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Abstract

Abstract

A silver monolayer can be synthesized with an intercalation between silicon carbide
and epitaxial buffer bilayer graphene. The goal of this thesis is to establish whether
the interaction with the substrate can alter the fundamental symmetry (e.g. inver-
sion symmetry) of the system, and to which extend new properties can arise. We
find that silicon carbide breaks the inversion symmetry of two-dimensional silver.
This can be directly observed by the Rashba effect. Furthermore, we show that the
substrate induces valley-selective circular dichroism in two-dimensional silver. This
property is very interesting for the field of valleytronics.
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Zusammenfassung

Zwei-dimensionales Silber kann zwischen Siliziumkarbid und zwei expitaxial gewach-
senen Lagen von Graphen synthetisiert werden. Das Ziel dieser Arbeit ist es festzustellen,
ob die Wechselwirkung mit dem Substrat die fundamentale Symmetrie (zum Beispiel
die Inversionssymmetrie) des Systems verändern kann, und in welchem Umfang
neue Eigenschaften entstehen können. Es zeigt sich, dass Siliziumkarbid die Inver-
sionssymmetrie von zwei-dimensionalem Silber bricht, was direkt am Rashba-Effekt
beobachtet werden kann. Darüber hinaus zeigen wir, dass das Substrat Valley-
selektiven zirkularen Dichroismus hervorruft. Diese Eigenschaft ist sehr interessant
für das Forschungsgebiet der Valleytronik.
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1 Introduction

Figure 1.1: Atomic structure of intercalated silver between bilayer graphene and
silicon carbide [18].

Two-dimensional materials are very interesting because their properties can be
fundamentally different from the bulk counterparts. This work investigates two-
dimensional silver, which is a promising material for plasmon-based technologies
such as biosensors and waveguides [6]. The investigations presented in this thesis are
motivated by the recent synthesis of two-dimensional silver, in the heterostructures
illustrated in Fig. 1.1, by the group of J. Robinson at Penn State University[18].
A monolayer of silver atoms can be intercalated between silicon carbide (SiC) and
bilayer graphene.
Interestingly, the synthesized silver monolayer is semiconducting due to its hybridiza-
tion with the underlying SiC. The intercalation process further generates a quasi-
free-standing graphene bilayer, which functions as a capping layer and prevents
oxidation of the confined epitaxial metals. Nonetheless, it does not significantly
influences the electronic properties [18].
Two-dimensional silver films are synthesized using the process illustrated in Fig.
1.2. First, the epitaxial graphene layer is created when silicon atoms sublime from
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1 Introduction

Figure 1.2: Schematic intercalation process for synthesizing material between SiC
and bilayer graphene [6].

the surface of SiC, leaving behind carbon atoms which reconstruct epitaxially with
the SiC surface. This process enables the realization of large-area graphene layers,
but also result in the formation of a carbon buffer layer that is partially covalent
bound to the SiC surface [6].

Following the synthesis in Fig. 1.2, defects in the expitaxial graphene layers are
generated by exposing epitaxial graphene to an O2/He plasma treatment. The
substrate SiC with the graphene layers is then placed face down over metallic silver
powder and heated up. The intercalation of silver atoms physically and electronically
separates the carbon layer from SiC, resulting in the formation of quasi-free standing
epitaxial graphene layers [6].

Cross-sectional scanning transmission electron microscopy (STEM) of intercalated
silver samples shows one layer of silver atoms located between graphene and the
SiC substrate (Fig. 1.3). This layer is confirmed to consist of silver atoms through
energy dispersive X-ray spectroscopy mapping (EDS) [6].

Figure 1.3: Cross-sectional STEM showing one layer of silver atoms between epitax-
ial graphene and SiC [6].
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The commonly observed sharp 6
√
3 × 6

√
3R30° patterns for bilayer graphene on

SiC become a fuzzy ring, suggesting a decoupling of the bilayer graphene and SiC
due to the silver intercalation. Scanning tunneling microscope studies, however, still
exhibit a quasi 6×6 superstructure superimposed on the graphene 1×1 lattice (Fig.
1.4). That is consistent to the assumption that the silver monolayer has the same
lattice constant as SiC [18].

Figure 1.4: STM topography [18].

Silicon carbide is an interesting material for high-temperature, radiation-resistant,
power and high-speed electronics. The reason is that it has a wide band gap of 2.01
eV, a high critical avalanche breakdown field, a high electron drift saturation rate,
high thermal stability, chemical inertness and excellent mechanical properties [23].
This work is interested in valley-selective circular dichroism. Silver in its structure
as a monolayer grown from epitaxial graphene is centrosymmetric, namely it has
an inversion symmetry. With the interaction with a substrate, in this case SiC, the
symmetry can be broken. In this thesis, I explore the influence of substrate-induced
symmetry breaking on the electronic properties of two-dimensional silver. The re-
sults in this thesis show that this leads to a different absorption of circular polarized
light in different regions of the Brillouin zone, which is called valley-selective circular
dichroism. This property is interesting for Valleytronics. There, one influences the
probability of optical transitions at extreme points in the band structure [2]. The
main result of this work is that the substrate SiC breaks the inversion symmetry
and induces the emergence of valley physics in two-dimensional silver.
In chapter 2, I introduce the theoretical and practical methods of density functional
theory employed throughout this work. The results are split up in chapter 3 and 4.
One deals with the electronic properties, mainly the band structures, and the other
one with valley-selective circular dichroism and symmetry breaking.
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2 Density functional theory

This chapter is an introduction to density functional theory. Staring with the main
theoretical concepts we will move on to the procedure of a practical DFT calcu-
lation, discuss important aspects for calculations with surfaces and have a look at
computational details. The chapter is based on [11], [22] and [10].

2.1 Units

In this work, Hartree atomic units are used. They are defined as

1 Ha = 27.2114 eV = 4.3597 · 10−18 J, (2.1)

1 bohr = 0.529177 Å = 0.529177 · 10−10 m, (2.2)

1 a.u.ofmass = 9.10938291 · 10−31 kg, (2.3)

(2.4)

where ’Ha’ stands for Hartree and ’a.u.’ for atomic unit. The advantage of this units
are that the following fundamental physical constants are expressed as the numeric
value one:

• Reduced Planck constant ℏ

• The absolute value of the elementary charge |e|

• Electron mass me.

2.2 The Schrödinger equation

The information of a physical system is all contained in the Hamiltonian which is
the central quantity for any theoretical treatment. For microscopic particles like
electrons, the adequate description is given by the laws of quantum mechanics.
Therefore, the Schrödinger equation has to be solved.
In general, materials consist of electrons and nuclei. Therefore, the fundamental
interaction is the electrostatic interaction. Furthermore, this work is mostly inter-
ested in valence electrons, so relativistic effects can be neglected. The corresponding
Hamiltonian for the nonrelativistic Schrödinger equation is

Ĥ = T̂nucl + T̂el + V̂nucl−nucl + V̂nucl−el + V̂el−el. (2.5)
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2 Density functional theory

T̂nucl and T̂el are the operators for the kinetic energy of the nuclei and the electrons,
respectively. The other operators describe the electrostatic interaction between the
nuclei and the electrons. Neglecting spins, the terms are:

T̂nucl =
∑
I

− ∇2
I

2MI

(2.6)

T̂el =
∑
i

−∇2
i

2
(2.7)

V̂nucl−nucl =
1

2

∑
I ̸=J

ZIZJ

|RI −RJ |
(2.8)

V̂nucl−el =
∑
i,I

− ZI

|ri −RI |
(2.9)

V̂el−el =
1

2

∑
i ̸=j

1

|ri − rj|
(2.10)

(2.11)

Atoms are numbered by capital letter indices and ZI stands for the charge of the
I-th nuclei. The factor of 1

2
in V̂nucl−nucl and V̂el−el prevents that the interaction of

two nuclei or electrons are counted twice.
It is only possible to solve the many-body Schrödinger equation

ĤΦ = EΦ (2.12)

for a system consisting of few electrons or atoms. For solids, approximations are
required.

