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Abstract

We estimate the contribution of demand shocks to the Solow residual and business cy-

cle �uctuations in a three-sector model using Bayesian techniques. In addition to standard

discount-factor demand shocks, we also allow for shocks to shopping e�ort. Our novel identi-

�cation strategy leverages capacity utilization data from both nondurable and durable goods

sectors to identify key parameters of goods market frictions. First, search demand shocks

account for the majority of forecast error variance in the Solow residual, output, and uti-

lization. Second, key novel parameters related to goods market frictions are well-identi�ed.

Third, search demand shocks and sector-speci�c wage markup shocks prove essential for

matching observed sectoral dynamics including the volatility, contemporaneous correlation,

and autocorrelation of utilization rates. In addition, impulse response functions show that

search demand shocks uniquely generate three-way comovement of the utilization rates and

the Solow residual, highlighting a productive role for demand shocks.
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1. Introduction

Macroeconometric work has established that the Solow residual is not a pure measure

of technology. Evans (1992) shows that money, interest rates, and government expenditure

Granger causes the Solow residual. Basu, Fernald, and Kimball (2006) construct a measure of

technological change using structural estimation and �nd that it behaves very di�erently than

the Solow residual: estimated technology varies about half as much and appears permanent.

The endogeneity of the Solow residual motivates our research problem. This paper quanti-

�es the extent to which movements in TFP are driven by demand-side economic �uctuations

rather than purely technological innovations. We develop a multisector model with goods

market frictions where consumers' endogenous shopping behavior a�ects aggregate demand

and, consequently, �rms' capacity utilization. Capacity utilization, in turn, plays a key role

in both the measurement of the Solow residual and broader business cycle dynamics.

We estimate the model using Bayesian techniques and show the following. First, demand

shocks explain a majority of the variation of output, the Solow residual, and utilization; sec-

ond, the key novel parameters associated with the transmission mechanism are well-identi�ed;

and, third, the model �ts the data reasonably well, including major sectoral variables. The

forecast error variance decomposition enables us to determine the contribution of the role of

technology, demand, and other shocks in explaining observed productivity and other macroe-

conomic aggregates.

Our work contributes to a perennial question in macroeconomics: what fundamentally

drives business cycles? The debate over the relative importance of technology versus demand

shocks is closely tied to the concept of capacity utilization�or economic slack. King and

Rebelo (1999), for instance, argue that variable factor utilization allows modest technology

shocks to generate realistic business cycles. In contrast, Hall (1997) emphasizes preference

shocks as crucial for explaining recessions, particularly labor under-utilization. Wen (2006)

demonstrates that demand shocks can generate procyclical investment and that variable

capital utilization reduces the persistence required for such shocks. More recent studies, such

as Sun (2024) and Borys, Doligalski, and Kopiec (2021), incorporate capacity constraints

and frictions in both goods and labor markets, �nding that demand shocks are the primary

drivers of business cycles.

Our formulation closely follows Bai, Rios-Rull, and Storesletten (2024), hereafter BRS,
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where output depends on �rms' technology, inputs, and their e�ciency in matching with cus-

tomers. Increases in shopping e�ort�whether from exogenous factors or responses to other

economic shocks�generate more matches and higher capacity utilization, raising measured

total factor productivity and output. The possibility that goods are found by a shopper

creates a wedge between actual and potential output.2 This mechanism re�ects Keynes'

idea that demand shocks in�uence the business cycle, but di�ers from the New Keynesian

literature by not relying on nominal rigidity.

Although capacity utilization plays a fundamental role in the causal pathway from shop-

ping e�ort to observed productivity, the literature has not emphasized its role for identi-

�cation. We show, in our framework, that the Solow residual's growth rate is the sum of

growth rates of capacity utilization, technology, and mismeasurement of input shares.3 In

our environment with goods market frictions, the growth rate of capacity utilization is a

weighted sum of the growth rates of shopping e�ort and variable capital utilization. The

use of capacity utilization data thus helps us identify the novel parameters related to goods

market frictions (matching technology and shopping disutility) and shocks to disutility of

shopping e�ort.

Following Qiu and Ríos-Rull (2022), we de�ne sectoral capacity utilization within the

model as the ratio of an output index to a capacity index�mirroring empirical measurements

by the Federal Reserve Board. Our sectoral de�nition of capacity utilization is motivated by

the fact that this measure is not de�ned economy-wide. Instead, we focus on total capacity

utilization data from both the nondurable and durable sectors. This approach actually

constitutes an advantage, as it allows us to further discipline the model using sectoral data.

These two utilization series exhibit strong comovement, providing a stringent test of the

model in much the same way as the comovement of labor hours in the consumption and

investment sectors. Indeed, sectoral comovement�the tendency for most sectors to move

together�is a stylized fact and a central part of the o�cial de�nition of the business cycle

2The gap stems from omitting consumer search e�ort as an input. In contrast, �rms' search e�ort (i.e.,
advertising) would not contribute to this mismeasurement since these inputs appear in output measures.

3The analytic expression for the Solow residual and its relationship to utilization is found at equation
(26) in Section 5.4. The term related to mismeasurement of input shares results from misspecifying constant
returns to scale in capital and labor and imposing perfectly competitive labor markets. This term would be
absent if the econometrician knew the exact production technology. This section also derives the analytic
expression for capacity utilization and its relationship to search e�ort.
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by the NBER. Christiano and Fitzgerald (1998) show that comovement holds across many

�ne-grained sectors, providing a stringent test which many business cycle models fail. Our

model successfully �ts the volatility, cross correlation, and autocorrelation of utilization.

Search-based demand shocks prove essential to �t these moments. To the best of our

knowledge, no other dynamic general equilibrium model has disaggregated capacity utiliza-

tion and matched these facts. Generally, the limited research that has examined capacity

utilization treated it as an economy-wide measure and struggled to match its volatility (i.e.,

Christiano, Eichenbaum, and Trabandt (2016) and Qiu and Ríos-Rull (2022)).

Our identi�cation strategy contrasts with Bai, Rios-Rull, and Storesletten (2024). To �x

ideas, denote the elasticity of the matching function as ϕ and the elasticity of disutility as

η. BRS calibrate ϕ and η by making use of the cross-sectional price dispersion for identical

goods and the elasticity of shopping time with respect to expenditure. Shopping time is

thus taken as a proxy for e�ort. BRS employ two sets of observables; one features shopping

time from the American Time Use Survey as a proxy for e�ort while the other dataset uses

the relative price of investment instead. Both sets include output, investment, and labor

productivity.

While leveraging identi�ed micro moments to derive ϕ and η is generally compelling, using

shopping time as a proxy for e�ort raises at least two concerns. First, as discussed by BRS,

�uctuations in shopping e�ort should be construed more broadly to encompass changes in

match e�ciency, rather than solely focusing on time. Second, leisure activities can potentially

contaminate shopping time. For instance, time spent browsing a store may re�ect window

shopping rather than genuine e�ort. An increased desire to �nd a particular item may lead

to a shift towards actively searching for it and away from mere window shopping, resulting

in an overall change in shopping time that re�ects a combination of both factors.

Incorporating total capacity utilization permits a better mapping between model and

data relative to the quarterly measure of utilization developed by Fernald (2014): it can ac-

commodate non-constant returns to scale, pro�ts, and �xed costs. This is appealing because

goods market frictions and competitive search generally require decreasing returns to scale,

and �xed costs are a realistic ingredient linking output and productivity. Reassuringly, the

two series behave similarly. If one de�nes Fernald utilization as the di�erence in cyclical com-

ponents of total factor productivity and its utilization-adjusted counterpart, then it comoves
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closely with total capacity utilization.

