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Introduction: For spine surgeons, dealing with unstable cervical spine has been
usually challenging, and this becomes more difficult when facing a primary
craniovertebral junction tumor. Primary spine tumor surgery should always
include column reconstruction in order to guarantee biomechanical stability
of the spine, but surgeons should always be aware that instrumentations
could create interferences with postoperative radiations. However, although
carbon fiber instrumentations have started to be used in thoracolumbar
oncology for few years, these options are still not available for cervical spine.
In the reported case, the adopted strategy to obtain adequate column
reconstruction was based on the idea of reducing the amount of titanium
needed for posterior fixation and maximizing the distance between the
radiation target and titanium rods.
Case report and aim:We present the case of a 53-year-old woman harboring a
craniovertebral junction chordoma. A short occipito-C3 construct was
selected. Specifically, titanium cervical pedicle screws were placed by using a
new technology consisting in patient-tailored and customized 3D-printed
guides. The aim of this case report is to determine the feasibility and safety
of 3D-printed guides for cervical pedicle screw (CPS) positioning, even in the
case of cervical spine tumor.
Conclusion: CPS could represent a good solution by providing strong
biomechanical purchase and tailored 3D-printed guides could increase the
safety and the accuracy of this challenging screw placement, even in
oncological patients.
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Introduction

For spine surgeons, dealing with unstable cervical spine has

been usually challenging, especially when facing a primary

craniovertebral junction (CVJ) tumor. Although the best

management of CVJ chordomas is still a matter of debate, the

majority of studies showed that the extent of a resection was

associated with the best progression-free survival and overall

survival rate (1, 2). Moreover, because of the neurovascular

structure crowding and the consequent frequent impossibility

of performing an en-bloc removal of these tumors, the

surgery goal should aim at maximal safe removal providing a

safe target for subsequent proton-beam radiation therapy (3–6).

However, surgical considerations should always include

column reconstruction in order to guarantee biomechanical

stability of the spine, being aware that column reconstruction

should also consider interferences between radiations and

instrumentations, with consequent lowering of effective

radiation dose on the target (7–10). During the last few years,

carbon fiber/PEEK implants have been routinely used in

thoracolumbar spine reconstruction being able to reduce

artifacts and scattering effects while maintaining adequate

mechanical properties (11, 12). However, these implants are

not fully available for cervical spine reconstruction; thus,

other solutions should be adopted.

In the reported case, the surgical strategy sought to obtain

adequate column reconstruction while reducing the amount of

titanium for posterior fixation and maximizing the distance

between the radiation target and titanium rods.

Indeed, a short occipito-C3 construct using titanium

cervical pedicle screws (CPS) was used. CPS placement could

be really challenging: the misplacement rate ranged from 6%

to 30% with different techniques. Although the radiological

misplacement does not necessarily give clinical consequences,

as described by Mahesh et al. (13), cases with neurovascular

complications caused by CPS insertion were described in the

literature (14, 15).

Therefore, in the presented case, a new technology of

patient-tailored and customized 3D-printed guides was used

to fix CVJ of a 53-year-old patient harboring a chordoma.

The aim of this case report is to determine the feasibility

and safety of 3D-printed guides for CPS positioning even in

the case of cervical spine tumor.

Case description

A 53-year-old female patient with 6-month history of neck

pain and dysphagia was presented to the authors’ attention for

an expanding left cervical mass. No neurological symptoms

were reported, and the patient was also affected by

hypertension, diabetes, and ischemic cardiopathy. Contrast-

enhanced magnetic resonance imaging (MRI) and computed

tomography (CT) scans showed an extensive skull base tumor,

located in the left paravertebral space, growing from the clivus

and reaching the left anterior portion of C1 arch, the left

occipital condyle compromising both C0–C1 and C1–C2 left

joints (Figure 1). A needle CT-guided biopsy was performed

with histological confirmation of chordoma.

Due to extensive bone involvement, a single-day two-steps

surgery was planned. First, the tumor involving the clivus and

the anterior C1 arch was approached anteriorly through a

pure endoscopic endonasal route then a posterior “open”

approach was performed to complete resection of tumor

involving the left condyle and to fix CVJ by using a C0–C3

construct.

A short construct was planned due to the patient’s

comorbidity; thus, individualized 3D-printed guides (MySpine

Cervical, Medacta, Rancate, Switzerland) were developed for

the placement of C2 and C3 pedicle screws in order to

increase the construct purchase and to guarantee the safety of

surgery (Figure 2).

Surgical technique

Endoscopic endonasal step
The procedure was performed by using total intravenous

anesthesia to allow intraoperative neuromonitoring (IONM).

