(2018)	for	various	hazard	1274	

and	risk	examples	for	the	"Haywired"	scenario	based	on	UCERF3-ETAS	and	a	no-faults	1275	

version	of	the	model).		In	contrast	to	OAF’s	event-triggered	mode	of	operation,	OEF	could	1276	

be	run	at	any	or	all	times,	enabling	users	to	de_ine	actionable	thresholds	themselves	1277	

(honoring	the	hazard-risk	separation	principle;	Jordan	et	al.,	2014)	or	to	know	when	1278	

probabilities	are	unusually	low.			1279	
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	 A	series	of	USGS	Powell	Center	workshops	were	conducted	between	2015	and	2018	to	1280	

review	best-available	science	and	potential	usefulness	of	OEF,	with	a	number	of	1281	

stakeholders	and	likely	early	adopters	in	attendance	(e.g.,	Field	et	al.,	2016).		In	short,	OEF	1282	

was	deemed	potentially	useful	in	that	probability	gains	can	far	exceed	the	10%	actionable	1283	

threshold	typically	de_ined	by	users,	but	legitimate	questions	remain	with	respect	to	the	1284	

in_luence	of	temporal	decay	and	delays	in	issuing	forecasts	(latency).		Based	on	the	outcome	1285	

of	the	Powell	Center	meetings,	together	with	a	follow	up	review	of	viable	models,	the	1286	

National	Earthquake	Prediction	Evaluation	Counsel	(NEPEC)	wrote	the	following	in	a	2017	1287	

report	to	the	USGS	Earthquake	Hazards	Program:	1288	

	1289	

“…the	Council	strongly	recommends	that	the	USGS	press	forward	to	develop	a	fully	1290	

operationalized	nationwide	OEF	system	that	carries	calculations,	combining	the	1291	

background	rate	of	seismicity	and	earthquake	clustering,	through	to	hazard.”	1292	

	1293	

(see	Data	and	Resources	section	for	a	link).	1294	

	1295	

	 Development	of	OEF	has	been	hampered	in	part	by	IT	requirements	(not	just	more	1296	

resources,	but	also	better	coordination	of	the	ones	we	have).		There	is	also	the	question	1297	

related	to	operationalization.		UCERF3-ETAS	can	be	run	by	a	human	on	demand,	as	1298	
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demonstrated	following	the	Ridgecrest	sequence	(Milner	et	al.,	2020;	Savran	et	al.,	2020).		1299	

Automating	the	system	would	require	a	signi_icant	increase	in	effort,	which	requires	1300	

ensuring	that	the	value	of	doing	so	would	outweigh	the	costs.		Here	we	have	a	bit	of	the	1301	

chicken-and-egg	problem	(users	cannot	deem	it	useful	without	having	access	to	such	a	1302	

model,	and	we	don't	want	to	deploy	the	model	unless	it	is	useful).		The	solution	appears	to	1303	

be	an	iterative	one,	in	which	fully	time-dependent	(but	non-operationalized)	results	are	1304	

made	available	so	that	users	can	explore	various	"what	if"	questions.		Given	that	the	risk	1305	

modeling	community	stands	to	bene_it	particularly	from	such	models,	it	would	also	help	to	1306	

calculate	various	risk	metric	during	the	model-building	process	(in-house	valuation).	This	1307	

would	allow	knowing	whether	the	latest	NSHM	is	appropriate	for	shorter-term	and	1308	

spatially	distributed	hazard	and	risk	metrics.	1309	

	1310	

Model	Testing	and	Valuation	1311	

	 	1312	

	 Model	testing	is	both	a	hallmark	of	science	and	critical	for	any	predictive	models	used	1313	

by	society.		As	noted,	the	paucity	of	large	event	data	makes	testing	earthquake	forecasts	1314	

particularly	challenging.		Furthermore,	human	frailties	like	apophenia	(seeing	signal	in	1315	

noise)	and	con_irmation	bias	(ignoring	contrary	evidence)	imply	that	an	independent,	1316	

objective	process	of	evaluation	is	needed.	Our	primary	solution	to	this	has	been	the	1317	