2.3 Born-Oppenheimer approximation

The mass of a proton or a neutron is more than 1800 times the mass of an electron.
As a consequence, the electrons are more than 40 times faster than a proton for the
same kinetic energy. The differences increase for heavier nuclei. This leads to the
central idea of the Born-Oppenheimer or adiabatic approximation to separate the
time scale of processes involving electrons and nuclei.
The electronic Hamiltonian Ĥel for fixed nuclear coordinates {R} is

Ĥel({R}) = T̂el + Vnucl−nucl + V̂nucl−el + V̂el−el, (2.13)

where {R} is a parameter defining the electronic Hamiltonian. Moreover, Vnucl−nucl({R})
is not an operator but a number.
The Schrödinger equation for the electrons is then

Ĥel({R})ψ(r, {R}) = Eel({R})ψ(r, {R}). (2.14)
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2.4 Density functional theory

The eigenenergy Eel({R}) is called the Born-Oppenheimer energy surface and taken
to be the potential for nuclear motion. The movement of the nuclei is described by
the atomic Schrödinger equation

{T̂nucl + Eel(R)}ψ̃(R) = Enuclψ̃(R), (2.15)

where ψ̃ denotes the nuclear wave function. Neglecting quantum effects, the classical
equation of motions are solved for the atomic motion:

MI
∂2

∂t2
RI = − ∂

∂RI

Eel(R). (2.16)

The force acting on the atoms is given by the Hellmann-Feynman theorem

FI = − δ

δRI

Eel(R) = ⟨ψ(r, {R})| δ

δRI

Ĥel({R})|ψ(r, {R})⟩. (2.17)

The Born-Oppenheimer approximation is more accurate for a small parameter m
M

and very successful in the theoretical description of processes at surfaces. For insu-
lator and semiconductors, a finite amount of energy is needed to excite electronic
states. It can be shown that electronically nonadiabatic transitions are rather im-
probable. For metals, small excitation energies can occur but the strong coupling
of the electronic states in the conduction band leads to short lifetimes so that their
influence is often limited.

2.4 Density functional theory

To solve the Schrödinger equation for electrons (2.14), further approximations are
needed.
As a first approximation, the electron wave function for fixed positions of the nuclei
can be expressed as a product of individual electron wave functions

ψ(r, {R}) = ψ1(r) · ψ2(r)... · ψN(r), (2.18)

which is called the Hartree product. The density of electrons at a particular position
in space is given by

n(r) = 2
∑
i

ψ∗
i (r)ψi(r). (2.19)

ψ∗
i (r)ψi(r) is the probability that an electron in the individual wave function ψi

is located at position r. The summation runs over all the individual electron wave
functions that are occupied by electrons. The factor of two is motivated by the Pauli
exclusion principle because each individual electron wave function can be occupied
by two electrons with different spin.
There are two fundamental mathematical theorems for the field of density functional
theory proved by Kohn and Hohenberg. The first theorem is:
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2 Density functional theory

”The ground-state energy from Schrödinger’s equation is a unique
functional of the electron density.”[22]

A functional is a function from a vector space into the scalar field. The ground-state
energy E can be expressed as E[n(r)].
This observation is remarkable because, while the energy of any quantum state is
generally a functional of the entire wave function, ψ(r1, r2, ..., rN), which contains
3N variables, the ground-state energy depends only on n(r), which is a function of
three variables only.
The first theorem proves that a functional of the electron density exists that can be
used to solve the Schrödinger equation.
An important property of the functional is defined by the second Hohenberg-Kohn
theorem:

”The electron density that minimizes the energy of the overall func-
tional is the true electron density corresponding to the full solution
of the Schrödinger equation.”[22]

That means that one can find the ground state energy approximately by systemat-
ically varying the electron density.
Furthermore, it is proved that there exists a universal functional of the density,
F [n(r)], which is independent of an external potential V (r), such that the expression

E[n] ≡
∫
V (r)n(r)d3r+ F [n(r)] (2.20)

has a minimum which is the correct ground-state energy associated with V (r) [13].
The functional can be written in terms of the single-electron wave function ψi(r)
because these functions collectively define the electron density n(r). Moreover, it
can be split up in collections of known terms, Eknown[{ψi}], and everything else,
EXC [{ψi}]:

E[{ψi}] = Eknown[{ψi}] + EXC [{ψi}] (2.21)

where

Eknown[{ψi}] = −
∑
i

∫
ψ∗
i

∆2

2
ψid

3r+

∫
V (r)n(r)d3r

+
1

2

∫ ∫
n(r)n(r′)
|r− r′|

d3rd3r′+ Eion (2.22)

The known terms are, in order, the electron kinetic energy, the Coulomb interaction
between the electrons and the nuclei, the Coulomb interaction between the electrons,
and the Coulomb interactions between nuclei.
EXC [{ψi}] is called the exchange-correlation functional and it is defined to include all
the quantum mechanical effects that are not included in the terms of Eknown[{ψi}].
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2.4 Density functional theory

Kohn and Sham showed that the right electron density can be found by solving a
set of equations in which each equation only involves a single electron.
The Kohn-Sham equations have the form[

−1

2
∆2 + V (r) + VH(r) + VXC(r)

]
ψi(r) = ϵiψi(r). (2.23)

The solutions of the Kohn-Sham equations are single-electron wave functions that
depend on only three spatial variables. The potential V defines the interaction
between an electron and the collection of atomic nuclei. VH is called the Hartree
potential and is defined by

VH(r) =

∫
n(r′)
|r− r′|

d3r′. (2.24)

It describes the Coulomb repulsion between the electron and the total electron den-
sity given by all electrons in the system. Since the electron also contributes to the
total electron density, there is an unphysical self-interaction between the electron
and itself. The correction for this and several effects is given by the exchange and
correlation potential, VXC . It can formally be defined as a ”functional derivative” of
the exchange-correlation energy:

VXC(r) =
∂EXC(r)

∂n(r)
. (2.25)

For solving the Kohn-Sham equations, the exchange-correlation functional EXC [n]
must be specified. The true form of the functional is not known, except for the
situation of the uniform electron gas, where the electron density is constant at all
points in space. The local density approximation (LDA) is an approximation of
the exchange-correlation potential in the way that it is the exchange-correlation
potential from the uniform electron gas at the electron density observed at that
point:

VXC(r) = V electron gas
XC [n(r)]. (2.26)

Another approach is called generalized-gradient approximation (GGA) and it uses
information about the local electron density and the local gradient in the electron
density. Nevertheless, this approach is not always more accurate than LDA. There
are many ways in which information from the gradient of the electron density can
be included in a GGA functional. Thus, there is a large number of different GGA
functionals. For this work, the Perdew-Burke-Ernzerhof functional (PBE) is used.
There are other functionals that include even more physical information. It depends
on the physical system which functional fits the best.
The solution of the Kohn-Sham equations requires an iterative procedure, because
the Hartree potential and an exchange-correlation potential depend on the electron
density. The density, in turn, is calculated from the wave functions resulting from
the Kohn-Sham equations. Therefore, the problem is usually treated in an iterative
way as outlined in the following algorithm which is also illustrated on the next page:
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2 Density functional theory

• First, calculate the potential of the nuclei.