The model includes several features to more accurately capture business cycle moments

and the role of demand shocks. First, to separate the e�ects of goods market frictions on

utilization from intensive margin adjustments, the model includes variable capital intensity

with endogenous depreciation. We also include investment adjustment costs which makes the

intensity of capital choice more important and also helps reduce investment volatility and

generate hump-shaped impulse responses. Second, external habits and limited factor mobility

improve the autocorrelation and persistence properties of the model and, importantly, allow

technology shocks to generate positive comovement of labor hours. We nevertheless �nd that

search-based demand shocks play a crucial role in the variance decomposition. Third, we

incorporate �xed costs because they provide an alternative explanation of positive comove-

ment between output and productivity, and also a�ect the relationship between intensity

of capital use and total capacity utilization. Finally, the new stochastic processes�wage-

markup shocks and investment-speci�c shopping disutility�help the model simultaneously

�t sectoral data on hours and utilization as well as the relative price of investment.

The speci�cation of the model is designed to not a priori favor demand or technology

shocks. In addition to aiding in the �tting of second moments, the extra components provide

technology shocks with greater �exibility to capture patterns of comovement. For instance,

incorporating external habit formation and limited factor mobility into a standard RBC

model allows a technology shock to align with labor comovement. This adjustment addresses

the well-known sectoral comovement puzzle outlined by Christiano and Fitzgerald (1998).

A similar logic applies to the in�uence of demand shocks on explaining capacity utilization

and, consequently, the Solow residual. Omitting variable capital utilization, for instance,

would skew the estimation toward search e�ort as the primary explanation for �uctuations

in capacity utilization.

The set of observables we use for Bayesian estimation are demeaned growth rates of

consumption, investment, labor hours in consumption, labor hours in investment, utilization

in nondurable goods, utilization in durable goods, and the relative price of investment to

consumption.4 This set extends Katayama and Kim (2018) with the utilization measures

4BRS considers variable capital intensity in an appendix under the same series as in the baseline. By
contrast, we incorporate data on capacity utilization, which in the model decomposes into shopping and
capital intensity components. Moreover, whereas BRS use labor productivity as an observable, the use of
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but drops aggregate wages.

Alongside standard macroeconomic series and capacity utilization, we include sectoral

labor hours and the relative price of investment to help identify the transmission of shocks.

Speci�cally, we show that the ratio of labor inputs across sectors is closely related to the ratio

of shopping e�ort across sectors. 5 Furthermore, combining observations on sectoral labor

hours with output requires the model to �t sectoral labor productivity. The relative price of

investment is an important target in a multisector model and, in this context, is informative

about the choice of capital intensity through Tobin's Q.

The stochastic processes encompass shocks to the trend in technology, stationary neutral

technology, investment-speci�c technology, neutral shopping e�ort cost, investment-speci�c

shopping e�ort cost, discount-factor, and wage markups.6 The latter capture unexpected

spreads between the marginal product of labor and the wage rate paid by �rms, and are a

stand-in for shifts in labor market conditions and bargaining power. The model's components

and shock structure build upon the framework introduced by BRS while integrating key

elements from Schmitt-Grohé and Uribe (2012) and Katayama and Kim (2018).

Our estimation of the model yields the following insights. Search demand shocks account

for nearly two-thirds of the forecast error variance of output and approximately 50% of the

variance in the Solow residual. Moreover, these shocks signi�cantly in�uence the relative price

of investment and labor supply. We estimate high and precise values of the matching function

elasticity ϕ with respect to shopping e�ort and show that search demand shocks uniquely

generate three-way comovement of the utilization rates and the Solow residual. Technology

shocks, by contrast, indeed raise the Solow residual but generate a negative correlation in

utilization rates across sectors. Moreover, we estimate that search demand shocks increase

the Solow residual on impact by approximately 80 basis points compared to 50 basis points

for a technology shock.

In terms of empirical �t, the model e�ectively captures the comovement of consump-

sectoral data on inputs and outputs means we e�ectively target labor productivity in each sector and also
proxy for relative shopping e�ort.

5The precise relationship is given by (20) where we further discuss the importance of using sectoral labor
data.

6The discount-factor shock a�ects the consumption Euler equation, similarly to the risk-premium shock in
Smets and Wouters (2007). However, unlike the latter, it does not mechanically help explain the comovement
of consumption and investment.
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tion, investment, utilization, and labor. It also provides a good �t for the autocorrelation

of sectoral labor, output, and utilization series. Estimating the model without search-based

demand shocks and utilization variables �ts standard macro series well but generates a coun-

terfactual negative correlation of the utilization variables and understates their volatility. We

examine in detail the contribution of di�erent model ingredients to empirical �t.7 The core

�ndings persist without �xed costs or limited factor mobility�eliminating �xed costs actually

enhances the marginal likelihood. However, sector-speci�c wage markups and search-based

demand shocks prove essential for �tting sectoral data. Restricting the model to a common

wage markup shock signi�cantly overestimate volatility and fails to replicate comovement

within labor and utilization variables.

Though our work aligns most closely with Bai, Rios-Rull, and Storesletten (2024), it is

also greatly inspired by Michaillat and Saez (2015), who model and argue for a prominent

role for aggregate demand on unemployment and idle time operating through goods market

frictions. Similar to our approach, they regard rates of operation in the economy and their

business cycle comovement as fundamental outcome variables in their own right. However,

they do not formally discipline the model using time series data, relate goods market frictions

to capacity utilization, or focus on sectoral comovement. Moreover, they model matching

costs in terms of additional expenditures rather than e�ort. Appendix L carefully compares

the two speci�cations and shows that it does not matter for the essence of the transmission

mechanism but that it does a�ect the labor share of income, which is relevant for the Solow

residual.

Section 2 provides key background facts on utilization and sectoral comovement. Section

3 lays out the model environment. Section 4 highlights the e�ect of demand shocks on

capacity utilization and the Solow residual in a simple static setting. Section 5 characterizes

key equilibrium relationships. It also decomposes the growth rate of the Solow residual into

structural forces and relates these to capacity utilization. Section 6 estimates the full model.

It decomposes the forecast error variance and shows that crucial parameters related to goods

market frictions and shocks are precisely estimated. Section 7 concludes. The appendices

describe the data construction, derivation of equilibrium, estimation of a two-sector version of

7A detailed description of how model ingredients impact the log marginal liklihood, posterior mean of ϕ,
variance decomposition, and second momements is given in Table 5.
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the model on aggregate data as a proof of concept. It also describes the calibration strategy,

showcases identi�cation of key parameters by estimating the model on arti�cial data, and

examines the role of the matching costs. We sometimes omit time indices in describing static

relationships to economize on notation.

2. Background and stylized facts on utilization and sectoral comovement

The Federal Reserve Board constructs total capacity utilization as the ratio of an output

index to capacity index for manufacturing, mining, and electric and gas utilities. This mea-

sure of capacity aims to quantify a plant's maximum sustainable output given its resource

constraints. The measure spans 89 detailed industries (71 in manufacturing, 16 in mining,

2 in utilities).8 These industries primarily correspond to the 3 or 4-digit North American

Industry Classi�cation System (NAICS) codes. Importantly for our purposes, estimates are

available for durable and nondurable goods. In manufacturing, most capacity indices are

based on responses to the Census Bureau's Quarterly Survey of Plant Capacity. The census

is conducted quarterly at the establishment level. The probability that each establishment

is selected is proportional to the value of shipments within each industry.

We decompose total capacity utilization into subcomponents for nondurables and durables.

Figure 1 compares cyclical capacity utilization in durables and nondurables alongside real

output and Fernald utilization, which we construct as the di�erence between cyclical TFP

and the utilization-adjusted counterpart from Fernald (2014). The capacity utilization series

series comove closely with each other and the Fernald measure and are procyclical, with total

capacity utilization in durables exhibiting greater volatility.

8This data can be downloaded at https://www.federalreserve.gov/datadownload/Choose.aspx?rel=
G17.
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Figure 1: Total capacity utilization in non-durable and durable goods and output, here de�ned as consumption
plus investment. Each underlying series is detrended via the Hamilton regression �lter with the four most
recent observations 8 quarters in the past (p = 4, h = 8).

Lastly, we examine business cycle statistics of the sectoral and utilization data. Table 1

presents the second moments of the series expressed in growth rates from 1964Q1-2019Q4.

The use of growth rates aligns with the treatment of data in estimation, a standard practice

since Smets and Wouters (2007), and eases comparison with other studies. The construction

of hours uses the BLS Current Employment Statistics following Katayama and Kim (2018).