Collaboratory	for	the	Study	of	Earthquake	Predictability	(CSEP;	see	Data	and	Resources),	1318	
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which	represents	an	infrastructure	for	testing	earthquake	forecast	models.		This	1319	

international	effort	has	produced	interesting	results	(e.g.,	see	Michael	and	Werner	(2018),	1320	

which	is	the	preface	to	a	CSEP-related	special	issue	of	Seismological	Research	Letters),	1321	

including	the	conclusion	that	ETAS	remains	the	best	model	with	respect	to	spatiotemporal	1322	

clustering,	but	that	more	physics-based	and	machine-learning	approaches	may	be	catching	1323	

up.		However,	these	tests	only	have	strength	at	lower	magnitudes,	and	our	ability	to	test	1324	

models	at	the	large	magnitudes	that	dominate	hazard	(M≥6.5)	continues	to	be	hampered	by	1325	

the	limited	large-event	observations,	which	may	always	be	the	case.		Nevertheless,	1326	

successful	testing	at	lower	magnitudes	is	still	useful	if	such	events	are	used	to	forecast	the	1327	

occurrence	of	larger	ones	(as	in	ETAS),	making	passing	these	tests	a	necessary	(but	not	1328	

suf_icient)	condition.	Another	approach	is	to	put	candidate	models	through	a	standard	1329	

battery	of	“Turing	tests”	(e.g.,	the	Page	and	van	der	Elst	(2018)	evaluation	of	UCERF3-1330	

ETAS).	These	included	evaluating	total	regional	rate	variability,	the	spatial	distribution	of	1331	

aftershocks,	the	mean	and	variability	of	aftershock	productivity,	the	depth	distribution	of	1332	

earthquakes,	and	the	nearest-neighbor	analysis	of	Zaliapin	et	al.	(2008).		Making	such	1333	

analyses	routine	and	automated	would	make	the	model	development	process	more	1334	

ef_icient.			Finally,	it	is	also	useful	to	test	individual	assumptions	or	components	utilized	in	1335	

an	ERF	(e.g.,	elastic-rebound	predictability),	which	falls	under	the	purview	of	traditional	1336	

analysis	and	publication.	1337	
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	 At	the	same	time,	we	know	all	models	are	ultimately	wrong,	so	what	seems	equally	1338	

important	is	testing	relative	model	usefulness,	or	the	practical	value	of	one	model	versus	1339	

another	(valuation).	For	example,	it’s	been	clearly	demonstrated	that	aftershock	1340	

productivity	for	a	given	mainshock	magnitude	can	vary	by	more	than	an	order	of	1341	

magnitude,	and	that	sequence-speci_ic	models	have	superior	forecasting	skill	(e.g.,	Page	et	1342	

al,	2016).		However,	it	takes	time	and	effort	to	infer	sequence	speci_ic	parameters,	during	1343	

which	the	sequence	will	have	decayed	to	a	lower	level,	so	it	is	not	clear	that	sequence-1344	

speci_ic	forecasts	will	always	provide	added	value.		Likewise,	while	UCERF3-ETAS	seems	to	1345	

be	the	most	realistic	OEF	candidate	in	terms	of	including	faults,	it	also	requires	more	1346	

computing	power	to	operate.		If	UCERF3-ETAS	and	a	no-faults	ETAS	model	produce	the	1347	

same	result	for	some	hazard	or	risk	metric,	then	why	not	go	with	the	more	ef_icient	option?		1348	

In	other	words,	testing	relative	model	usefulness	(valuation)	seems	just	as	important	as	1349	

validation,	and	perhaps	more	so	in	terms	of	providing	immediate	answers	that	can	help	the	1350	

USGS	set	deployment	and	scienti_ic	priorities.	1351	

	 The	question	of	relative	value	for	different	options	arises	constantly	in	the	model	1352	

development	process.		We	have	thus	far	conducted	such	sensitivity	analyses	using	long-1353	

term,	individual-site	hazard	curves	(i.e.,	building	code	metrics).		However,	as	noted	in	the	1354	