• Second, define an initial, trial electron density n(r).

• With this density, calculate the Hartee potential VH and the exchange-correlation
potential VXC .

• Sum up all these potentials to a total potential Vtot and solve the Kohn-Sham
equations.

• With the resulting Kohn-Sham single-particle wave functions, calculate the
electron density.

• Compare the calculated electron density with that one used for the Hartree
potential. If they are the same up to a certain degree of accuracy, it can be
used to compute the total energy. If the two densities are different, then the
trial electron density must be updated in some way.

This method is self-consistent.

10



2.4 Density functional theory
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up to a certain degree of 
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𝐸[{Ψ𝑖}]  = − ∑ ∫  Ψ𝑖
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Δ2

2
 

𝑖

Ψ𝑖(𝑟)𝑑3𝑟 + ∫ 𝑛(𝑟)𝑉𝑛(𝑟)𝑑3𝑟 +
1

2
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𝑛(𝑟)𝑛(𝑟′)

|𝑟 − 𝑟′|
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𝑉𝐻(𝑟) = ∫
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𝑑3𝑟′  

no 

yes 

Update of the 

electron density 

Figure 2.1: Algorithm for calculating the ground-state energy of a system according
to the density functional theory.

11



2 Density functional theory

2.5 DFT calculations for surfaces of solids

In practice, a computer code is used for DFT calculations. In the following we
describe the numerical procedure employed to investigate the physical properties of
a surface. The positions of all atoms in a crystal must be defined.

An ideal solid with a surface is infinite in two dimensions, but finite along the surface
normal. In order to define a corresponding atomistic model, it may seem natural
to take advantage of periodic boundary conditions in two dimensions, but not the
third. There are codes, in which this technique is implemented, but it is more
common to study a surface using a code that applies periodic boundary conditions
in all three dimensions, and this approach will be discussed. Therefore, one has
to design a supercell which includes empty space above the atoms. This model is
called slab model since, when the supercell is repeated in all three dimensions, it
defines a series of stacked slabs of solid material separated by vacuum space. The
supercell defines two surfaces. It is important that there is enough vacuum space to
make sure that the interaction between the top of one slab and the bottom of the
next slab is negligible. For each slab there are several layers of atoms and the more
layers are used the higher is the physical accuracy of the result but it costs more
computational time so a compromise has to be found.

In Fig. 2.2, there is an example illustrated for the slab model. Theoretically, the
structure is infinite in the direction of the plane but for visualization only a finite
number of supercell repetitions can be shown. In this case it is a surface of silicon
carbide, which plays an important role for this work. The thickness of one slab
is equal to the length of the supercell of SiC. This is because the unit cell of this
6H-polytype of SiC contains already 20 layers of atoms which is sufficient to model
a SiC surface. The vacuum used for the slab model in this work has a length of 25
Å. Convergency tests of the total energy showed that this is enough to approximate
that there are no interactions between the slabs, see Fig. 6.1 in the appendix.

While the construction of a bulk is expected to be stable, the surface might not be in
its optimal physical configuration. Because of the asymmetry of bulk on the one side
and vacuum on the other side, the distance between the atoms in the surface layer
and the layer underneath might be smaller compared to the bulk. This phenomenon
is called surface relaxation and implies that the relaxed surface has a lower energy
than the original, ideal surface. One can find the geometry of the relaxed surface
by performing an energy minimization as a function of the positions of the atoms in
the supercell. Therefore, the positions of the atoms at the bottom of the supercell
are kept constant because these atoms represent the bulk.

Futhermore, surface atoms can also form new bonds which is called surface recon-
struction. The reconstructed surface defines the global minimum in the energy of
the surface, but the bulk termination of the surface can lead to a different local
minimum in energy.

12



2.6 Convergency

Figure 2.2: Illustration of the slab model applied to silicon carbide.

2.6 Convergency

For a DFT calculation, a series of numerical approximations is needed, for example
integrals in multidimensional space must be evaluated by examining the function to
be integrated at a finite collections of points and solutions that formally are expressed
as infinite sums must be truncated to finite sums. In each numerical approximation
of this kind the result come closer to the exact solution by using more computational
resources. This convergency is important for DFT calculations. The results are only
trustworthy if the calculation does converge. One has to find a compromise between
the accuracy of the results and the time needed for the calculation. To make an
estimation of the difference to the exact solution, one has to make calculations
and start with low and move to high accuracy. Now, one can decide to take a
accuracy which has a certain error to the one with the high accuracy. But one
need to keep in mind that the exact solution of the DFT calculation is not identical
to the exact solution of the Schrödinger equation because the precise form of the
exchange-correlation functional is unknown.

13



2 Density functional theory

2.7 Reciprocal space and k points

In this work, DFT calculations are applied to arrangements of atoms that are peri-
odic in space. The lattice vectors of the unit cell are in general a1, a2 and a3. The
Bloch’s theorem must be fulfilled for the solution of this periodic system, namely
that the solution can be expressed as a sum of terms with the form

Φk(r) = eik·ruk(r), (2.27)

where uk(r) is periodic in space with the same periodicity as the unit cell

uk(r+ n1a1 + n2a2 + n3a3) = uk(r) for n1, n2, n3 ∈ Z. (2.28)

It is possible to solve the Schrödinger equation for each value of k independently.
The functions eik·r are called plane waves. The space of vectors r is called real space,
and the space of vectors k is called reciprocal space or k space. The reciprocal lattice
vectors b1,b2 and b3 are defined so that ai · bj is 2π if i = j and 0 otherwise:

bi = 2π
aj × ak

ai · (aj × ak)
. (2.29)

The primitive cell in reciprocal space is called the Brillouin zone (BZ). It contains
several high-symmetry points with special significance. The most important of these
is the Γ point where k = 0. The volume of the BZ, VBZ , and the volume of the
primitive cell in real space defined by the Wigner-Seitz construction, Vcell, are related
by

VBZ =
(2π)3

Vcell
. (2.30)

For DFT calculations, there is less effort in evaluating integrals of the form

g =
Vcell
(2π)3

∫
BZ

g(k)dk. (2.31)

This integral is defined in reciprocal space and it integrates only over the possible
values of k in the BZ. To evaluate this numerically, a method is used which separates
the integral in smaller intervals and makes approximations for them.
The following points also apply to multidimensional integrals. It is a quotation from
[22].

1. ”Integrals can be approximated by evaluating the function to be integrated
at a set of discrete points and summing the function values with appropriate
weighting for each point.”

2. ”Well-behaved numerical methods of this type will give more accurate results
as the number of discrete points used in the sum is made larger. In the limit
of using a very large number of points, these numerical methods converge to
the exact results for the integral.”

3. ”Different choices for the placement and weighting of the functional evaluations
can give dramatic differences in the rate the numerical methods converge to
the exact integral.”

14



2.7 Reciprocal space and k points

2.7.1 Choosing k points in the Brillouin zone

Integrals such as (2.31) cost a lot of computational effort in DFT calculations. In
most DFT packages, one can choose k points based on the method developed by
Monkhorst and Pack in 1976 [19]. It only needs a specification how many k points
are to be used in each direction in reciprocal space.