The data appendix provides details, and Figure B.10 shows the detrended time series of hours

in each sector alongside the aggregate measure. Following BRS, we de�ne output as the sum

of consumption and investment, consistent with our model framework. The �ndings indicate

a strong correlation of 0.87 between labor hours, a moderate correlation of 0.54 between

consumption and investment, and robust comovement between the utilization measures and

investment, as well as labor hours in investment. Additionally, all series exhibit signi�cant

autocorrelation, except for labor productivity. Notably, investment, labor hours in invest-

ment, and utilization in durables display substantial volatility compared to consumption,

labor hours in consumption, and utilization in nondurables.
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SD(x) STD(x)/STD(Y ) Cor(x, I) Cor(x, ni) Cor(x, x−1)

Y 0.87 1.00 0.94 0.70 0.47

C 0.44 0.51 0.54 0.44 0.48

I 2.14 2.46 1.00 0.73 0.41

nc 0.57 0.66 0.66 0.87 0.67

ni 1.94 2.23 0.73 1.00 0.64

Y/n 0.64 0.73 0.36 -0.28 0.10

pi 0.51 0.58 -0.28 -0.22 0.44

utilD 2.27 2.61 0.69 0.84 0.55

utilND 1.26 1.45 0.61 0.65 0.51

Table 1: Time range: 1964Q1− 2019Q4. Each underlying series is expressed in 100 quarterly log deviations.
Here output is de�ned as the sum of consumption and investment. We use the symbols Y for output, C
for consumption, I for investment, nc for labor supply, in consumption, ni for labor supply in investment,
Y/n for labor productivity, pi for the relative price of investment, and utilD and utilND for the utilization
of durables and nondurables, respectively. Appendix B describes the construction of variables in detail.

3. Model environment

3.1. Technology and markets

There is a unit mass of households and a unit mass of �rms within each sector. There

are three sectors: two for consumption (goods mc and services sc), and one for investment

(i). Each sector j uses capital and labor to produce output. Moreover, capital can be used

at a rate h, and production involves a �xed cost ν.9 The economy grows with a stochastic

trend X such that its growth rate gt = Xt/Xt−1 is a stationary process with steady state g.

The production function now incorporates capital utilization and �xed costs:

Fj = zjf(hjkj, nj)− νjX, j ∈ {mc, sc, i} (1)

f(hk, n) = (hk)αknαnX1−αk (2)

Formulation (1) says that Fj is the remaining output available to be sold after taking into

account dissipation from �xed costs. The system (1) and (2) ensures balanced growth, so

9By `�xed' we mean that the cost does not vary with the choices of inputs. The cost scales with the
stochastic trend X, so that the share of �xed costs to output is stationary on the balanced growth path.
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that the share of �xed costs to output is stationary. Higher utilization of capital raises

depreciation according to an increasing and convex function δ(·). We assume the form

δj(h) = δK + σb(h− 1) +
σajσb

2
(h− 1)2, j ∈ {mc, sc, i}, σac ≡ σamc = σasc

where δK is an exogenous rate of depreciation. Note that δj(1) = δK , so that δK is the

economy-wide steady-state depreciation rate of capital. Moreover, for each j, σb = δjh(1) is

the marginal cost of utilization in the steady state and σaj = (1)δjhh(1)/δ
j
h(1) is the elasticity

of the marginal utilization cost with respect to rate h in the steady state. Alternatively, 1/σaj

is the sector j elasticity of capital utilization with respect to the rental rate. We restrict the

parameter σb to set steady-state capital use to unity in each sector. For parsimony, we also

restrict the depreciation function to be the same within each subsector of consumption.

Investment is speci�c to each sector and features endogenous depreciation, as described

above, and quadratic adjustment costs following Christiano, Eichenbaum, and Evans (2005).

k′
j = (1− δj(hj))kj + [1− S(ij/ij,−1)]ij, j ∈ {mc, sc, i}

S(x) =
ΨK

2
(x− 1)2

so that aggregate investment is i = imc + isc + ii. We also use a common adjustment term

ΨK for parsimony.10

Extending Moen (1997), there is a competitive search protocol in which each submarket

is indexed by price, market tightness, and quantity (p, q, F ). The measure of matches in each

submarket is given by a sector-speci�c constant returns to scale matching function

Mj(D,T ) = AjD
ϕT 1−ϕ, 0 < ϕ < 1, j ∈ {mc, sc, i} (3)

of aggregate shopping e�ort D within each sector and the measure of �rms T . Market

tightness is de�ned as search e�ort per �rm location, q = D/T . We set T = 1, so that D

measures market tightness. The probability that a unit of shopping e�ort is matched with

a �rm is Ψjd = AjD
ϕ−1 and the probability that a �rm location is matched is ΨjT = AjD

ϕ.

10We have also estimated the model with sector-speci�c investment adjustment cost functions and have
not found signi�cant di�erences in the results.
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Once a match is formed, goods are traded at the posted price pj. A household who exerts

search e�ort dj purchases a real quantity of goods

yj = djΨjd(D)Fj, j ∈ {mc, sc, i}

3.2. Households and �rms

Households have preferences over search e�ort, consumption, and a labor composite fol-

lowing Bai, Rios-Rull, and Storesletten (2024). However, we also accommodate external

habit formation, which is important to �t the data. Letting θ = (θd, θn, θi) be a vector of

preference shifters, household utility is given by

u(c, d, na, θ) =
Γ1−σ − 1

1− σ
(4)

where Γ is a composite parameter with external habit formation

Γ = c− haC−1 − θd
d1+1/η

1 + 1/η
− θn

(na)1+1/ζ

1 + 1/ζ

where C is aggregate consumption and d = dmc+ dsc+ θidi is total search e�ort. Thus, θi

is an exogenous wedge in the search cost of investment goods relative to consumption goods.

The parameter η is the elasticity of shopping e�ort and ζ is the Frisch elasticity of labor

supply.

Household consumption is a constant-elasticity-of-substitution aggregator of a bundle of

goods ymc and services ysc with the associated price index:

c = [ω1−ρc
mc yρcmc + (1− ωsc)

1−ρcyρcsc ]
1/ρc (5)

pc =
(
ωmcp

−ρc/(1−ρc)
mc + ωscp

−ρc/(1−ρc)
sc

)− 1−ρc
ρc

such that ωmc + ωsc = 1 and the elasticity of substitution is given by ξ = 1/(1− ρc). Thus,

pmc/pc and psc/pc are the relative prices of nondurables and services to consumption overall.

Households have preferences with regard to the composition of labor they supply across

sectors, following Horvath (2000) and Katayama and Kim (2018). Speci�cally, the labor
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composite na is

na =
[
ω−θn1+θ

c + (1− ω)−θn1+θ
i

] 1
1+θ (6)

where elasticity of substitution 1/θ measures intersectoral labor mobility. The standard case

of in�nite marginal rate of substitution applies as θ → 0, in which case labor is perfectly

mobile: na → nc + ni = n.

A representative �rm in sector j ∈ {mc, sc, i} o�ers market bundle (pj, Dj, Fj) and em-

ploys capital at rental rate Rj and labor at wage Wj in competitive spot markets to maxi-

mize pro�ts. We introduce exogenous time-varying wage markups following the approach by

Schmitt-Grohé and Uribe (2012) where a continuum of monopolistically competitive labor

unions in each sector sell di�erentiated labor services.

Figure 2 summarizes the timing of the economy. First, aggregate shocks occur at the be-

ginning of each period. Second, in each sector j, a �rm posts a submarket o�er (pj, Dj, Fj).

Third, given the submarket choice, households choose shopping, consumption, labor sup-

ply, and capital utilization. Firms simultaneously hire labor in a competitive spot market,

which determines the wage. Fourth, matching takes place. Matched �rms produce and sell.

Fifth, the capital stock is updated in each sector, re�ecting investment adjustment costs and

endogenous depreciation.