Introduction	and	elsewhere	in	this	paper,	such	results	are	not	necessarily	applicable	to	1355	

other	risk	metrics	of	interest,	such	as	average	annual	loss	in	a	region,	or	the	loss	that	has	a	1356	

speci_ied	probability	of	exceedance.		Consequently,	some	users,	including	one	of	the	largest	1357	



	 	 	

	

This	draft	manuscript	is	distributed	solely	for	purposes	of	scienti5ic	peer	review.	Its	content	is	deliberative	and	
predecisional,	so	it	must	not	be	disclosed	or	released	by	reviewers.	Because	the	manuscript	has	not	yet	been	
approved	for	publication	by	the	U.S.	Geological	Survey	(USGS),	it	does	not	represent	any	of5icial	USGS	5inding	or	
policy.	

	

71	

providers	of	homeowner	earthquake	insurance	in	the	world,	are	currently	advised	to	use	1358	

caution	with	our	latest	NSHM	(Petersen	et	al.,	2023;	Field	et	al.,	2023;	Jordan	et	al.,	2023).		1359	

The	obvious	solution,	in	addition	to	developing	fully	time	dependent	models,	is	to	enable	1360	

routine	evaluation	of	a	standard	set	of	risk	metrics	during	model	development,	a	capability	1361	

we	are	presently	pursuing.		The	aim	is	not	to	publicly	release	such	risk	results,	but	to	have	1362	

them	available	during	model	development	and	review.	1363	

	1364	

Computational	Infrastructure	1365	

	1366	

Comments	here	apply	to	the	entire	forecasting	infrastructure,	not	just	ERF	development.		1367	

Being	able	to	understand	and	modify	elements	of	the	computational	infrastructure	is	1368	

critical	if	you	want	to	make	signi_icant	forecasting	improvements	(as	opposed	to	routine	1369	

implementations).		To	this	end,	the	following	are	important	guiding	principles:	1370	

	1371	

• The	infrastructure	must	be	modular	(object	oriented)	to	allow	different	groups	to	1372	

focus	on	their	components	of	interest	(without	having	to	understand	details	of	1373	

others).	1374	

• The	infrastructure	needs	to	be	accessible	to	scientists	(the	domain	experts)	or	1375	

progress	on	innovations	will	grind	to	a	halt;	this	means	keeping	the	framework	1376	
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conceptually	intuitive	and	avoiding	arcane	and	cryptic	coding	options	as	much	as	1377	

possible.	1378	

• The	infrastructure	requires	careful	coordination	and	collaboration.		Adding	new	1379	

features	or	capabilities	does	not	always	require	hiring	a	new	person	(and	doing	so	1380	

can	actually	impede	progress).	We	should	always	endeavor	to	_ind	an	exisitng,	1381	

willing	participant	_irst.		1382	

• Everything	needs	to	be	robust	with	respect	to	personnel	departures	(which	runs	1383	

counter	to	job	security	considerations	related	to	making	oneself	indispensable).		1384	

This	also	requires	stable,	long-term	funding	committments.	1385	

• We	need	access	to	affordable	high-performance	computing,	especially	with	respect	1386	

to	epistemic	uncertainty	quanti_ication,	full	time-dependent	ERFs,	and	more	1387	

physics-based	models.	1388	

• Expanded	support	for	the	following	types	of	hazard	calculations:	fault	displacement,	1389	

liquefaction,	landslides,	and	fragile	geologic	features.	1390	

• Support	for	command-line	and	GUI-based	apps	(for	those	that	are	coding	averse)	1391	

• 3D	visualization	capabilities		1392	

	1393	
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Review	Process		1394	

	1395	

	 As	ERFs	become	increasingly	sophisticated,	and	beyond	the	comprehension	of	any	one	1396	

individual,	model	review	becomes	more	and	more	important,	especially	with	respect	to	1397	

ensuring	consistency	among	assumptions	made	in	different	model	components.		To	this	1398	

end,	we	intend	to	maintain	the	formal	ERF	review	panel	established	for	the	2023	model	1399	