Using the symmetry, integrals can be evaluated in a reduced portion of the BZ
that can then be extended without approximation to fill the entire BZ. This re-
duced region in reciprocal space is called the irreducible Brillouin zone (IBZ) and
it can greatly reduce the numerical effort required to perform integrals in k space.
Nonetheless, the convergency of the calculations in k space is related to the density
of k points in the full BZ. Convergency tests are needed to find a adequate number
of k points to use. In general for bulk calculations, the choice of k points should
define a set of k points with equal density in each direction in reciprocal space. For
surfaces, it is usual for slab calculations with long vacuum regions in the supercell to
use an M×N× 1 k point mesh, where M and N are chosen to adequately sample k
space in the plane of the surface (M,N ∈ N). The k point density of the calculation

in this work is approximately 280/Å
−3
.

In a metal, the BZ can be divided into regions that are occupied and unoccupied by
electrons. The surface in k space that separates these two regions is called Fermi
surface. This is a significant complication for calculating integrals in k space because
the functions that are integrated change discontinuously from nonzero values to zero
at the Fermi surface. If no special efforts are made in calculating these integrals,
very large numbers of k points are needed to get well-converged results.

One method is called the tetrahedron method. The idea is to use the discrete set of
k points to define a set of tetrahedron that fill reciprocal space and to define the
function being integrated at every point in a tetrahedron using interpolation. The
function to be integrated has a simple form at all points in k space and the integral
can then be evaluated using the entire space, not just discrete points.

Another approach to the discontinuous integrals that appear for metals are smearing
methods. The idea is to force the function being integrated to be continuous by
”smearing” out the discontinuity. An example of a smearing function is the Fermi-
Dirac function. Ideally, a method should be used that extrapolates the final result
to the limit where the smearing is eliminated.

2.7.2 Energy cutoffs

As mentioned above, the Bloch’s theorem states that the solutions of the Schrödinger
equation have the form

Φk(r) = exp(ik · r)uk(r)

where uk(r) is periodic in space with the same periodicity as the unit cell. The
periodicity of uk(r) means that it can be expanded in terms of a spacial set of plane
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2 Density functional theory

waves

uk(r) =
∑
G

cG exp[iG · r], (2.32)

where the summation is over all vectors defined by G = m1b1 +m2b2 +m3b3 with
m1,m2,m3 ∈ Z. Combining the two equations above gives

Φk(r⃗) =
∑
G

ck+G exp[i(k+G)r]. (2.33)

Evaluating the solution at even a single point in k space involves a summation over
an infinite number of possible values of G. According to the Schrödinger equation,
Φk(r⃗) are solutions with the kinetic energy

Ekin =
1

2
|k+G|2. (2.34)

The solutions with higher energies are associated with the core electrons. Since we
are mostly interested in valence electrons, it is usual to truncate the infinite sum
above to include only solutions with kinetic energies less than some value:

Ecut =
1

2
G2

cut. (2.35)

The infinite sum then reduces to

Φk(r⃗) =
∑

|G+k|<Gcut

ck+G exp[i(k+G)r]. (2.36)

This expression includes slightly different numbers of terms for different values of
k. The cutoff energy Ecut that must be defined whenever a DFT calculation is
performed. Therefore, convergency tests are necessary to find an adequate value.

2.7.3 Pseudopotentials

Large energy cutoffs must be used to include plane waves that have short wave
lengths in real space and hence are associated with core electrons. However, core
electrons do not play an important role for chemical properties but they are domi-
nated by the less tightly bound valence electrons. Therefore, the properties of the
core electrons can be approximated in a way that could reduce the number of plane
waves necessary in a calculation.
A so called pseudopotential replaces the electron density from a chosen set of core
electrons with a smoothed density. It is chosen to match various important physical
and mathematical properties of the true ion core. There are libraries of pseudopo-
tentials that include an entry for most elements in the periodic table. For every
pseudopotential there is a minimum cutoff energy that should be used in calcula-
tions. If this cutoff energy is high, the pseudopotential is called hard. Otherwise, if
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2.8 QUANTUM ESPRESSO

the cutoff energy is low, the pseudopotential is more computationally efficient and
is called soft.
One class of pseudopotentials are ultrasoft pseudopotentials (USPPs) based on work
by Vanderbilt [26]. These peudopotentials require substantially lower cutoff energies
than alternative approaches. Another class are projector augmented-wave (PAW)
which were originally introduced by Blöchl and later adapted for plane-wave cal-
culations by Kresse and Joubert. Kresse and Joubert compared USPP, PAW and
all-electron calculations for small molecules and extended solids [16]. Their work
shows that well-constructed USPPs and the PAW method give results that are in
good agreement with all-electron calculations. In materials with strong magnetic
moments or with atoms that have large differences in electro negativity, the PAW
approach gives more reliable results than USPPs.
Norm-conserving pseudopotentials (NCPPs) are supported by many ab-initio codes.
Their formalism is relatively simple and robust. As compared to the more recently
developed USPP and the PAW, on the one hand calculations using NCPPs usually
require a larger kinetic energy cutoff making them less efficient. On the other hand,
little is known about the reliability of these two approaches when applied beyond
standard ground state calculations. In contrast NCPPs have been used for decades
in different ab-initio fields [25].
The PseudoDojo is an open source project for developing and systematically test-
ing pseudopotentials. The pseudopotential files are available on the PseudoDojo
web-interface 1. Van Setten et al. (2018) have constructed a new NCPP table,
using the PBE exchange–correlation functional, distributed within the PseudoDojo
(PD-PBE), using the new framework of the optimized norm-conserving Vanderbilt
pseudopotential (ONCVPSP). The main advantage of ONCVPSP is that it produces
NCPPs that are usually softer and they are more accurate than traditional NCPPs
[25].
The pseudopotential used for this work is generated using ONCVPSP code by D.R.
Hamann [25].

2.8 QUANTUM ESPRESSO

For this work, all calculations are done with QUANTUM ESPRESSO. It is a mod-
ular and open-source software project for quantum simulations of materials and is
described in [9]. ESPRESSO is an acronym for opEnSource Package for Reasearch
in Electronic Structure, Simulation and Optimization. It is freely available under
the terms of the GNU General Public License2. The project is coordinated by
the QUANTUM ESPRESSO foundation, which was formed by many research cen-
ters and groups all over the world. For supercomputers today, parallelization is a
key concept, and with QUANTUM ESPRESSO it is achieved using both MPI and
OpenMP parallelization.

1pseudo-dojo.org
2http://www.gnu.org/licenses/
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2 Density functional theory

QUANTUM ESPRESSO is collection of computer codes for first-priciple electronic
calculations based on DFT, plane waves and pseudopotentials. The codes are con-
structed around the use of periodic boundary conditions but finite systems are also
treated using supercells. QUANTUM ESPRESSO can be used for any crystal struc-
ture or supercell and for metal as well as for insulators. There are different pseu-
dopotentials and exchange-correlation functionals available [9].
At the beginning of a calculation with QUANTUM ESPRESSO, an input file has
to be created where the geometry of the material, all parameters and the type of
calculation are defined. There are several of parameters to specify the calculation.
Important parameters are the cutoff energy parameter and the number of k points
in every direction. For both parameters a convergency test is needed. Other pa-
rameters can include spin orbit coupling, a special symmetry of the material or a
smearing to allow the occupation of states over the Fermi energy. One has to decide
for a pseudopotential and an exchange-correlation functional. For self-consistent
calculations, QUANTUM ESPRESSO follows the algorithm introduced in the be-
ginning of this chapter. For relaxation calculations, the forces between the atoms
are needed and calculated with the Hellmann-Feynman-Theorem (2.17).
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3 Electronic properties of
two-dimensional silver on silicon
carbide

In this chapter, the band structure for silicon carbide with a silver monolayer is
calculated. The graphene bilayers are quasi free-standing and are neglected for the
calculations because they do not influence the electronic properties significantly. At
the beginning, we will have a closer look on the different components of the material.