Once reached the lower clivus and the CVJ by using

expanded endoscopic endonasal approach—as already

reported in previous papers by the senior author (16–19)—a

huge mass was encountered into the rhinopharynx, and there

was no chance to harvest the usually reverse U-shape flap.

Therefore, a right naso-septal flap (NSF) was harvested with a

laser. After checking the tumor’s margin with neuronavigation

system, partial circumferential dissection was started. The

extreme lateral part of the tumor was tightly attached to the

pharyngeal muscles; thus, only internal tumor debulking was

carried out followed by centripetal dissection of tumor

margins. Then, once the involved part of anterior C1 arch

was removed, a left condylectomy was performed through a

far medial extension of the approach completing tumor

removal planned from the anterior. No dural tears and/or

CSF leaks were encountered at the end of this step. The

osteo-dural defect was covered by the harvested NSF and

secured with fibrin glue.

Posterior removal and CVJ fixation
The patient was placed in the prone position, and her head

was fixed with a three-pin head holder. IONM remained stable

during patient re-positioning. A midline skin incision from the

inion to C3 spinous process was performed. Subperiosteal

dissection exposed the occiput, C1, C2, and C3 posterior

elements. A rigid plate was fixed to the occiput by using
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bicortical screws. Due to the significant C1 involvement and

extended tumor removal, C1 was not included in the fusion.

Once the anatomical landmarks on C2 and C3 posterior

surface were exposed by meticulous soft tissue removal, the

individualized-3D-printed guide was docked first on the C2

vertebra, and pedicle screws were inserted. Then with the

same technique, C3 pedicle screws were positioned. Finally, a

pair of precontoured rods was used for stabilization.

Cancellous bone was laid on the midline between occiput and

the C2 to promote fusion (Figure 3D). The posterior

decompression was performed after screw positioning. C1

posterior arch was removed along with the left lateral mass,

through which was possible to reach the margin of anterior

resection (Figure 3).

Postoperative course was uneventful. Postoperative cranio-

cervical CT scan and 1-month MRI assessed the accuracy of screw

placement and confirmed the gross total intralesional removal.

Patient neurological status was absolutely preserved at

discharge. Histological exam confirmed the diagnosis of low

differentiated chordoma and patient was scheduled for

proton-beam radiation therapy.

3D-printed guide features

The guides are custom-made devices intended to be used as

anatomical perforating guides, specific to a single patient’s

anatomy, to assist intraoperatively in the positioning of screws

during posterior cervical fixation surgery. A preoperative

surgical planning software (MySpine Surgical Planning

Report, Medacta, Rancate, Switzerland) utilizes patient’s thin

section spine CT scan to plan the best screw trajectory, its

entry point, and dimensions in order to reach the best

achievable biomechanical features. A drill-based technique,

with Stryker system dual-trigger rotary handpiece (Stryker

Corporation, Kalamazooo, MI, USA) was used to make a

guiding hole anticipating the final screw placement.

FIGURE 1

Preoperative spine MRI showed a compression of the midbrain at the craniovertebral junction on the STIR sequence (A); an axial section
contrastenhanced T1-weighted (C) depicted a low-enhancing lesion with extension from the clivus, left petroclival fissure, and left condyle up to
the prevertebral plane of the fifth cervical vertebral body, determining an anterior dislocation of the oropharynx and an osteolysis of the left part
of anterior C1 arch; the lesion showed an hyperintensity in T2-weighted images (B, D). Preoperative CT scan showed an osteolytic involvement
of the left condyle and lateral mass (E-G) causing instability of the craniovertebral junction.
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The preoperative planning assesses the main surgical

parameters regarding the screw implantation in order to

manufacture a dedicated single patient-matched 3D-printed

guide. Any modifications of the preoperative planning are

defined by an exclusive confrontation between the surgeon

and manufacturer. The surgeon is able to choose the guide

configuration and modify surgical parameters considering

screws’ diameters, lengths, and angulations in relation to the

sagittal, coronal, and axial planes. Moreover, when planning

surgery, a surgeon should carefully ensure that the screw axis

was placed completely inside the cancellous bone due to the

strict range of acceptable accuracy error for CPS.

The 3D-printed guides are defined by two main features,

providing maximum stability: one central contact (1) and two

lateral cylindrical guides (left and right) (2) with distal pins.

These points of contact with spinous process, laminae, and

lateral masses are useful to optimize the stability of the guide

with the specific vertebra reproducing accordingly the planned

screw entry points.

Furthermore, depending on the patient’s matched anatomic

model, the guide can be customized to maximize the contact to

one of the following areas: spinous process and laminae, spinous

process and lateral masses, and laminae and lateral masses.

According to the spinous process conformation, the posterior

profile of the guide could be printed in three different shapes

being available open, semi-open, and closed configurations.

