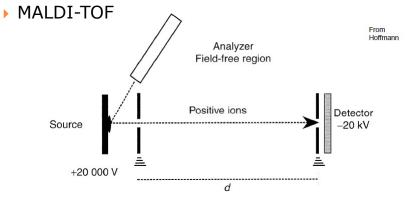
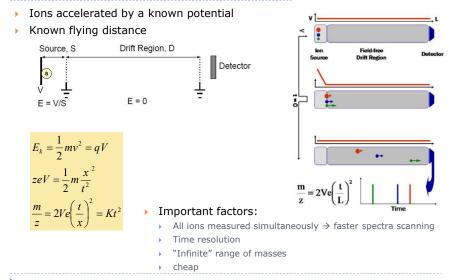

Mass analyzers

Literature: Jürgen H. Gross: Mass Spectrometry





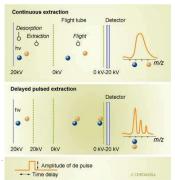
MALDI produces cations that are accelerated towards the analyzer \rightarrow cations fly in a field-free region – time of flight depends on their m/z

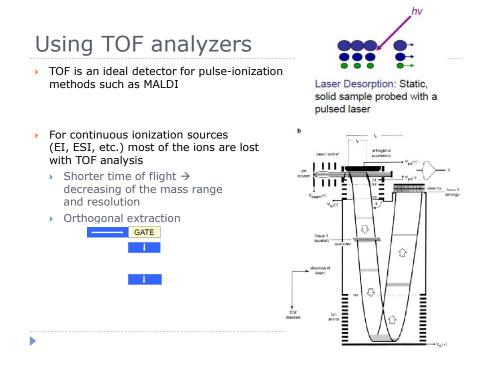
Time-of-flight (TOF) analyzers

TOF renaissance

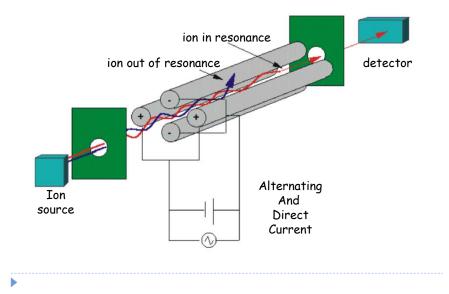
Reflectrons

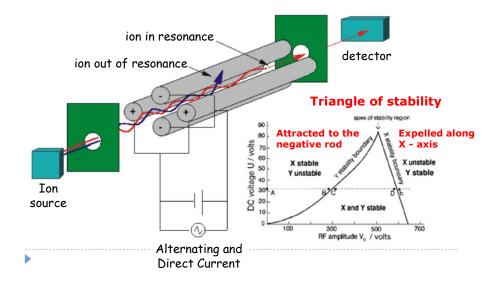
- Series of electrodes creating a linear field with an opposite sign to the initial accelerating field
- Ions are decelerated and turned to the opposite direction
- Constructed so that ions are focused to the plane of the detector


 \rightarrow Ions with different kinetic energy, but the same m/z, fly a different distance \rightarrow In the end, they have the same time of flight

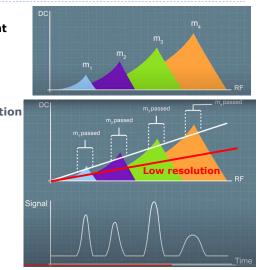

Delayed pulsed extraction

- Extraction of the ions is delayed by 200 500 ns
- During the delay, faster ions move closer to the extraction electrode than the slower ones
 → extraction pulse accelerates the faster ions shorter time → final velocities are similar


 \rightarrow Initial distribution of velocities is corrected \rightarrow the same time of flight



Mass selection using quadrupole



Mass selection using quadrupole

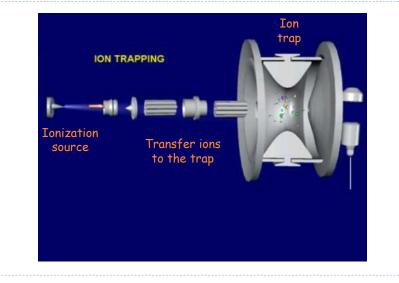
Quadrupole as mass analyzer

- Scanning along the line → the ratio U/V₀ is kept constant
- Maximum *m/z* ~ 4000
- Resolution ~ 3000
 Usually used with unit resolution
- Small, light, cheap
- Coupling with chromatography

See also: <u>https://www.youtube.com/watch?v=6_mavZ_WKoU</u>

TOF vs. quadrupole

TOF analyzers

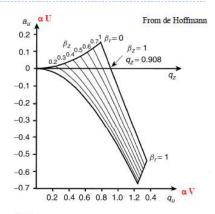

- Ions are in packets **pulsed** to the analyzer
- All ions (all m/z) from the packet are analyzed simultaneously
- m/z determined from dispersion of the ions in time
- Based on static, DC field

Quadrupoles

- Continuous inlet of the ions
- > Only ions with specific *m/z* reach the detector
- m/z determined by sequential filtering of ions
- Based on time-dependent alternating field