(the	chair	of	which	also	serves	on	the	NSHMP	steering	committee).		Not	only	did	this	1400	

professionally	diverse	group	provide	one	of	the	most	extensive	ERF	reviews	to	date,	but	1401	

they	also	published	their	_indings	in	a	peer	reviewed	journal	(Jordan	et	al.,	2023)	--	a	1402	

hugely	valuable	resource	that	in_luenced	this	document	greatly.		Starting	this	ongoing	1403	

review	process	now,	and	in	the	context	of	developing	a	more	continuous	"living"	research	1404	

model,	will	lessen	the	time	crunch	associated	with	building	code	deadlines	(the	next	one	1405	

being	2029).		To	keep	the	review	process	independent,	membership	decisions	will	remain	1406	

under	the	purview	of	USGS	Earthquake	Hazards	Program	leadership.	1407	

	 We	will,	of	course,	also	continue	to	host	public	workshops	with	scientists	and	1408	

stakeholders,	as	well	as	convene	ad	hoc	groups	to	focus	on	speci_ic	elements	of	concern	(i.e.,	1409	

deformation	models	and	multi-fault	ruptures	for	the	2023	model).		Finally,	we	will	also	1410	

continue	to	bene_it	from	feedback	from	early	adaptors,	especially	practitioners	1411	

implementing	the	model	in	their	own	codes	(which	has	consistently	represented	and	1412	

important	code	veri_ication	process).	1413	
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	1414	

Discussion	1415	

	1416	

	 The	_irst	section	here	reiterates	and	summarizes	our	main	future	objectives	with	1417	

respect	to	ERF	development,	and	the	second	section	gives	a	summary	of	our	short-term	1418	

roadmap	giving	steps	and	goals	to	be	achieved	before	the	next	building-code	deadline	in	1419	

2029.		In	terms	of	whether	main	future	objectives	are	foundational	versus	aspirational,	a	1420	

theme	of	USGS	Earthquake	Hazards	Program	Decadal	Science	Strategy	(Hayes	et	al.,	2024),	1421	

the	answer	is	both;	we	have	already	partially	accomplished	all	of	these	goals,	but	they	will	1422	

also	be	long-term,	if	not	perennial,	endeavors.			1423	

	1424	

Main	Future	Objectives	1425	

	1426	

Develop	full	time-dependent	models	(with	spatiotemporal	clustering)	1427	

	1428	

	 This	represents	the	biggest	potential	improvement	with	respect	to	ERFs,	particularly	in	1429	

terms	of	short-term	hazard	and	risk	metrics.	(e.g.,	insurance	products),	but	also	with	1430	

respect	to	response	and	recovery	efforts	and	performance-based	engineering.		For	example,	1431	

practitioners	generally	_ind	10%	changes	in	statewide	average	annual	losses	actionable	1432	
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(e.g.,	triggering	an	adjustment	of	reinsurance	levels),	but	this	metric	can	easily	increase	by	1433	

an	order	of	magnitude	following	a	large	mainshock,	implying	there	is	signi_icant	remaining	1434	

predictability	in	the	system	(Field	et	al.,	2017).		Such	models	are	also	needed	to,	for	1435	

example,	address	the	adequacy	of	the	Poisson	assumption	with	other	hazard	and	risk	1436	

metrics,	and	to	quantify	historical	seismicity	sampling	errors.		The	continued	development	1437	

of	these	models	is	therefore	foundational,	but	their	operationalization	is	aspirational	given	1438	

the	resources	likely	required.	1439	

	 	1440	

Improved	epistemic	uncertainty	representation	1441	

	1442	

	 As	mentioned	throughout	this	manuscript,	representing	epistemic	uncertainties	will	1443	

remain	a	perennial	challenge	(both	foundational	and	aspirational).		This	includes	those	1444	

related	to	3D	fault	geometries,	slip	rates	(deformation	models),	the	fact	that	we	infer	1445	

gridded	seismicity	rates	from	a	single	historical	sample	of	events,	and	the	degree	to	which	1446	

epistemic	uncertainties	are	spatially	correlated.		Any	of	these	could	signi_icantly	impact	1447	

spatially	distributed	hazard	and	risk	metrics.	We	also	want	more	uniform	treatments	across	1448	

regions,	especially	to	avoid	the	paradoxical	situation	where	fewer	data	constraints	imply	1449	

less	model	uncertainty.		Questions	also	remain	on	how	to	most	ef_iciently	manage	the	1450	

ballooning	number	branches	when	computing	hazard	and	risk	(e.g.,	traverse	the	entire	1451	

logic	tree	systematically,	resort	to	Monte	Carlo	sampling,	or	hybrid	approaches?),	what	1452	