Aggregate shocks occur

Firms post submarkets

(pj, Dj, Fj)

HH choose shopping, consumption

labor supply, capital, utilization

Firms hire labor/capital

Wage/Rental rate determined

Matching

Matched �rms produce and sell

Capital stock is updated

t t+ 1

Figure 2: Timing

4. Demand shocks and the role of capacity utilization in a static setting

We �rst highlight the productive role of demand and show that capacity utilization data

can be used to discipline the key parameters underlying transmission. Consider the baseline

model by Bai, Rios-Rull, and Storesletten (2024). This formulation is a special case of our

general environment without habit formation (ha = 0); perfectly mobile labor (θ = 0); a

single consumption sector (ρc → 1); no �xed costs in production (νj = 0 for all j); �xed
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capital intensity (σb → ∞); and no investment adjustment costs (ΨK = 0). In addition to

demonstrating the importance of using capacity utilization data, we also show that sectoral

comovement patterns, besides being important business cycle moments in their own right,

inform the transmission of demand shocks in our environment.

To show how demand shocks can in�uence measured productivity, �rst consider a static

version of BRS. The consumption good is produced using only labor (αk → 0), so that (2)

is simply f(n) = nαn . A household who shops in submarket (p,D, F ) chooses consumption,

search e�ort, and labor supply in order to maximize their period utility:

V̂ (p,D, F ) = max
d,c,n

u(c, d, n, θ)

s.t. c ≤ dΨd(D)F

pc ≤ nW

Let V = maxp,D,F V̂ (p,D, F ) be the value of the best submarket. Firms must provide

households with value V to ensure their participation. The value V is an equilibrium object

but is taken as given by �rms. A �rm chooses which market bundle (p,D, F ) to o�er and

the amount of labor n to employ to maximize period pro�ts:

max
p,D,F,n

pΨT (D)F −Wn

s.t. V̂ (p,D, F ) ≥ V

znαn ≥ F

Applying matching function (3), preferences (4), and aggregating shows that an equilib-

rium can be characterized as a tuple (C,D,W, n) satisfying optimal shopping, consistency of

output, labor supply, and labor demand:

θdD
1
η = ϕ

C

D
(7)

C = ADϕznαn (8)

(1− ϕ)W = αn
C

n
(9)

θnN
1
ζ = (1− ϕ)W (10)

14



The GHH structure of preferences between consumption and shopping e�ort in (4) implies

that the marginal rate of substitution is an increasing function of shopping e�ort: −ud/uc =

θdd
1/η. Equation (7) equates this marginal rate of substitution to the new matches induced by

greater shopping e�ort�the product of ∂M/∂D = ϕΨd and �rm capacity F , which simpli�es

to ϕC/D. Equation (9) is a standard labor demand condition which equates the cost of

labor to its value marginal product. Here the marginal product includes the probability of

a �rm �nding a customer, ΨT zf
′(n) = zαnn

αn−1ADϕ, so that labor demand is increasing

in aggregate search e�ort. Equation (10) is a GHH labor supply condition: the marginal

rate of substitution between consumption and labor, −un/ud = θnn
1/ζ equals the wage rate

scaled by (1− ϕ). Moreover, the cost of labor is scaled by (1− ϕ). This feature arises from

competitive search: increased output relaxes the household's participation constraint and

thereby e�ectively lowers the input cost for the �rm.

The labor share of income is τ ≡ Wn/C = αn/(1 − ϕ) using (9). Hence, the Solow

residual is

SR ≡ C/nτ = ADϕznαn−τ = ADϕzn−αnϕ/(1−ϕ)

Total factor productivity thus depends on technology, shopping e�ort, and mismeasurement

of labor component. Capacity utilization is de�ned as the ratio of actual output (8) to

capacity F

util ≡ C/F = ADϕ

which measures how far realized output is from potential output. In the absence of any shocks

to matching e�ciency, the growth rate of capacity utilization is simply shopping e�ort scaled

by the matching elasticity ϕ.

Figure 3 depicts the equilibrium using two graphs. The �gure on the right shows the

determination of search e�ort and consumption, for a given level of capacity F , as the inter-

section between (7) and (8). The �gure on the left illustrates the determination of hours and

wages, given consumption C, as the intersection between (9) and (10).
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Figure 3: Equilibrium of static model

Now, let us consider a negative shock to the shopping disutility θd (Figure 4). The

marginal cost of exerting shopping e�ort falls, inducing households to shop more intensely,

represented by the shopping curve shifting rightward. More shopping e�ort increases �rms'

matching rate and therefore boosts total production. This e�ect constitutes movement along

the consumption curve from point 1 to point 2. To satisfy higher production levels, �rms

demand more workers, shifting the labor demand curve rightward and boosting labor hours

and wages. Finally, more labor hours expands the productive capacity of �rms, so the con-

sumption curve shifts upward. This higher capacity further spurs shopping e�ort, represented

by movement along the shopping curve from point 2 to point 3. The Solow residual there-

fore re�ects both the initial increase in shopping e�ort from the demand shock followed by

a further increase in shopping e�ort as households respond to increased capacity of �rms.

However, the rise of the Solow residual is slightly dampened by the mismeasurement of input

shares. Notice that the demand shock to θd induces positive comovement across all variables

in the economy and therefore resembles a standard technology shock to z.

1

1

2 3

3

Figure 4: Reduction in shopping disutility in static model
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Similarly, we examine the impact of a fall in labor disutility θn. This shocks shifts the

labor supply curve rightward and increases capacity. The consumption curve shifts rightward

and triggers a movement along the shopping curve, as before.11

Appendix G builds on this simple setting by estimating a dynamic version with capital

accumulation. The exercise follows Guerron-Quintana (2010), who investigates how observ-

able variable selection a�ects estimated parameters in a rich New Keynesian model. We drop

shopping time as an observable and estimate ϕ and η directly using the dataset with the rel-

ative price of investment. We �nd that the posterior 90% probability band of ϕ ranges from

0.00 to 0.20, and the importance of shopping-disutility shocks in the variance decomposition

drops signi�cantly relative to BRS. Next, we estimate the same model but include capacity

utilization as an observable series. Remarkably, the posterior probability band of ϕ changes

to (0.85, 0.90), and the contribution of demand shocks to the variance decomposition rises

dramatically. Additionally, the standard deviation of capacity utilization increases ten-fold

in this case compared to the former, aligning with empirical values. Second, we show that

the estimated model generates sectoral comovement of labor and output consistent with the

data, in contrast to a standard RBC model driven solely by technology shocks.

5. Equilibrium

5.1. Households

Let (p,D, F ) = {(pj, Dj, Fj)|j ∈ {mc, sc, i}} be the set of submarkets available to a

household. Let Λ be the aggregate state and let V̂ (Λ, kmc, ksc, ki, p,D, F ) be the value of

the household conditional on these submarkets. Letting Φ be the set of available sub-

markets, then the value function is determined by the best combination of submarkets:

V (Λ, kmc, ksc, ki) = max{p,D,F}∈Φ V̂ (Λ, kmc, ksc, ki, p,D, F ). The household chooses search ef-

fort, labor hours, consumption, future capital, and utilization rates to solve:

V̂ (Λ, kmc, ksc, ki, p,D, F ) = max
dj ,nc,ni,yj ,ij ,k′j ,h

′
j

u(ymc, ysc, d, n
a, θ) + βθbE{V (Λ′, k′

mc, k
′
sc, k

′
i)|Λ}

s.t. yj = djAjD
ϕ−1
j Fj, j ∈ {mc, sc, i}

11In Appendix L, we also examine equilibrium in a static setting in which matching costs arise from
expenditure à la Michaillat and Saez (2015). The causal e�ect of demand on output and productivity is
essentially the same, but the labor share of income is αn, and hence there is no input share mismeasurement
in the Solow residual.
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∑
j

yjpj = π +
∑

j∈{mc,sc,i}

kjhjRj + ncW
∗
c + niW

∗
i

k′
j = (1− δj(hj))kj + [1− S(ij/ij,−1)]ij, j ∈ {mc, sc, i}

and the consumption and labor aggregators (5) and (6).