3.1 Silver monolayer

As a bulk, silver has a fcc crystal structure. Nonetheless, silver is constructed as a
hexagonal monolayer for this work. The reason is that the silver atoms are bounded
on SiC. As a further consequence, the lattice constant of the monolayer is equal to
the lattice constant of SiC [18].

The structure of the silver monolayer is schematically shown in Fig. 3.1.

Figure 3.1: Hexagonal structure of the silver monolayer.

The crystallographic point group in the Schoenflies notation is D6h and 6/mmm in
the Hermann-Mauguin notation, so it is hexagonal and has a six-fold rotational axis
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3 Electronic properties of two-dimensional silver on silicon carbide

plus six twofold axes perpendicular to that axis. In addition, there is a mirror plane
perpendicular to the six-fold axis [1].

The band structure is calculated for the Γ−M−K− Γ - path in the first BZ and is
shown in Fig. 3.2. Convergency tests have been done to determine the cutoff energy
as Ecutoff = 70 Ry ≈ 952 eV and the number of k points in the x- and y-direction
as 15. As for a monolayer, the number of k points in the z-direction is one. The
code uses the symmetry of the structure to reduce the number of k points, in this
case to 27 k points in total. Furthermore, spin-orbit coupling is considered in this
calculation. The energy error threshold is 4× 10−9 eV/atom.
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Band structure of silver monolayer (with spin-orbit coupling)

Figure 3.2: Band structure of silver monolayer with spin-orbit coupling

Because there is no band gap, two-dimensional silver is a metal. One band crosses
the Fermi energy and shows a maximum at the high symmetry point K and a saddle
point at M.

3.2 Silicon carbide

Silicon carbide exists in many polytype modifications, which are derivatives of hexag-
onal and rhombohedral closed-package crystal lattices. All of them follow the laws
of close ball packing and are binary structures built of identical layers [23].

The unit cell of SiC is taken from the website ”The Materials Project” [15]. For this
work, the 6H-SiC polytype is chosen because it provides the most stable conditions.
The unit cell is shown in Fig. 3.3 a).
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3.2 Silicon carbide

   a) b) d) e)c)

Figure 3.3: The supercells are shown where silicon has beige colour, carbon is dark
grey, silver is light grey and hydrogen is white: a) supercell for the SiC
bulk b) for the SiC surface c) for the SiC surface with H termination
d) for the SiC surface with silver monolayer and H termination. In the
z coordinate, the silver atoms have a distance of 2.153 Å to the silicon
atoms. e) The distance of the silver atoms is increased to 4.337Å.
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3 Electronic properties of two-dimensional silver on silicon carbide

The crystal system is trigonal and the lattice system hexagonal. The unit cell
contains 20 atoms. The lattice constants are 1

• a1 = 3.09 Å

• a2 = 3.09 Å

• a3 = 25.31 Å

This material, as a bulk, has no inversion center and belongs to the crystallic point
group C3v in Schoenflies notation and 3m in the Hermann-Mauguin notation. The
group has an three-fold rotation axis and three mirror planes parallel to the axis of
rotation [1].

The band structure is calculated with Ecutoff = 70 Ry ≈ 952 eV and 12 × 12 × 2 k
points (Fig. 3.4). In real space, the unit cell is longer in the z direction than in the
x and y direction. In reciprocal space, it is the opposite and this is the reason that
there are less k points in the z direction. Spin-orbit coupling is included. One can
see a band gap of approximately 2 eV.
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Figure 3.4: Band structure of silicon carbide with spin-orbit coupling.

The occupation is determined by the Fermi energy. The chemical potential µ(T ) is
located within the band gap because the number of electrons must be equal to the
number of wholes. The Fermi-energy is defined as EFermi = lim

T→0
µ(T ).

1https://materialsproject.org/materials/mp-568656?chemsys=Si-C
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3.3 Silicon carbide slab

3.3 Silicon carbide slab

To create a surface, the unit cell of SiC has to be truncated. We choose an atomistic
model which reproduces the crystal structure of Fig. 1.1, the structure is shown in
Fig. 3.3 b). Furthermore, a vacuum of about 25 Å is added above the surface to
avoid interactions among the periodic replicas of the SiC slabs. For one slab, one unit
cell is taken because the unit cell already contains enough atoms to approximate
a bulk. The more atoms are in the supercell the more expensive the calculation
becomes. Before the calculation of the band structure, the structure was relaxed.
Fig. 3.3 shows already the relaxed structure. Mainly the surface atoms get slightly
closer to the bulk (about 0.2 Å). The band structure is shown in Fig. 3.5 with
Ecutoff = 70 Ry ≈ 952 eV and 12× 12× 1 k points. Here, only one k point is used
in z-direction because it is a surface and the real space distance in z-direction of the
slabs is larger.
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Figure 3.5: Band structure of Silicon carbide slab.

In comparison with the bulk band structure, the structures look very similar but
there are two flat bands near the Fermi energy. These bands are the result of
dangling bonds at the two surfaces. At the bottom surface the carbon atom lacks a
bonding and at the top surface it is the silicon atom. To compensate this effect, a
hydrogen atom is added at each surface.
The structure, shown in Fig. 3.3 c), is relaxed, but this time the lowest carbon
atom was fixed in its position because it should represent the bulk and not a surface.
The band structure is calculated for the Γ−K−M−K− Γ path (Fig. 3.6) which
becomes important for the evaluation of valley-selective circular dichroism.
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3 Electronic properties of two-dimensional silver on silicon carbide
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Figure 3.6: Band structure of Silicon carbide surface with H termination.

3.4 Silicon carbide with two-dimensional silver

On top of the SiC surface comes a single layer of silver atoms. The silver atoms
have the same lattice constants as SiC to avoid stresses. Lee et al.[18] found that the
energetically most favorable position for the silver atoms is directly above the second
topmost layer of C atoms. The next most stable configuration is higher in energy
by 8 eV per atom. Both configurations are realistic but this work only considers the
most stable position. The structure with the locations of the silver atoms is shown
from above in Fig. 3.7. The silicon atoms have beige colour, the carbon atoms are
dark grey and the silver atoms are light grey. The silver atoms are at the top of the
structure. The silicon atoms without a carbon atom above have a distance of 2.153
Å and the carbon atoms have a distance of 2.807 Å in the z direction to the silver
atom. The silicon atoms under the carbon atoms have a distance of 4.707 Å.

Relaxation calculations showed that only the z-coordinate of the silver atom changes
to create an energetically optimal configuration whereas the x- and y-coordinates
stay equal to the second topmost layer of C atoms. This supports that the posi-
tion, found by Lee et al.[18], is stable. The relaxed structure is shown in Fig. 3.3
d). Again, a hydrogen atom is added at the bottom surface to prevent dangling
bonds and the lowest carbon atoms was fixed in its position during the relaxation
calculation.

Like SiC, this material has also no inversion center and belongs to the crystallo-
graphic point group C3v in Schoenflies notation and 3m in the Hermann-Mauguin
notation which means that it has an three-fold rotation axis and three mirror planes
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3.4 Silicon carbide with two-dimensional silver

parallel to the axis of rotation [1].