	 	 	

	

This	draft	manuscript	is	distributed	solely	for	purposes	of	scienti5ic	peer	review.	Its	content	is	deliberative	and	
predecisional,	so	it	must	not	be	disclosed	or	released	by	reviewers.	Because	the	manuscript	has	not	yet	been	
approved	for	publication	by	the	U.S.	Geological	Survey	(USGS),	it	does	not	represent	any	of5icial	USGS	5inding	or	
policy.	

	

76	

down-sampling	strategies	might	be	appropriate	for	different	applications,	and	how	to	best	1453	

communicate	these	uncertainties	to	users.	1454	

Risk	related	valuation	metrics	1455	

	1456	

	 Previous	USGS	NSHMs	have	effectively	been	tailored	for	building	codes	(long-term,	1457	

individual-site	hazard	curves),	raising	questions	with	respect	to	appropriateness	for	other	1458	

applications	(e.g.,	shorter-term	and/or	spatially	distributed	hazard	and	risk).		We	therefore	1459	

need	to	add	the	evaluation	of	risk	metrics	to	our	model-building	process,	which	in	turn	will	1460	

require	adopting	some	benchmark	exposure	and	vulnerability	models	(the	elements	1461	

needed	for	risk	analysis,	representing	the	distribution	and	value	of	assets	and	the	1462	

vulnerability	of	each	to	ground	shaking).	There	is,	of	course,	an	effective	in_inite	number	of	1463	

risk	metrics	of	potential	interest,	so	we	will	need	to	work	with	users	to	de_ine	a	minimal,	1464	

necessary,	and	suf_icient	set.	1465	

Multi-cycle	physics-based	simulators	1466	

	1467	

	 These	models	represent	perhaps	our	best	opportunity	for	longer-term	ERF	1468	

improvements,	especially	in	terms	of	dealing	with	the	lack	of	observations	at	larger	1469	

magnitude.		However,	they	also	raise	signi_icant	challenges	with	respect	to	model	1470	

development,	maintenance,	and	epistemic	uncertainty	representation.		Their	usefulness	1471	



	 	 	

	

This	draft	manuscript	is	distributed	solely	for	purposes	of	scienti5ic	peer	review.	Its	content	is	deliberative	and	
predecisional,	so	it	must	not	be	disclosed	or	released	by	reviewers.	Because	the	manuscript	has	not	yet	been	
approved	for	publication	by	the	U.S.	Geological	Survey	(USGS),	it	does	not	represent	any	of5icial	USGS	5inding	or	
policy.	

	

77	

will	also	be	limited	by	their	sensitivity	to	rheologic	and	structural	details	that	may	never	be	1472	

well	known.			Nevertheless,	we	have	already	utilized	these	models	to	inform	ERF	1473	

development,	and	we	will	certainly	continue	to	do	so.		The	USGS	will	likely	continue	to	rely	1474	

on	external	partners	given	limited	internal	capabilities.	1475	

Short-term	Roadmap	Summary	1476	

	1477	

	 Here	we	outline	some	anticipated	steps	and	goals	to	be	accomplished	before	the	next	1478	

building-code	deadline	in	2029,	in	approximate	chronological	order,	but	all	starting	within	1479	

the	next	year	and	running	in	parallel.		Results	will	be	published	and	incorporated	into	1480	

research	models	as	they	become	available.	Whether	versions	of	this	living	model	will	be	1481	

sanctioned	for	of_icial	use	will	be	a	joint	decision	among	the	authors,	the	review	panel,	and	1482	