Appendix C derives each step of the household and �rm problem. Here we focus on

central and innovative features of equilibrium. The presence of a goods market friction leads

households to optimally balance the marginal disutility of shopping with the marginal bene�t

of output in both the consumption and investment sectors:

−ud = ujϕAjD
ϕ−1
j Fj j ∈ {mc, sc} (11)

−udθi =
umcpi
pmc

ϕAiD
ϕ−1
i Fi (12)

Equation (11) characterizes optimal shopping in each subsector of consumption. A summary

statistic of the role of goods market frictions is the ratio of marginal utility and price mul-

tiplied by the marginal utility of wealth λ. It turns out that this wedge just depends on

ϕ:

uj

λpj
=

1

1− ϕ
⇒ umc

pmc

=
usc

psc
(13)

or ϕ = (uj − λpj)/uj.

Recall from GHH preferences that −ud/uj = θdd
1/η is an increasing function of shopping

e�ort alone. Combining this with equation (11), we conclude that households increase their

shopping e�ort in response to higher �rm capacity and matching probability, as well as a

lower disutility of shopping e�ort. The condition for investment goods in equation (12) is

similar, but with the marginal disutility adjusted by θi and the value of output computed in

consumption units, accounting for the relative price.

Given (6), households optimally divide their labor hours between consumption and in-

vestment sectors:

nc

ni

=
ω

1− ω

(
W ∗

c

W ∗
i

)1/θ
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so that 1/θ is the elasticity of substitution.

Taking the �rst order condition with respect to ymc and ysc and combining it with (5),

we derive the demand curves for nondurables and services

yj = p−ξ
j ωjC j ∈ {mc, sc} (14)

where ξ = 1/(1 − ρc) repreents the elasticity of substitution. By using (14) together with

(13), we �nd that λ = Γ−σ(1 − ϕ). Here, the term Γ−σ captures the direct in�uence from

the marginal utility of consumption, while the goods market frictions introduce a wedge

represented by ϕ.

Furthermore, the ratio of (11) and (12) provides insight into the relative price of invest-

ment:

pi
pj

= θi
Aj

Ai

(
Dj

Di

)ϕ−1
zj
zi

f(hjkj, nj)− νjX

f(hiki, ni)− νiX
(15)

If the price pi increases compared to pj, with capacity held constant, it implies that investment

goods become more valuable in terms of consumption, leading to an increase in Di/Dj.

Additionally, equation (15) re�ects the typical mechanism where an increase in investment

capacity results in a decrease in the relative price pi/pj.

5.2. Firms and labor unions

A representative �rm in sector j ∈ {mc, sc, i} rents capital and hires labor in spot markets.

We introduce exogenous time-varying wage markups following the approach by Schmitt-

Grohé and Uribe (2012). A continuum of monopolistically competitive labor unions in sector

j sell di�erentiated services, indexed by type s. The �rm chooses inputs and market bundle

(pj, Dj, Fj) to maximize pro�ts given the household participation constraint, technology, and

di�erentiated labor. The problem is

max
kj ,nj ,pj ,Dj ,Fj

pjAjD
ϕ
j Fj −

∫ 1

0

Wj(s)nj(s)ds−Rjhjkj

s.t. V̂ (Λ, kmc, ksc, ki, pj, Dj, Fj) ≥ V (Λ, kmc, ksc, ki)

zjf(hjkj, nj)− νjX ≥ Fj

nj =

(∫ 1

0

nj(s)
1/µjds

)µj
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The conditional demand for labor type s in sector j and corresponding wage index are

nj(s) =

(
Wj(s)

Wj

)−
µj

µj−1

nj, Wj =

[∫ 1

0

wj(s)
1/(1−µj)ds

]1−µj

The labor union charges the �rm a wageWj(s) and paysW
∗
j to its members. It maximizes

earnings subject to the conditional labor demand of the �rm. The problem of the union is

thus

max
Wj(s)

(Wj(s)−W ∗
j )

(
Wj(s)

Wj

)−
µj

µj−1

nj (16)

The solution to (16) is Wj(s) = µjW
∗
j . Within sector j, labor unions pay the same wage and

�rms choose identical quantities of labor within j: Wj(s) = Wj, nj(s) = nj for all s. Labor

unions provide additional earnings to households in the form of a wage rebate. Consequently,

Wj(s)−W ∗
j = (µj − 1)W ∗

j represents a �xed component of the wage from the perspective of

workers.12

The factor demand curves for the �rm are

(1− ϕ)
Wj

pj
= αn

AjD
ϕ
j zjf(hjkj, nj)

nj

j ∈ {mc, sc, i} Wmc = Wsc (17)

(1− ϕ)
Rj

pj
= αk

AjD
ϕ
j zjf(hjkj, nj)

hjkj
j ∈ {mc, sc, i} (18)

To provide an alternative characterization of the relative price of investment, we take the

ratio of (17) for sectors i and j ∈ {mc, sc}:

pi
pj

=
niWi

njWj

Aj

Ai

(
Dj

Di

)ϕ
zjf(hjkj, nj)

zif(hiki, ni)
(19)

When Dj/Di increases, while holding inputs and technology constant, it becomes easier

to sell nondurables or services to customers, resulting in an increase in pi/pj. Equation (19)

also takes into account the standard relationship where pi/pj decreases as investment-speci�c

technology zi/zj rises.

12Labor unions here are a mechanism here designed entirely for the bene�t of workers. Thus, the earnings
rebated to the workers count as labor income, which matters for the mapping between model and data. Note
that wages remain �exible even though there is market power in wage setting.
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Relationships (15) and (19) represent distinct curves that connect the relative price of

investment pi/pj to relative shopping e�ort Di/Dj. However, a direct comparison is compli-

cated by the fact that �xed costs are present in (15) but not in (19). In the case of zero �xed

costs, mutual consistency requires the following relationship:

Di

Dj

=
1

θi

niWi

njWj

(20)

Relative shopping e�ort is determined by relative labor income and the variation in shop-

ping disutility. Over the business cycle, the level of sectoral comovement in�uences ni/nj and

thus provides information about relative shopping e�ort. However, compared with (G.1), in

which the ratios of shopping e�ort and labor supply perfectly coincide, (20) is signi�cantly

more �exible. Limited factor mobility and wage markup shocks allow for additional �uctua-

tion in relative wages, and the exogenous wedge θi also helps explain �uctuations in relative

shopping e�ort.

The �nal three equilibrium conditions encompass Tobin's Q, optimal capital utilizations,

and Euler equations pertaining to the selection of future capital. These conditions incorporate

investment adjustment costs and depreciation resulting from capital utilization:

pi
1− ϕ

= Qj[1− S ′(xj)xj − S(xj)] + βθbE
λ′

λ
Q′

jS
′(x′

j)(x
′
j)

2 j ∈ {mc, sc, i}

δjh(hj)Qj = Rj j ∈ {mc, sc, i}

Qj = βθbE
λ′

λ

[
(1− δj(h′

j))Q
′
j +R′

jh
′
j

]
j ∈ {mc, sc, i}

The variable Qj represents the relative price of capital in sector j in terms of consumption.

The presence of investment adjustment costs introduces a disparity between Qj and pi/(1−

ϕ). Households determine the level of utilization such that the value of depreciated capital

δh(hj)Qj is equal to the marginal product of capital Rj. Finally, households decide on the

capital level that equates the marginal cost of foregone consumption Qj to the anticipated

discounted return. The expected return comprises the marginal product of capital in addition

to the value of undepreciated capital, and the stochastic discount factor βθbEλ′/λ transforms

returns into current marginal utility.
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5.3. Inducing stationarity

The speci�cation of technology (1) implies that output, consumption, wages, and capital

have the same stochastic trend as technology Xt, characterized by the growth rate gt =

Xt/Xt−1. The next section shows that the trend growth rate of the Solow residual is g1−τ
t

for labor share τ . Preferences regarding labor supply imply zero long-run wealth e�ects

and hence ensure stationarity of labor supply. We adjust GHH preference weights to ensure

stationarity of shopping e�ort. To focus on equilibrium �uctuations around stochastic trends,

we divide each trending variable other than capital by the stochastic trend Xt. For the capital

stock, we instead divide by Xt−1 to maintain its predetermined nature.