Figure 3.7: Structure of SiC with silver monolayer seen from above. The silicon
atoms have beige colour, the carbon atoms are dark grey and the silver
atoms are light grey. 3× 3 supercells are shown.

For this material, convergency tests for the cutoff energy and the k points are added
in the appendix (Fig. 6.3 and 6.2). We choose the same parameters as for the SiC
slab with Ecutoff = 70 Ry ≈ 952 eV and 12× 12× 1 k points and the band structure
is shown in Fig. 3.8. It shows that this material is a semiconductor with a small
band gap of about 0.24 eV . This is due to the hybridization of the silver monolayer
with the underlying SiC [18]. Again, there is a characteristic band with a saddle
point at M and a maximum at K like for two-dimensional silver (Fig. 3.2). Thus,
this band can be attributed to silver.

Experimental data for the band structure of a silver monolayer intercalated between
silicon carbide and epitaxial buffer layer graphene is reported by Rosenzweig et
al.[20]. They used angle-resolved photoelectron spectroscopy. Fig. 3.9 shows the
band structure of Fig. 3.8 in green superimposed to the experimental results.

The band structure in the Γ−K−M−K− Γ path will be discussed later (Fig.
3.10).

Furthermore, it is interesting for the later discussion to choose a larger distance of
the silver atoms to the top layer of silicon atoms of 4.337 Å (Fig. 3.3 e)). The band
structure is displayed in Fig. 3.11. There is no hybridization of silver and silicon
anymore and the material is a metal.

25



3 Electronic properties of two-dimensional silver on silicon carbide
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Figure 3.8: Band structure of silicon carbide with silver monolayer and H termina-
tion in the Γ−M−K− Γ path.

Errors in DFT band gaps obtained from calculations can be attributed to two
sources: Firstly, the exchange correlation functional is an approximation. Secondly,
there is a derivative discontinuity term, originating from the true density functional,
which is discontinuous with the total number of electrons in the system [14].
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3.4 Silicon carbide with two-dimensional silver

Figure 3.9: Experimental data of the band structure of a silver monolayer interca-
lated between silicon carbide and epitaxial buffer layer graphene [20].
They used angle-resolved photoelectron spectroscopy. The dashed blue
curve represents a next-nearest-neighbor tight-binding model fitted to
the Ag-induced valence band away from Γ. Energy distribution curves
at KAg and MAg are overlayed (dashed orange). The theoretical calcu-
lated band structure of a silver monolayer on top of SiC from Fig. 3.8
is superimposed in green.
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Figure 3.10: Band structure of silicon carbide with silver monolayer and H termina-

tion in the Γ−K−M−K− Γ path.
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3 Electronic properties of two-dimensional silver on silicon carbide
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Figure 3.11: Band structure of silicon carbide with silver monolayer and H termina-

tion Γ−K−M−K− Γ path with a distance of 4.337Å between silver
and silicon atoms in the z coordinate.
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4 Optical properties and symmetry
breaking of two-dimensional silver
on silicon carbide

First, this chapter will introduce the concept of valley-selective circular dichroism.
Afterwards, the results in form of the valley-resolved dielectric function, valley po-
larization and the orbital angular momentum are reported for the SiC slab with and
without silver. At the end, we analyze a band splitting for the Rashba effect and
discuss symmetry breaking.

4.1 Theoretical background

Circular dichroism is the differential absorption of a material to left and right-handed
circularly polarized light. This work explores the emergence of Valley-selective cir-
cular dichroism (VCD) due to substrate-induced breaking of inversion symmetry.
Here, valley denote the two-fold degenerate pockets, which emerge in the valence
and conduction bands. For VCD, the total absorption of the material shows no dif-
ference between left- and right-handed polarized light. Conversely, the absorption
at the K and K high symmetry points in the first Brillouin zone can depend on
light chirality in hexagonal lattice. VCD can experimentally be detected using for
example photoemission spectroscopy, see [3].
Valleytronics is the technology of control over the valley degree of freedom in mul-
tivalley semiconductors. For making valleytronic devices it is necessary to strive for
valley polarization, which means to only have optical transitions at one valley. The
next challenge is to detect the resulting valley-polarized current [2].
If a material has no inversion center, there is an inversion asymmetry of the potential
within a unit cell. In combination with strong spin-orbit coupling and a large band
gap, this allows valley polarization to be achieved. Incoming photons with a given
circular polarization will mainly excite electrons within a particular valley. In this
context, the absence of inversion symmetry is the source of the chiral response to
light [2].
Caruso et al.[7] developed a many-body formalism based on the Bethe-Salpeter equa-
tion (BSE) to investigate the chirality of valley excitons formed in two-dimensional
honeycomb lattices upon absorption of circularly polarized light. With that, the
orbital angular momentum (OAM) of valley excitons can be directly estimated from
the exciton wave function.
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4 Optical properties and symmetry breaking of two-dimensional silver on silicon carbide

The absorption of circularly polarized light is governed by the formation of bound
electron-hole pairs (excitons) at the K or K valleys in the BZ depending on the light
helicity. The establishing of an imbalance in the populations of the K and K valleys
enables the exploitations of valley degrees of freedom. Thus, VCD has become a
central element for valleytronic applications [7].
The dielectric function describes the electric polarizability of a dielectric in depen-
dence of an applied electromagnetic field:

ϵ(ω,k) = ϵ1(ω,k) + iϵ2(ω,k). (4.1)

ϵ1 is related to the polarizability and ϵ2 to the absorption. To investigate the influ-
ence of light polarization on the bound excitons formed at the K and K valleys, the
imaginary part ϵ2 is considered:

ϵ2 =
4π2e2

m2
eΩNk

∑
λ

|ϵ̂ · tλ|2δ(Eλ − ℏω) (4.2)

where ϵ̂ denotes the light-polarization unitary vector, Ω the unit cell volume, Nk the
number of k points and tλ the transition coefficients [7].
Regarding the total absorption, the dielectric function is independent of the in-plane
orientation of the light-polarization vector ϵ̂.

Figure 4.1: The Brillouin zone of a hexagonal system is framed by blue lines. The
blue and orange shadings mark the PK and PK regions in the BZ, re-
spectively. The Γ−K−M−K− Γ path is shown as a dotted red line
[7].
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4.1 Theoretical background

Following Caruso et al. [7], the first BZ can be divided into the regions PK and PK

which enclose K and K respectively (Fig. 4.1). The valley resolved transition coeffi-
cient tλK (tλ

K
) includes only the electron-hole transition in PK (PK). The additivity

condition is exactly satisfied (tλ = tλK + tλ
K
). Nonetheless, the contribution of the

PK and PK regions to the dielectric function can be separated only by approxima-
tion and only close to the absorption onset. The valley-resolved dielectric function
ϵ2,K (ϵ2,K) accounts only for absorption processes resulting from the excitation of

electron-hole pairs within the K (K) valley. In the vicinity of the absorption onset,
ϵ2(ω) ≈ ϵ2,K(ω) + ϵ2,K(ω) is a good approximation. For left-handed (+) and right-
handed (-) circularly polarized light, the light polarization vector ϵ̂ can be expressed
as

ϵ̂± =
x̂± iŷ√

2
, (4.3)

where x̂ and ŷ are Cartesian unit vectors. The transverse dielectric function at K
for circularly polarized light is

ϵ
(±)
2,K(ω) =

1

2

[
ξKxx(ω) + ξKyy(ω)