USGS	earthquake	hazards	program	leadership.	Our	aims	at	model	simpli_ication,	automated	1483	

processing,	and	maintaining	an	elegant	and	ef_icient	computational	infrastructure	should	1484	

be	taken	for	granted.	1485	

	1486	

Develop	ERFs	for	US	territories	1487	

These	include	one	for	Puerto	Rico	and	the	U.S.	Virgin	Islands,	Guam,	and	American	Samoa.	1488	

Anticipated	innovations	here	include	applying	the	inversion	fault-system-solution	approach	1489	
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to	subduction	zones	(as	exempli_ied	by	Gerstenberger	et	al.,	2024)	and	dealing	with	1490	

earthquake	catalog	quality	issues	(e.g.,	biases	and	uncertainties).	1491	

	1492	

Publish	nationwide	long-term	time-dependent	ERF	1493	

This	is	to	account	for	the	time-since	last	event	on	explicitly	modeled	faults	using	elastic-1494	

rebound-motivated	renewal	models.		Where	the	data	of	last	event	is	unknown,	constraints	1495	

on	the	open	interval	will	be	utilized	(the	time	over	which	we	are	certain	no	event	occurred).		1496	

We	will	endeavor	to	apply	this	nationwide,	although	results	will	only	differ	from	Poisson	1497	

where	the	open	interval	is	approaching	the	average	recurrence	interval	on	each	fault.	1498	

	1499	

Launch	new	deformation	modeling	effort	1500	

Fault	slip	rates,	speci_ied	by	deformation	models,	are	among	the	most	critical	model	1501	

constraints	when	it	comes	to	earthquake	hazard	and	risk,	yet	they	generally	remain	poorly	1502	

quanti_ied.		This	initiative	is	to	establish	the	next-generation	deformation	models	in	as	1503	

many	areas	as	possible,	with	emphasis	on	improving	slip-rate	uncertainties	(covariance),	1504	

off-fault	deformation	estimates,	viscoelastic	corrections,	and	block-rotation	effects.	1505	

	1506	

Improve	Central	and	Eastern	U.S.	(CEUS)	fault	sources	1507	



	 	 	

	

This	draft	manuscript	is	distributed	solely	for	purposes	of	scienti5ic	peer	review.	Its	content	is	deliberative	and	
predecisional,	so	it	must	not	be	disclosed	or	released	by	reviewers.	Because	the	manuscript	has	not	yet	been	
approved	for	publication	by	the	U.S.	Geological	Survey	(USGS),	it	does	not	represent	any	of5icial	USGS	5inding	or	
policy.	

	

79	

As	discussed	by	Field	et	al.	(2023)	and	Jordan	et	al.	(2023),	existing	USGS	CEUS	fault-based	1508	

sources	generally	assume	that	only	a	single-sized	event	ever	occurs	on	each	fault	(we	just	1509	

do	not	yet	know	what	that	characteristic	magnitude	is).		This	approximation	no	longer	1510	

represents	best	available	science	and	is	inconsistent	with	fault-model	applications	in	other	1511	

regions.	Epistemic	uncertainties	also	need	to	be	rede_ined	(e.g.,	to	achieve	the	next	goal	1512	

below)	and	ideally	made	consistent	with	those	de_ined	in	other	regions.	1513	

	1514	

Full,	nationwide	epistemic	uncertainty	quanti#ication	for	2023	NSHM	1515	

We	have	yet	to	quantify,	nationwide,	the	hazard	uncertainties	associated	with	the	logic	1516	

trees	de_ined	for	the	2023	USGS	NSHM	(only	those	for	a	small	set	of	locations	have	been	1517	

examined,	and	in	an	approximate	manner;	e.g.,	Figure	17	of	Petersen	et	al.,	2023).		This	will	1518	

require	high-performance	computing	and	novel	algorithms	with	respect	to	sampling	all	1519	

branches.	1520	

	1521	

Inversion-based	fault	system	solutions	1522	

These	models	represent	our	best	representation	of	large,	fault-based	ruptures,	especially	1523	

with	sampling	epistemic	uncertainties.		In	addition	to	the	subduction	zones	mentioned	for	1524	

the	US	territories	above,	the	following	would	bene_it	from	inversion-based	fault	system	1525	

solutions:	Alaska	faults	and	subduction	zone;	the	Cascadia	subduction	zone;	and	the	fault	1526	
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system	in	the	New	Madrid,	MO	area.	One	opportunity,	and	challenge,	is	incorporation	of	1527	

liquefaction	and	paleo	lacustrine	constraints.	This	initiative	also	involves	providing	1528	

command-line	tools	that	enabling	others	to	re-generate	models	with	customized	attributes	1529	