5.4. The sector-speci�c Solow residual and capacity utilization

We construct the Solow residual for a speci�c sector in the model and relate it to capacity

utilization and other structurally interesting components. Begin by expressing sectoral output

as follows:

Yjt = AjD
ϕ
jt(zjth

αk
jt X

1−αk
t kαk

jt n
αn
jt − νjXt)

Let νR
j = νjX/Fj be the �xed cost share of capacity. Then note that νjX/(zjf(hjkj, nj)) =

νR
j /(1 + νR

j ), so that

Yjt =
AjD

ϕ
j (zjth

αk
jt X

1−αk
t kαk

jt n
αn
jt )

1 + νR
jt

Fernald (2014) constructs the sectoral Solow residual under the assumptions of constant

returns to scale Cobb-Douglas technology in capital and labor, no �xed costs, and perfectly

competitive factor markets. Accordingly, de�ne the Solow residual in sector j as

SRjt ≡
Yjt

k1−τ
jt nτ

jt

=
AjD

ϕ
jt(zjth

αk
jt X

1−αk
t kαk−1+τ

jt nαn−τ
jt )

1 + νR
jt

(21)

where τ represents the steady-state labor income share. To express (21) in terms of growth

rates, we introduce the symbol dxt = ∆ log xt and rewrite as

dSRjt = ϕdDjt + dzjt + αkdhjt + (1− αk)dXt + (αk − 1 + τ)dkjt (22)
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+(αn − τ)dnjt − d(1 + νR
jt)

From (22) we note that the trend net growth rate of the Solow residual is

(1− αk)dXt + (αk − 1 + τ)dXt = τ log gt

which implies that the Solow residual grows at the rate of output multiplied by the labor

share of income. By introducing the log deviation ν̃R
j = log(νR

j /ν
R
ss), we can rewrite (22) as13:

dSRjt = ϕdDjt + dzjt + αkdhjt + (1− αk)dXt + (αk − 1 + τ)dkjt + (αn − τ)dnjt −
νR
ss

1 + νR
ss

∆ν̃R
jt

(23)

Expression (23) decomposes the growth rate of the Solow residual into structural forces.

It comprises a demand component ϕdDjt, a capital utilization component αkdhjt, a technol-

ogy component dzjt + (1 − αk)dXt, an input share mismeasurement component (αk − 1 +

τ)dkjt + (αn − τ)dnjt, and a change in the �xed cost share component [νss/(1 + νR
ss)]∆ν̃R

jt.

The �rst component re�ects the direct e�ect of goods market frictions, and there is also

a general equilibrium feedback between higher shopping e�ort and the other components.

Additionally, the calibration strategy establishes a relationship between the coe�cients αk

and αn in relation to ϕ. It is worth noting that the growth rate of cyclical labor produc-

tivity d(Yjt/njt) has the same expression as (23), except that τ is replaced by 1. Therefore,

d(Yjt/njt) = dSRjt + (1 − τ)(dkjt − dnjt). In general, we �nd that the Solow residual and

labor productivity behave similarly in cyclical terms, and choose to emphasize the former

because of its signi�cance in the literature.

We next turn to capacity utilization and relate it to the Solow residual. Following Qiu

and Ríos-Rull (2022), we de�ne capacity in sector j as

capj = zjk
αk
j nαn

j X1−αk − νjX

13Calculate

log(1 + νRj ) ≈ log(1 + νRss) +
1

1 + νRss
(νRjt − νRss) ≈ log(1 + νRss) +

νRss
1 + νRss

ν̃Rjt

Hence, d(1 + νRjt) = ∆ log(1 + νRjt) ≈
νR
ss

1+νR
ss
∆ν̃Rjt
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Consistent with the de�nition from the Federal Reserve Board, capacity utilization in sector

j is the ratio of output to capacity:

utiljt ≡
Yjt

capjt
=

AjD
ϕ
jt(zjth

αk
jt X

1−αk
t kαk

jt n
αn
jt − νjtXt)

zjtk
αk
jt n

αn
jt X

1−αk
t − νjtXt

(24)

=
AjD

ϕ
jt(zjth

αk
jt (kjt/Xt)

αknαn
jt − νjt)

zjt(kjt/Xt)αknαn
jt − νjt

Capacity utilization is stationary since kj grows at the same rate g as X on the balanced

growth path. Expressing (24) in growth rates yields

dutiljt = ϕdDjt + (1 + νR
ss)αkdhjt (25)

The growth rate of utilization equals that of shopping e�ort scaled by ϕ and capital

utilization scaled by (1 + νR
ss)αk. Therefore, higher �xed costs amplify the relative weight of

capital utilization to shopping e�ort.

By comparing (25) and (23), we see that shopping e�ort enters with the same weight ϕ

but that the weight of capital utilization di�ers due to the presence of �xed costs. In the

special case of zero �xed costs, the Solow residual growth rate simpli�es into the sum of

growth rates of utilization, technology, and mismeasurement of input shares.

dSRjt|νj=0 = dutiljt + dzjt + (1− αk)dXt + (αk − 1 + τ)dkjt + (αn − τ)dnjt (26)

Our de�nition of the sectoral Solow residual follows the methodology outlined by Fernald

(2014). This approach mitigates potential additional composition bias that may arise from

employing an aggregate production technology. Furthermore, it aligns sensibly with the con-

cept of utilization, which is only applicable to speci�c industries. Accordingly, the aggregate

Solow residual and capacity utilization can be de�ned as the output-weighted average of

sectoral values, as consistent with Fernald (2014):

SR =
∑
j

Yj

Y
SRj, util =

∑
j

Yj

Y
utilj

To a �rst-order approximation, the linearized expressions (23), (25), and (26) also apply

to their respective aggregates. This allows us to quantify the proportion of Solow residual
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variance explained by the utilization component, V ar(dutil)/V ar(dSR).

We have discussed the Solow residual and capacity utilization in terms of growth rates

to facilitate comparison with empirical practice (e.g., Fernald (2014)) and to maintain con-

sistency with the form of variables used in the observation equations and for business cycle

statistics. In Appendix E, we provide a similar comparison between the cyclical deviations

of the Solow residual and capacity utilization.

6. Main quantitative analysis

6.1. Stochastic processes

The growth rate of the stochastic trend gt = Xt/Xt−1 follows an AR(1) process in logs,

as Bai, Rios-Rull, and Storesletten (2024):

log gt = (1− ρg) log g + ρg log gt−1 + eg,t

where eg,t ∼ N(0, σ0
g). Here, logXt follows a random walk with drift.

We also consider a stationary neutral shock zc and an investment-speci�c shock zi. We let

zi ≡ zczI where zI is independent of zc. Finally, there are disturbances to general shopping

disutility θb, investment-speci�c shopping disutility θi, the discount factor θd, labor supply

θn, and wage markups µc and µi. We do not include consumption preference shocks because

they can be replicated by sequences of labor supply, shopping-disutility, and discount-factor

shocks.

Each stationary shock in the set v = {θb, θd, θn, θi, zc, zI , µc, µi} follows an AR(1) process

log vt = ρv log vt−1 + ev,t

where e0v,t ∼ N(0, σ0
v).

6.2. Bayesian estimation

The Bayesian framework allows us to incorporate prior (e.g.) microeconomic evidence,

quantify parameter uncertainty, decompose the forecast error variance of each shock, and

compare the �t of models via the marginal likelihood. Another appealing feature is that the

marginal likelihood also implicitly penalizes parameter complexity. If the expansion of the
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parameter space is irrelevant for �tting the data, then this reduces the prior probability mass

of parameters that do help �t the data and thereby lowers the marginal likelihood.

Along these lines, we estimate the general model using Bayesian techniques with quarterly

data from 1964Q1 to 2019Q4. The likelihood of the data sample Y given the estimated

parameters Θ is denoted as L(Y |Θ). By incorporating the prior parameter distribution

P (Θ), the posterior density is proportional to L(Y |Θ)P (Θ). We employ the random walk

Metropolis Hastings algorithm, which is a standard practice for drawing from the posterior

distribution of Θ. To sample the posterior distribution, we draw over 1 million sets of

parameters and discard the �rst 30%. The mode of the posterior distribution is used as the

initial likelihood.