]
∓ Im

[
ξKxy(ω)

]
(4.4)

with the dichroic tensor

ξKα,β(ω) =
4π2e2

m2
eΩNk

∑
λ

(tλ,αK )∗tλ,βK δ(Eλ − ℏω). (4.5)

The same applies to K instead of K. The relation between the dichroic and the
dielectric tensor is discussed in the Supporting Information1 by [7].
The emergence of valley-selective circular dichroism can be quantified by the differ-
ential dichroic absorption

DK(ω) = ϵ
(+)
2,K(ω)− ϵ

(−)
2,K(ω) = −2Im

[
ξKxy(ω)

]
. (4.6)

The valley-resolved components of the dichroic tensor are finite and opposite in sign
at K and K (Im[ξKxy] = −Im[ξKxy] ̸= 0). This indicates that the individual val-
leys are characterized by a non-trivial chiral character, leading to non-disappearing
differential dichroic absorption in PK and PK [7].
For linear polarization, it can be ϵ̂ = x̂. Thus, the absorption in the K and K valleys
is described by the xx components of the corresponding valley-resolved dielectric
tensors. There is an identical response of ϵxx2,K and ϵxx

2,K
for all photon energies and

thus the probability for light absorption at K or K is the same [7].
In contrast, the valley-resolved dielectric functions for left and right-handed polar-
ized light are different. For left-handed polarization, the light is almost exclusively
absorbed in the PK region of the BZ in the vicinity of the absorption onset [7].

1https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c01034/suppl_file/

jz2c01034_si_001.pdf
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4 Optical properties and symmetry breaking of two-dimensional silver on silicon carbide

In Quantum mechanics, the angular-momentum operator has the same relation as
the angular-momentum in classical physics but with operators:

L̂ = r̂× p̂. (4.7)

With the momentum operator p̂ = −iℏ∇, the z-component becomes [24]

L̂z = −iℏ ∂

∂ϕ
. (4.8)

Applying the operator on a eigenfunction of the orbital angular momentum Ylm
delivers the orbital angular momentum m:

L̂zYlm = ℏmYlm (4.9)

with m = −l, ..., l where l = 0, 1, 2, ... is the orbital quantum number.
Nonetheless, this does not apply for a solid. A solid consists of unit cells and peri-
odic boundary conditions, which has an influence to the orbital angular momentum
(OAM). Here, we will not derive the correct expression but write the OAM for a
solid as lznk. It is implemented in the code provided by Caruso et al.[7].

4.2 Calculations for the optical properties

The valley-resolved dielectric function from equation (4.4) is calculated at the K
valley with linear and left-handed polarized light for the constructed system of the
SiC surface with the silver monolayer (Fig. 4.2). For linear polarized light, the
absorption at K and K coincides for all energies. For circular polarization, there is a
difference in the absorption at K and K. The total absorption shows a peak around
2 eV, which is probably due to the band gap. These results indicate the emergence
of VCD.
Only optical transitions up to 6 eV are considered. For higher energies artifacts may
occur within the slab model. Therefore, the valley-resolved dielectric function for a
vacuum space of 25 Å and 35 Å have been evaluated, see Fig. 6.4 in the appendix.
The valley polarization for left-handed circularly polarized light is defined as

η(+) =
|ϵ(+)

2,K − ϵ
(+)

2,K
|

|ϵ(+)
2,K + ϵ

(+)

2,K
|
. (4.10)

η ranges between zero and one, where one indicates complete valley polarization.
Fig. 4.3 shows the valley polarization η as a function of energy. It shows a maximum
valley polarization of about 60% for energies up to 6 eV. Most optical transitions
happen in the energy range of 1.4 and 2.4 eV which is marked in blue. The mean
valley polarization for this range is 39%. Values under 1.4 eV are not displayed in
this diagram because the energies are smaller than direct optical transitions from
the valence band to the conduction band.
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4.2 Calculations for the optical properties

Figure 4.2: The imaginary part of the dielectric function for linearly and left-handed
circularly polarized light shining on SiC with a silver monolayer in the
K valley in blue, in the K valley in orange and in total in black.

Figure 4.3: Valley polarization for silicon carbide with silver monolayer.

In Fig. 4.4, the OAM is evaluated. Therefore, the colour represents the orientation
and the intensity of the value of ln,k

z. The scale on the right represents a value for
a defined intensity of the colour. In the band structure, the OAM is symmetric to
the M axis with a different sign. The top valence band and the bottom conduction
band have defined orientations of the OAM at the K and K valley.
The OAM for the top valence band is shown in Fig. 4.5. It shows, that there are
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4 Optical properties and symmetry breaking of two-dimensional silver on silicon carbide

Figure 4.4: Orbital angular momentum superimposed on the band structure of SiC

with silver monolayer for momenta along the Γ−K−M−K− Γ line.

peaks at K and K with a different orientation of the OAM.
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Figure 4.5: Orbital angular momentum for the top valence band of SiC with silver

monolayer for momenta along the Γ−K−M−K− Γ line.

These results show, that there is VCD for the calculated structure of SiC with silver
monolayer.

Since SiC itself has also no inversion center, it should also show valley-selective
circular dichroism. The valley-resolved dielectric function for the SiC surface with
H termination is shown in Fig. 4.6.

The valley polarization (Fig. 4.7) has a maximum of 49% for energies up to 6 eV.
The energy gap for direct optical transitions begins at 2.3 eV. Taking a range of 1
eV, the mean valley polarization is 13%. The effect of VCD without silver is smaller.
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4.2 Calculations for the optical properties

Figure 4.6: The imaginary part of the dielectric function for linearly and left-handed
circularly polarized light shining on SiC in the K valley in blue, in the
K valley in orange and in total in black.
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Figure 4.7: Valley polarization for silicon carbide surface with H termination.

Furthermore, the total absorption for smaller energies is lower because the band gap
is larger.

The optical properties of two-dimensional silver itself can not be investigated here
because the code provided by Caruso et al.[7] is not implemented for metals but
only for semiconductors.
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4 Optical properties and symmetry breaking of two-dimensional silver on silicon carbide

4.3 Rashba effect and symmetry breaking

By taking a closer look to the band structure of SiC with silver monolayer in the
Γ−K−M−K− Γ path (Fig. 3.10), one can see a splitting of the highest bands
in the valence band around the K and K valley to the sides. One of the bands is
characterized by spin up and the other one by spin down.
”Spin-orbit coupling is the dipole interaction between the spin of an electron and
the magnetic field created by the electron’s own orbital motion”[24]. In the nucleus
rest frame, the electron is orbiting an atom. In an inertial frame comoving with
the electron, the nucleus appears to be orbiting the atom. The orbiting nucleus
constitutes a current which gives rise to a magnetic field at the origin equal to

B =
E× v

c2
(4.11)

where
E = −∇V (r) (4.12)

is the electric field at the electron due to the nucleus and V(r) is the corresponding
potential energy. Equation (4.11) ia a result from the transformation of electric and
magnetic fields in special relativity [5]. The Hamiltonian which is responsible for the
spin-orbit coupling of a free electron propagation in an electric field can be directly
derived from the Dirac equation by a power expansion in (v/c)2 in the nonrelativistic
approximation:

ĤSO = − 1

4c2
σ⃗(p̂× ∇⃗V ), (4.13)

with p the momentum and σ⃗ the Pauli spin matrices. This operator contributes
to the total Hamiltonian and is called Pauli spin-orbit term. Assuming a radially
symmetric potential V results in the well-known spin-orbit coupling Hamiltonian in
atomic physics:

ĤSO =
1

2c2r

dV (r)

dr
S · L. (4.14)

Here, the spin is S = 1
2
σ⃗ and the orbital angular momentum L = r× p [21].