(e.g.,	alternative	slip	rates)	.	1530	

	1531	

Operationalize	statistical	seismology	processing	1532	

Seismicity	processing	that	current	and	future	ERFs	depend	upon	(regional	rate	and	b-value	1533	

estimates,	declustering,	and	seismicity	smoothing)	should	be	operationalized	by	porting	to	1534	

a	modern,	object-oriented	code	base	(thereby	avoiding	delays	associated	with	scientists	re-1535	

running	their	personal	codes	every	time	a	minor	catalog	correction	is	made).		This	would	1536	

also	reduce	latency	in	updating	induced	seismicity	hazard	estimates,	improve	1537	

reproducibility,	and	facilitate	quanti_ication	of	historical-seismicity	related	sampling	errors	1538	

(using	simulations	from	fully	time-dependent	models).		This	would	also	free	our	statistical	1539	

seismologists	to	focus	more	on	scienti_ic	advancements.		1540	

	1541	

Enable	benchmark	risk-metric	calculations	1542	

This	is	to	begin	satisfying	the	valuation	requirement	discuss	throughout	this	document	1543	

(and	under	Risk	related	valuation	metrics	in	the	previous	section)	by	initiating	benchmark	1544	

portfolio	risk	calculations	(e.g.,	average	annual	dollar	loss	and	loss	exceedance	curves	for	1545	
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canonical	portfolios	and	vulnerability	functions).	This	will	involve	working	with	user	1546	

communities	to	establish	appropriate,	public-domain	elements	for	these	benchmark	1547	

calculations.	1548	

	1549	

Coordinate	multi-cycle	physics-based	simulator	developments	1550	

Establish	a	working	group	of	current	and	potential	simulator	model	developers,	articulate	1551	

the	various	inferences	that	have	and	could	aid	ERF	development,	strategize	resources	1552	

sharing,	establish	standardized	_ile	formats	and	evaluation	metrics,	ensure	reproducibility	1553	

and	access	to	results,	and	develop	a	long-term,	stable	funding	plan.		This	is	a	very	long-term	1554	

endeavor,	but	results	should	also	impact	ongoing	ERF	development	as	well.	1555	

	1556	

Develop	nationwide,	fully	time	dependent	ERFs	(including	spatiotemporal	clustering)	1557	

Building	off	long-term	ERFs	and	recent	operational	aftershock	forecasting	developments,	1558	

develop	at	least	a	prototype	model,	or	set	of	models	with	various	tradeoffs	between	1559	

ef_iciency	and	sophistication	(e.g.,	2D	vs	3D	and	with-faults	vs	no-faults).	1560	

	1561	

Model	Testing	Efforts	1562	
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Coordinate	with	the	Collaboratory	for	the	Study	of	Earthquake	Predictability,	operationalize	1563	

standard	Turing	test	comparisons	(Page	and	van	Der	Elst,	2018),	and	evaluate	model	1564	

consistency	against	fragile	geologic	features.	1565	

	1566	

The	above	does	not	represent	a	complete	list	of	ongoing	activities	or	worthy	pursuits.		A	1567	

more	detailed	compilation	of	possible	improvements	can	be	found	in	the	ERF	section	of	the	1568	

USGS	Earthquake	Hazards	Program	annual	external	grants	announcement	(see	Data	and	1569	

Resources	section).	1570	
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	1572	