►

Ion trap


Quadrupole ion traps Fundamental RF at the ring electrode Ion source Fixed frequency (1,1 MHz), Variable amplitude (do 7 kV) Injected is End-cap electr AC: voltage with fixed frequency at the end-cap V_cos(w_l electrodes Ring ele Resonance excitation for ejection or Þ fragmentation Re AC volt Helium pressure ~ 1 mTorr 2 RF voltage ⊕_⊕⊕ $V\cos(\Omega t + \phi)$ (b) Ion Motion in z Direction (a) Ion Trajectory in the Trap 1 \sim RF field induces oscilations time along r and z axis on in r Direction - 2r_=20 mm time From Lambert

Stability diagram

- Stability of ion trajectories affected by combination of AC and DC → mostly DC is set to zero
- For zero DC, stability given by q_Z:

$$q_{Z} = \frac{8ezV}{m(r_{0}^{2} + 2z_{0}^{2})(2\pi\nu)^{2}}$$

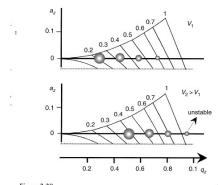
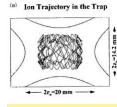

Stable trajectories up to q_z = 0.908

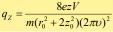
Figure 2.16

Typical stability diagram for a quadrupole ion trap. The value at $\beta_z = 1$ along the q_z axis is $q_z = 0.908$. At the upper apex, $a_z = 0.149998$ and $q_z = 0.780909$. (Data from Ref.12)

Ejection of ions

$$q_{Z} = \frac{8ezV}{m(r_{0}^{2} + 2z_{0}^{2})(2\pi\nu)^{2}}$$

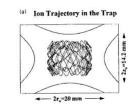

- With increasing V \rightarrow larger and • larger m/z beyond $q_z = 0.908$
- Pressure determines the highest Þ V (discharges) – usually ~2000 D


Figure 2.20

At a fixed value of the RF potential V applied to the ring electrode, heavier ions will have lower β_{ϵ} values and thus lower secular frequencies. If V is increased, β_{ϵ} values increase for all the ions, as do the secular frequencies. uncreased, *p_z* vatues increase for all the ions, as do the secular frequencies. In the example given, the lightest ion now has a *β_z* value larger than unity and is thus expelled from the trap. The highest mass that can be analyzed depends on the limit *V* value that can be applied: around 7000–8000 V from zero to peak. For a trap having *r₀* = 1 cm and operating at a *ν* frequency of 1.1 MHz, the highest detectable mass-to-charge ratio is about 650 Th

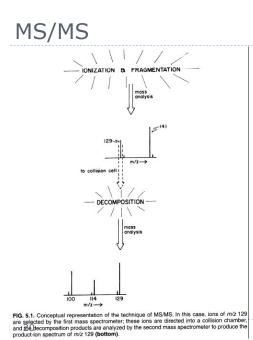
Secular frequency

- Ions oscillate at secular frequency f that is smaller than v
- Along z axis, f_{z} is proportional to q_{z} Þ
- If RF with frequency f_z is applied to the end-cap electrodes, • ions with secular frequency f_7 will be in resonance and amplitude of their oscillation along the z axis will increase
- \rightarrow for sufficiently large amplitudes are ions expelled
- \rightarrow collisions with helium (use for fragmentation of the excited ions)



Mass selection

> Apply AC field to the end cap electrodes \rightarrow point of instability (for given f_z)


Scan amplitude of fundamental RF

- Scan downwards \rightarrow ejection of all heavier ions
- Scan upwards → ejection of all lighter ions

▶ 19

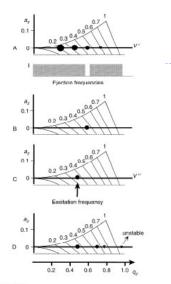
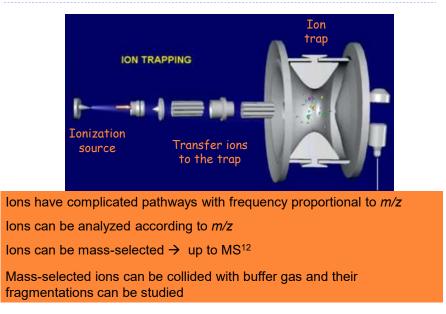



Figure 2.25 One possible sequence of events to produce an MS/MS spectrum. (A) lons of one mass-to-charge ratio are selected by expelling all the others at their resonance frequency applied to the caps. (B) Only ions of the selected m/z are present in the trap. (C) Voltage V is adjusted so as to bring the ion in resonance with the excitation frequency applied to the caps. (D) lons are analyzed by ejection at the stability limit

Ion trap

Many other ions traps with similar properties

- Linear quadrupole traps
- Higher multipole traps

Summary:

- Magnetic analyzer (B)
 - continuous analysis of ions according to their momentum

Electrostatic analyzer (E)

- continuous analysis of ions according to their kinetic energy
- *B* and *E* combinations
 - double focusing high resolution

Time-of-flight analyzer (TOF)

- pulsed analysis of kinetic energy of the ions by measuring the time required for passing a fixed distance
- $\,$ $\,$ Increase of resolution reflectrons, delayed pulsed extraction \rightarrow high resolution
- ▶ Quadrupoles (*Q*)
 - > continuous analysis of ions in an alternating field (combination of DC and RF)
 - usually unit resolution
- Quadrupolar traps
 - pulsed analysis of trapped ions by their sequential ejection
 - mass selection/fragmentation up to 12 times

See you in the classroom!