Each eigenstate ϵ↑↓(k) is two-fold degenerate for spin-up and spin-down electrons.
This is a consequence of inversion symmetry of both space and time. Space in-
version symmetry changes the wave vector k into -k and for each spin-direction
σ, σ ∈ {↑, ↓}, the single-particle energy transforms as ϵσ(k) = ϵσ(−k). In addition,
time inversion symmetry flips the spin, ϵ↑(k) = ϵ↓(−k), known as the Kramers de-
generacy of the single-particle states. If we combine both symmetry operations, we
get that the two-fold degeneracy of the single-particle energies is ϵ↑(k) = ϵ↓(k). The
spin-degeneracy is removed when the potential through which the electrons move
is inversion-asymmetric even if there is no external magnetic field B. The inversion
asymmetry of the potential V (r) is characterized by an electric field E. When elec-
trons are subject to an external electric field E defined in a global frame of reference,
then the relativistic Lorentz transformation gives rise to the magnetic field B (eq.
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4.3 Rashba effect and symmetry breaking

4.11) in the local frame of the moving electron. The interaction of the spin with this
B field leads then to the Rashba or Bychkov-Rashba Hamiltonian

ĤR = αRσ⃗(p× E). (4.15)

It describes an additional contribution to the kinetic energy which leads then to the
structure inversion-asymmetric spin splitting, the Rashba effect [12]. The parameter
αR is the Rashba parameter which gives a value for the strength of the spin-orbit
coupling [21].

Figure 4.8: Evaluation of the band splitting around the K valley of the highest va-
lence band of SiC with silver monolayer.

Fig. 4.8 shows a zoom from Fig. 3.10 to the region of band splitting around the K
high symmetry point. The shift in the reciprocal space is ∆kR ≈ 0.026 Å−1. This is
in good agreement to other studies of the Rashba effect, for example Bihlmayer et al.
[4] found a shift of ∆kR ≈ 0.022 Å−1 for a Ag(111) surface. The difference in energy

for |k| = 1.19 Å
−1

is 2ER = 70 meV. The relation of ER and |k| is proportional to
the Rashba parameter αR [21]

ER = ±αR|k| (4.16)

and thus the Rashba parameter is αR ≈ 5.88× 10−12 m · eV.
In contrast, there is no band splitting to the sides in Fig. 3.11 where the distance of
the silver atoms is increased so that there is no hybridization with the silicon atoms
anymore. The Rashba effect only takes place when there is a hybridization of silver
and silicon.
One can also think of the Dresselhaus effect, which appears in the same way in
a band structure, but the Dresselhaus effect is related to the absence of a bulk
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4 Optical properties and symmetry breaking of two-dimensional silver on silicon carbide

inversion center [21]. A band splitting is not visible in the band structure of SiC
(Fig.3.4) though SiC lacks inversion symmetry.
Moreover, the Rashba effect is particularly strong for crystals containing atoms with
a large atomic number because the electrons also experience the potential gradient
due to the electron orbitals of the atoms forming the crystal [21]. That means,
that it is likely that the Rashba effect is related to the silver atoms which have
a much larger atomic number of 47 than silicon and carbon, which have 14 and
6, respectively. Indeed, the bands, which are split in Fig.3.10, are related to the
hybridization of the silver atoms because the band with the saddel point at M and
the maximum at K in Fig. 3.8 shows the same structure as in the band structure of
two-dimensional silver (Fig. 3.2). That means, SiC breaks the inversion symmetry
of two-dimensional silver which induces the Rashba effect.
Spatial inversion symmetry contain inversion centers. If the inversion center is in the
origin, for every point (x, y, z) in the lattice there is an indistinguishable point (-x,
-y, -z). On the one hand, a surface is created which automatically has no inversion
symmetry because there are silicon and carbon atoms under the silver monolayer but
not above. On the other hand, looking at Fig. 3.7, the silver atoms no longer contain
inversion centers because the carbon atoms can not be reflected to the other side on
a silver atom. Furthermore, the underlying SiC influences the electron density of the
two-dimensional silver plane. The chemical bonding of the silicon and silver atoms
changes the density of the electronic structure directly. This breaks the symmetry
of the Kohn-Sham orbitals.
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5 Conclusion and Outlook

In this thesis, I investigated the influence of substrate-induced symmetry breaking
on two-dimensional silver. The main findings of this thesis are that silicon carbide
breaks the inversion symmetry of two-dimensional silver and induces valley-selective
circular dichroism.
Silicon carbide with a monolayer silver from Fig. 1.1 is constructed using a 6H-SiC
polytype. The silver atoms are also arranged in a hexagonal lattice with the same
lattice constant as SiC. A hybridization between the silver and silicon atoms takes
place. The quasi-free standing epitaxial graphene bilayer is neglected. The band
structure is calculated using DFT code from QUANTUM ESPRESSO and it shows
very good agreement to experimental data.
The substrate SiC breaks the inversion symmetry of two-dimensional silver. This in-
fluence is directly observable in the band structure as a band splitting because of the
Rashba effect. SiC has no inversion center and shows properties of valley-selective
dichroism. Nonetheless, valley-selective dichroism becomes even more revealed when
a silver monolayer is on top of a SiC surface. This material is a semiconductor with
a small band gap. In combination with valley-selective circular dichroism, it is very
interesting for the field of valleytronics.
One research area of valleytronics is quantum manipulation of valleys in semiconduc-
tors including quantum computation with valley-based qubits. For example, Culcer
et al.[8] worked on ”Valley-Based Noise-Resistant Quantum Computation Using Si
Quantum Dots” and Laird et al.[17] on ”A valley–spin qubit in a carbon nanotube”.
Since quantum computation is one of the great scientific hopes and challenges of
this century, there is a lot of potential in this field of research.
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6 Appendix

6.1 Convergency tests for SiC with silver monolayer

The total energy in Fig. 6.2, 6.3 and 6.1 does converge for the number of k points,
the cutoff energy and the distance between the slabs.
The distance of the slabs is chosen to be 25 Å which has an error of 1.18 · 10−2% in
total energy compared to a distance of 45 Å.

Figure 6.1: Total energy as a function of the vacuum space between slabs, obtained
from DFT-PBE calculations.

12 k points in the x and y direction are chosen for this work which is an error of
6.85 · 10−7% in total energy compared to 18 k points. QUANTUM ESPRESSO
reduces the number of k points used to take advantage of the symmetry to in total
19 and 37 k points, respectively.
For the cutoff energy, 70 eV is chosen which is an error of 1.82 ·10−3% in total energy
compared to 90 eV.
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Figure 6.2: Total energy as a function of the number of k points, obtained from
DFT-PBE calculations.
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Figure 6.3: Total energy as a function of the kinetic energy cutoff Ecutoff , obtained
from DFT-PBE calculations.

6.2 Valley polarization

The absolute difference in valley polarization of a slab model with a vacuum of 25 Å
and 35 Å is shown in Fig. 6.4. Since there is an increase in the difference from 6 eV
on, only values up to 6 eV are considered for the evaluation of the valley-resolved
dielectric function.
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6.2 Valley polarization

Figure 6.4: The difference in valley polarization for SiC with silver monolayer for a

vacuum of 25 Å and 35 Å
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