Lastly, another 3D model of the interested vertebra was

available in the operative room, allowing surgeons to confirm

the insertion point and fitting conditions of the 3D-printed

guide with the vertebra by easily comparing the intraoperative

spine and the 3D model each time before and after probing

and tapping.

FIGURE 2

An occipitocervical fusion was planned after endoscopic endonasal removal of the lesion. A preoperative planning of C2–C3 pedicle screws was
reproduced. The 3D-printed guides were manufactured considering values of sagittal plane angle (SAL or SAR) and transverse plane angle (TAL
or TAR) of screws, horizontal and vertical distances, screw directions and angulations and their entry points (A, C); C2 and C3 3D planning were
shown (B, D).
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Discussion

The best management of spinal chordomas is still a matter

of debate, and identifying the best surgical and oncological

approaches represents the real challenge (1). Di Maio et al.

reported a meta-analysis of 23 retrospective studies showing

that the gross total resection was associated with the best

progression free survival and overall survival rate (20).

Nonetheless, because of the impossibility of en-bloc resection

due to the crowding of neurovascular structures, intralesional

removal is the treatment of choice for CVJ chordomas (1, 20–

26). Surgery should aim to obtain maximal safe resection

providing a safe target for subsequent focused radiation

therapy, being this strategy closer to the treatment of

metastatic spine tumors (27, 28).

Nowadays, particle therapy, including proton therapy, has

shown unique physical properties, being able to spare normal

tissues from unnecessary exposure while providing high

radiation doses to the target (3, 5). Hence, early postoperative

proton beam therapy represents the radiation treatment of

FIGURE 3

Intraoperative view of the printed guide fitting on C3 lamina (A) and postoperative results. Transversal CT scan of screws’ trajectories in C2 and C3,
respectively (B, C). The result of anterior decompression was shown in (D) and an occipital plate and bicortical screws connected with precontoured
rods completed the occipitocervical constructs. One month brain and spine MRI (E, F) confirms the decompression of the cervicomedullary junction
and the optimal extent of resection.
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choice for chordomas, allowing them to deliver high radiation

doses while sparing adjacent neural structures (4, 5, 29).

However, when dealing with spine tumors, surgical

considerations should always include column reconstruction

in order to guarantee biomechanical stability of the spine

(30). Specifically, in the case of a primary spine tumor that

is a priori unresectable with wide margins and that would

certainly need proton beam therapy, column reconstruction

should not only aim to provide stability, but should also

consider interferences between radiations and

instrumentations.

Indeed, many manufactured metals used for prostheses

could absorb radiation, decreasing radiotherapy effectiveness

(7–10). Carbon fiber/PEEK implants have been developed and

used in spinal oncology, showing encouraging results in

reducing artifacts and scattering effects, while maintaining

adequate mechanical properties (11, 12). However, while

carbon fiber/PEEK instrumentation is fully available for

thoracolumbar spine, there is a lack of radiations inert

materials for cervical spine instrumentations.

In the reported case, the adopted strategy to obtain adequate

column reconstruction was based on the idea of reducing the

amount of titanium needed for posterior fixation and

maximizing the distance between the radiation target and

titanium rods.

Therefore, CPSs were used for occipitocervical fixation of

C2 and C3 vertebras, allowing for a short construct due to the

strong purchase provided by pedicle screws. Moreover, the

titanium rods were preoperatively contoured in a laterally

convex fashion in order to maximize the distance of titanium

from the tumor site, aiming to reduce the radiations scatter

effect. Another described option—considered in the

preoperative planning—was those reported by Boriani et al.,

who used a hybrid solution combining titanium sublaminar

bands and carbon fiber/PEEK rods (31). However, CPSs were

preferred to sublaminar bands to obtain a stronger fixation of

the CVJ. Analyzing the biomechanics of five occipitocervical

constructs, Oda et al. showed a higher stability provided by

occipital screw and CPSs connected by occipitocervical rods

(32). Furthermore, a correction of CVJ kyphosis could be

obtained by adequate rods contouring and by applying a

distraction force between the occipital screws and CPSs (33).

As widely reported in the literature, although the use of

CPSs has shown to provide stronger fixation than alternative

methods—that is, lateral mass screws and trans-articular facet

screws—due to the biomechanical superiority of CPSs, CPSs

placement is associated with considerable risks of nerves or

vertebral artery injuries (14, 34, 35). Indeed, a screw

perforation rate ranging from 6.7% to 29% has been reported

using the free-hand screw insertion technique that seems to

be lowered by using intraoperative image devices (36–38),

such as fluoroscopy-guided technique (14, 39), 3D fluoroscopy

(40), CT-based navigation system (41, 42), and O-arm (43,

44). Recently, the use of 3D-printed guides has been proposed

as a new technique for CPSs placement.