We use the following observables expressed in growth rates: consumption C, investment

I, labor hours nc and ni, sectoral utilization utilND and utilD, and the relative price of

investment pi. This dataset is similar to Katayama and Kim (2018), but we include the

utilization variables and exclude wages. Formally, the vector of observables Yt is

Yt =
[
dCt dIt dnct dni dutilND,t dutilD,t dpit

]′
The vector of estimated parameters Θ consists of the persistence and conditional standard

deviations for shocks, the risk aversion parameter σ, the habit formation parameter ha, the

parameter ζ closely related to the Frisch elasticity of labor supply, the �xed cost share param-

eter of potential output νR, the elasticity of depreciation with respect to capital utilization

σac and σai, the investment adjustment cost parameters ΨK , the inverse of the intersectoral

elasticity of labor supply θ, and the elasticity of substitution between nondurables and ser-

vices ξ. We focus most on the elasticity of the matching function with respect to shopping

e�ort ϕ and the shopping disutility parameter η.

To calibrate the remaining parameters, we use long-run targets, normalizations, and a

subset ΘR of the estimated parameters. Table 2 presents the results. The �xed exogenous

parameters include the discount factor β, average growth rate g, gross wage markup µ, the

share ω of labor hours in consumption, and the share of services in consumption. Following

the approach of Katayama and Kim (2018) and standard practice, we set β = 0.99, g = 0.45%,

µ = 1.15, and ω = 0.8. We pin down the weight of services ωsc in the consumption aggregator

as the average share of services in consumption, ωsc = pscysc/C = 0.65 over the sample.
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The second set of parameters ΘR is estimated and used to calibrate other parameters.

These are the parameters of risk aversion σ, labor supply ζ, elasticity of the matching function

ϕ, elasticity of shopping e�ort cost η, �xed cost share νR, and habit persistence ha.

The third set of parameters determines the choice of units but does not impact the

cyclical behavior of the economy. We normalize output and the relative price of services and

investment to unity, e�ectively determining the level parameters of technology for each sector.

Additionally, we set the fraction of time allocated to work as 30%, which, in conjunction with

other parameters, speci�es the value of θn. To achieve a target capacity utilization of 81% in

each sector, we adjust the level parameters Aj of the matching function accordingly. Finally,

by setting the capital utilization rate to 1, we obtain the value for σb.

The fourth set of parameters are determined through long-run targets and the estimated

parameters in the second group. The long-run targets includes those chosen by Bai, Rios-

Rull, and Storesletten (2024). These are an investment-share of output of 20%, an annual

capital-to-output ratio of 2.75, and a labor share of income of 67%. These in turn pin

down the parameters δ, αk and αn. Appendix D discusses the calibration in detail. Note

that, at the posterior mean, ϕ = 0.75, νR = 0.24, and αk = 0.28. Hence, from (25),

dutilt ≈ 0.75dDt + 0.35dht.
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Targets Value Parameter Calibrated value/posterior mean

First group: parameters set exogenously

Discount factor 0.99 β 0.99

Average growth rate 1.8% g 0.45%

Gross wage markup 1.15 µ 1.15

Labor share in consumption 0.8 ω 0.8

Share of services in consumption 0.65 ωsc 0.65

Second group: estimated parameters used for calibration

Risk aversion − σ 1.71

Frisch elasticity − ζ 0.93

Elasticity of matching function − ϕ 0.75

Elasticity of shopping e�ort cost − η 0.34

Fixed cost share of capacity − νR 0.24

Habit persistence − ha 0.63

Third group: normalizations

SS output 1 zmc 0.44

Relative price of services 1 zsc 0.63

Relative price of investment 1 zi 0.37

Fraction time spent working 0.30 θn 1.8

Capacity utilization of nondurables 0.81 Amc 2.2

Capacity utilization of services 0.81 Asc 1.4

Capacity utilization of investment sector 0.81 Ai 2.9

Capital utilization rate 1 σb 0.033

Fourth group: standard targets

Investment share of output 0.20 δ 1.4%

Physical capital to output ratio 2.75 αk 0.28

Labor share of income 0.67 αn 0.13

Table 2: Calibration targets and parameter values. Here we calibrate a subset of parameters using long-run
targets and the posterior mean of the estimated parameters σ, ζ, ϕ, η, νR and ha.
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Table 3 presents the posterior estimates along with the prior distributions. The param-

eters ϕ and η are fundamental to the transmission mechanism and uncommon in the DSGE

literature, so it is especially important to assess identi�cation. Figure 5 plots the densities

of the posterior and prior distributions.
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Figure 5: Posterior and prior distributions for matching function elasticity ϕ and shopping disutility parameter
η.

The posterior mean of the matching function elasticity ϕ is estimated to be 0.752 which

suggests that the search-based demand channel plays a signi�cant role in the model. More-

over, the in�uence of data on updating ϕ is especially stark. The posterior density is only

signi�cant beyond 0.5, at which point the prior mass is well below the peak and descending.

At the posterior mean of 0.752, the density of the prior distribution is substantially lower

still. While the prior contributes to a smaller peak in the posterior distribution, the two dis-

tributions are markedly di�erent. The updated beliefs for η are less dramatic but signi�cant,

nonetheless. The posterior mean of 0.344 is rightward of the prior, 0.2, and the distribution

is signi�cantly more compact. For instance, at η = 0.15, the prior density is near its mode,

but the posterior density is negligible. The data is thus very informative.

We turn to the other parameters. The posterior mean values of σ (1.71) and ha (0.63) are

consistent with previous �ndings in the literature. The inverse of the elasticity of substitution

of labor, θ, has a posterior mean of 1.06, substantially less than the value 2.57 estimated by

Katayama and Kim (2018). This di�erence can be attributed to the use of search demand

shocks and absence of wealth e�ects, which naturally induce complementarity. The elasticity

of substitution ξ between nondurables and services has a posterior mean of 0.865, which is

fairly close to the prior mean, and is somewhat more concentrated compared to the prior
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distribution. The �xed cost share νR has a posterior mean of 0.244, somewhat higher than

the prior mean. Relative to Qiu and Ríos-Rull (2022), we need a somewhat higher �xed cost

share to �t the disaggregated data.14

We estimate a high posterior mean of 8.36 for the investment adjustment cost parameter

ΨK . Intuitively, high investment adjustment costs are necessary to permit a high volatility

of utilization without triggering excessively high volatility of investment. The estimated

elasticities of the marginal cost of capital utilization are higher for consumption than for

investment, which aligns with the greater volatility of investment and capacity utilization in

durable goods. However, the estimated values are lower than those reported in Katayama

and Kim (2018), in order to �t the volatility of the utilization series.

We estimate generally high values for the persistence parameters. This is especially the

case for the shopping-e�ort shocks, with posterior means of 0.925 and 0.985, respectively.

The mean persistence of the neutral shopping-e�ort is very close to the value of 0.928 ob-

tained in Section 4 and BRS's own estimate in Table 3. The posterior mean of ρg is 0.483,

which indicative of moderate peristence of shocks to the stochastic trend, is moderately lower

than the value 0.602 reported by BRS in Table 3. We also �nd greater persistence of wage

markup shocks in investment (0.977) compared to consumption 0.804, a feature which seems

necessary to �t the utilization data in conjunction with hours and the relative price of in-

vestment. The investment wage markup shock also has a far greater conditional standard

deviation. Appendix K assesses the identi�ability of these parameters by estimating the

model on arti�cial data generated from the model evaluated at the posterior mean. Most

parameters, in particular ϕ, η and the stochastic processes for search-based demand shocks,

are well-identi�ed.