	1573	

	1574	

Data	and	Resources	1575	

	1576	

The	USGS	Earthquake	Hazards	Program	external	grants	announcement	is	available	at	1577	
https://www.usgs.gov/programs/earthquake-hazards/science/external-grants-overview	1578	
(last	accessed	in	Aug.,	2024).	1579	

	1580	

The	2017	report	from	the	National	Earthquake	Prediction	Evaluation	Council	(NEPEC)	to	1581	
the	USGS	Earthquake	Hazards	Program	referenced	in	the	paper	is	available	at:	https://d9-1582	
wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-1583	
public/atoms/_iles/NEPEC_Report_November2017.pdf	(last	accessed	Dec.	2024).	1584	

	1585	

The	web	site	for	the	Collaboratory	for	the	Study	of	Earthquake	Predictability	(CSEP)	is:	1586	
http://cseptesting.org	(last	accessed	Feb.,	2025).	1587	
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Figure	2.	The	two	main	modeling	components	of	PSHA,	including	the	disciplinary	science	2420	

categories	(top),	the	system-level	predictive	models	(middle),	and	a	few	of	the	USGS	2421	

forecasting	products	(bottom).		2422	
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Figure	3.	Illustration	of	time-dependent	vs	fully	time-independent	models.		The	lower	2424	

panel	shows	the	monthly	rate	of	M≥2.5	events	in	California	over	a	100-year	simulation	2425	

window,	with	red	and	black	depicting	the	time-dependent	and	time-independent	rates,	2426	

respectively.		The	top	panel	shows	the	timing	of	M≥6	events	for	each	model	(with	circle	size	2427	

varying	with	magnitude).		The	time-dependent	simulation	is	based	on	the	UCERF3-ETAS	2428	

model	(Field	et	al.,	2021),	for	which	aftershock	sequences	can	be	seen	following	larger	2429	

events.		The	time-independent	model	is	based	on	the	same	set	of	events,	but	with	event	2430	

times	randomized	to	mimic	a	Poisson	process.		Changes	in	M≥2.5	rates	for	the	time-2431	
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varying	with	magnitude).		The	time-dependent	simulation	is	based	on	the	UCERF3-ETAS	2459	
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dependent	(red)	model	are	a	good	proxy	for	the	change	in	large-event	probabilities.		Note	2463	

that	rates	(and	probabilities)	can	increase	by	more	than	an	order	of	magnitude	following	2464	
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large	events	and	can	also	be	lower	by	a	factor	two	during	quiet	times,	relative	to	the	2465	

Poisson	approximation.					2466	

	 	2467	



	 	 	

	

This	draft	manuscript	is	distributed	solely	for	purposes	of	scienti5ic	peer	review.	Its	content	is	deliberative	and	
predecisional,	so	it	must	not	be	disclosed	or	released	by	reviewers.	Because	the	manuscript	has	not	yet	been	
approved	for	publication	by	the	U.S.	Geological	Survey	(USGS),	it	does	not	represent	any	of5icial	USGS	5inding	or	
policy.	

	

120	

	2468	

	2469	

	2470	

Figure	4.	Main	ERF	modeling	components.		2471	

	2472	

									2473	

	 	2474	



	 	 	

	

This	draft	manuscript	is	distributed	solely	for	purposes	of	scienti5ic	peer	review.	Its	content	is	deliberative	and	
predecisional,	so	it	must	not	be	disclosed	or	released	by	reviewers.	Because	the	manuscript	has	not	yet	been	
approved	for	publication	by	the	U.S.	Geological	Survey	(USGS),	it	does	not	represent	any	of5icial	USGS	5inding	or	
policy.	

	

121	

	2475	

	2476	

Figure	5.		An	illustration	of	the	inversion-based	fault	system	solution.		The	fault	system	is	2477	

subdivided	into	a	number	of	subsections	and	viable	fault	ruptures	are	de_ined	as	occurring	2478	

on	a	set	of	these	subsections.	The	rate	or	frequency	of	each	rupture	(fr)	is	then	determined	2479	

by	solving	a	set	of	equations	based	on	various	data	constraints.	The	fault	model	depicted	is	2480	

for	California	and	comes	from	Field	et	al.	(2014).	2481	