There are few experiences in the literature describing the use

of these guides but they seem to be encouraging (45–49).

Kaneyama et al. reported a high rate of accuracy (97.5%) in a

series of 80 screws placed with 3D-printed templates (48).

Fujita et al. recently reported their experience with the same

3D-printed guides adopted in this case report, showing

interesting and promising results with 98.7% of accuracy (49).

Two main issues have been advanced for the accuracy of

CPS placement because of a higher mobility of cervical

vertebra compared with lumbar or thoracic ones, and fewer

anatomical landmarks on the posterior surface of cervical

vertebra (43, 50).

The relevant mobility of cervical spine could lead to vertebra

rotation during screws placement maneuvers (drilling, probing,

and tapping) with consequent changes in cervical alignment,

thus increasing the risk for screw misplacement due to the

different tapping and screw trajectories. Moreover, the few

landmarks on the posterior aspect of cervical vertebra and the

wide anatomical variations in size and shape of cervical

pedicles contribute to increase the risk of screws

misplacement (51, 52). Cervical pedicles, indeed, could be

really small making the screw positioning challenging with

free-hand and/or fluoroscopy assisted techniques.

The smallest mean pedicle width was about 4.5 mm and was

usually observed at C3. A gradual increase in the mean value

was observed from C3 to C7 (38). Liu et al. reported racial

and sexual differences in pedicles’ diameters, being smaller in

Asians than in Europeans or Americans and among female

individuals of both races than their male counterparts (51, 53).

Lastly, another factor that seems to increase the risk of

misplacement is the soft tissue of the neck, namely, muscles

and fat tissue, that could contribute to a muscle-pushing

effect, which can lead to screw malpositioning. Apparently, it

could impact more on screw misplacement than the pedicle

diameter (38).

Patient-specific 3D-printed guide resulted to be very useful

in the presented case. Surgeons were able to replicate the

preoperatively planned screw trajectory as the 3D-guides were

fixed to each target vertebra. The guide, indeed, provided a

highly accurate copy of the planned entry points and

trajectories. Moreover, due to the availability of a 3D-printed

guide for each vertebra, the effect of intraoperative spine

alignment change was completely overcome. This is strictly

related to the 3D-guide purchase on the interested vertebra

and it was provided by some specific features. The former was

the presence of the caudal hook on the 3D-printed guide -

inherited from the thoracolumbar system (Medacta, My Spine

MC) – which strongly held the guide to the caudal aspect of

the vertebra, stabilizing the complex on a sagittal plan; the

latter was the availability of the 3D model in the operative

room, allowing real-time confirmation of the planned
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landmarks and the fitting conditions of the 3D-printed guide

with the vertebra before and after probing and tapping. As

underlined, the guide fitting is essential to guarantee screws

placement accuracy, then some cautions should be

emphasized. First, as guides are printed on the basis of

preoperative bone CT, accurate reproduction of bone

structures, namely the shape of the lamina and lateral mass

surface, could be thwarted by the presence of cartilaginous

tissues or osteophytes, especially in severe degenerative

pathology. Since this could lead to screws misplacement,

surgeon should carefully remove soft tissue and osteophytes

on the posterior aspect of the vertebra where the guide needs

to be positioned. Moreover, paraspinal muscles should also be

retracted to adequately engage the 3D-guide. Notably, as the

CPS entry point becomes lateral in the cranially located

vertebras, the distance between the lateral cylindrical elements

of the 3D-printed guide and so the entire axial dimension of

the guide will become wider. Therefore, it is important to

make sufficient skin incision, especially on the cranial side, in

order to achieve adequate guide fitting.

Although the reported experience has several limitations,

starting from its nature of case report, the result of accuracy

in CPS placement seems to be encouraging and it could be a

starting point for further investigation even in the oncological

field. Another limitation is represented by time which is

required for manufacturing and obtaining an adequate

preoperative planning (about 2 or 3 weeks). However, due to

the complexity of oncological patients and because the

majority of procedures are elective, this usually does not result

in treatment delay.

Conclusions

The treatment of unstable cervical spine remains

challenging, especially when dealing with primary spine

tumor. Despite oncological principles of radicality, CVJ

chordoma represents an en-bloc unresectable tumor, and

therefore, postoperative proton beam therapy plays a crucial

role in controlling progression free survival. Hence, every

effort should be carried out during surgery in order to

guarantee a safe and clean target for radiation. Short titanium

constructs could consider whether carbon fiber

instrumentation could not be used or could not provide

adequate stability. CPS could represent a good solution by

providing strong biomechanical purchase, and tailored 3D-

printed guides could increase the safety and accuracy of this

challenging screw placement, even in oncological patients.
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