14Abraham, Bormans, Konings, and Roeger (2021) estimate the �xed cost share of output using Belgian
�rm-level panel data at 23.4%.
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Table 3: Bayesian estimation of baseline model

Prior Posterior

Dist. Mean Stdev. Mean Stdev. 5% HPD 95%

σ beta 1.500 0.2500 1.712 0.3418 1.2241 2.2344

ha beta 0.500 0.2000 0.634 0.0726 0.5097 0.7408

ζ gamm 0.720 0.2500 0.925 0.1616 0.6476 1.1451

ϕ beta 0.320 0.2000 0.752 0.1079 0.5788 0.9355

η gamm 0.200 0.1500 0.344 0.1100 0.2018 0.5231

ξ gamm 0.850 0.1000 0.865 0.0711 0.7595 0.9885

νR beta 0.200 0.1000 0.244 0.1118 0.0913 0.4329

σac invg 1.000 1.0000 1.897 0.3646 1.2892 2.5271

σai invg 1.000 1.0000 0.444 0.0910 0.2980 0.5890

ΨK gamm 4.000 1.0000 8.364 2.1355 4.3518 11.2623

θ gamm 1.000 0.5000 1.059 0.3647 0.4592 1.6688

ρg beta 0.100 0.0500 0.508 0.0892 0.3695 0.6572

ρz beta 0.600 0.2000 0.743 0.0520 0.6567 0.8238

ρzI beta 0.600 0.2000 0.865 0.0355 0.8058 0.9222

ρn beta 0.600 0.2000 0.987 0.0078 0.9764 0.9998

ρd beta 0.600 0.2000 0.924 0.0221 0.8891 0.9618

ρdI beta 0.600 0.2000 0.984 0.0100 0.9695 0.9993

ρb beta 0.600 0.2000 0.928 0.0221 0.8928 0.9644

ρµc beta 0.600 0.2000 0.791 0.1954 0.4813 0.9977

ρµi beta 0.600 0.2000 0.980 0.0223 0.9474 1.0000

eg gamm 0.010 0.0100 0.006 0.0015 0.0039 0.0083

ez gamm 0.010 0.0100 0.008 0.0011 0.0058 0.0094

ezI gamm 0.010 0.0100 0.015 0.0024 0.0107 0.0185

en gamm 0.010 0.0100 0.008 0.0016 0.0060 0.0110

ed gamm 0.010 0.0100 0.099 0.0180 0.0708 0.1285

edi gamm 0.010 0.0100 0.017 0.0020 0.0142 0.0205

eb gamm 0.010 0.0100 0.009 0.0054 0.0015 0.0171

eµc gamm 0.010 0.0100 0.001 0.0005 0.0001 0.0013

eµi gamm 0.010 0.0100 0.022 0.0046 0.0149 0.0299
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Table 3: Prior and posterior distribution.

Table 4 documents the unconditional forecast error variance decomposition of the model.

Technology shocks and shopping-e�ort shocks are the primary drivers of forecast error vari-

ance in output, the Solow residual, investment, the relative price of investment, and variable

capital utilization. Shopping-e�ort shocks have a particularly signi�cant impact on utiliza-

tion. The only signi�cant contribution of discount-factor, wage markup, and labor supply

shocks lies in explaining portions of labor in consumption and investment. However, the

fraction of consumption-sector labor explained by labor supply shocks (35.2%) is second only

to shopping-e�ort shocks.

Here our primary focus is on the Solow residual and utilization. Shopping-e�ort and

technology shocks play similarly important roles for the former, but the search demand

shocks explain over 70% of utilization. Hence, the evidence strongly supports a powerful

causal channel of demand shocks into productivity. It is sensible to compare our results to

Table 3 in BRS, which consider an estimation of the model without shopping-time data.

They �nd that search demand shocks account for about 58% of the variance decomposition

of the Solow residual, compared to 52% in our speci�cation. However, this result relies on

calibrating ϕ and η using shopping time and price dispersion information, whereas we instead

estimate these parameters.

Our results also show that search demand shocks explain the majority of �uctuations in

output, investment, and sectoral labor. This suggests that demand shocks play a greater role

than technology shocks in driving business cycles, consistent with Hall (1997) and subsequent

studies arguing that demand shocks are essential for generating strong comovement between

hours worked and consumption. The dominance of shopping e�ort shocks over discount

factor shocks supports a similar interpretation of business cycles as in Hall (1997): during

recessions, people spend less e�ort shopping for goods, consume fewer goods and services,

and work fewer hours.

Our characterization of business cycle goes further by showing that �rms respond to de-

clining demand for goods and services by reducing capacity utilization, which in turn, lowers

measured TFP. In contrast, a negative technology shock leads �rms to increase utilization

rates in both sectors to counteract the decline in production e�ciency and investment. De-
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mand shocks uniquely generate positive comovement among sectoral utilization rates, TFP,

consumption and output. 15 Our results thus underscore the productive role that demand

shocks play in business cycles.

Table 4: Unconditional forecast error variance decomposition

Technology Labor Supply Shopping E�ort Discount Factor Wage Markup

Y 27.78 0.10 71.06 1.01 0.05

SR 42.27 4.29 51.63 0.86 0.95

I 31.31 0.08 63.18 5.41 0.02

pi 62.39 0.02 36.86 0.30 0.43

nc 5.71 35.20 53.64 5.12 0.33

ni 21.10 3.43 55.26 3.44 16.76

util 27.15 0.11 71.82 0.90 0.03

D 0.42 0.00 99.56 0.01 0.00

h 22.18 0.08 77.30 0.43 0.01

Table 4: Unconditional forecast error variance decomposition for variables in growth rates. Shocks are
grouped in respective categories.

Table 5 compares the log marginal likelihood, posterior mean of ϕ, variance decomposition,

and second moments for various speci�cations of the model. We calculate the log marginal

data density using the modi�ed harmonic mean estimator. The baseline model accounts for

two thirds of the variance decomposition of output and nearly half of the Solow residual. The

relative variance of utilization to the Solow residual is 0.87. These statistics are similar in the

absence of variable capital utilization but fall somewhat without �xed costs. This suggests

signi�cant complementarity between the demand channel and �xed costs.

15This point is explicitly demonstrated in Figures 6 and 8 which show the impulse response functions for
technology and search demand shocks.
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Table 5: Comparison of model speci�cation

Remove

Data Baseline Perfect
labor mobility

Common
wage markup

Fixed cost VCU SDS SDS and
utilization data

LML − 4556.7 4529.3 2923.7 4566.8 4473.8 2564.9 −

∆ LML − 0 -27.4 -1633 10.1 -82.9 -1991.8 −

Posterior mean ϕ − 0.75 0.39 0.94 0.94 0.36 0.72 0.52

FEVD(Y, SDS) − 71.06 62.61 5.39 71.16 69.25 − −

FEVD(SR, SDS) − 51.63 49.49 4.02 46.76 57.87 − −

Var(util)/Var(SR) − 1.4 0.72 0.32 2.02 0.74 2.21 0.19

std(Y ) 0.87 1.6 2.02 7.57 1.38 2.21 207.71 0.64

std(utilND) 1.26 1.24 1.18 5.08 1.21 1.55 161.65 0.35

std(utilD) 2.27 3.2 2.69 12.81 3.62 2.43 266.65 1.14

std(nc) 0.57 0.69 0.67 2.92 0.67 0.89 71.31 0.56

std(ni) 1.94 2.47 2.77 12.25 2.26 2.01 344.8 1.87

Cor(C, I) 0.54 0.64 0.74 0.09 0.52 0.57 0.999 0.24

Cor(utilND, utilD) 0.75 0.45 0.76 -0.27 0.29 0.63 0.999 -0.6

Cor(nc, ni) 0.87 0.59 0.40 -0.92 0.66 0.27 0.986 0.83

Cor(utilND, utilND,,−1) 0.51 0.31 0.25 0.46 0.23 -0.05 0.999 0.27

Cor(utilD, utilD,−1) 0.55 0.48 0.47 0.37 0.48 0.25 0.999 0.26

Table 5: Comparison of log marginal likelihood, posterior mean of ϕ, variance decomposition, and second
moments for various speci�cations of the model. The log marginal likelihood (LML) is calculated using the
modi�ed harmonic mean. The �rst column describes relevant empirical moments, and the second column
corresponds to the baseline model. The third and fourth columns present estimates of the model with perfect
labor mobility (θ = 0) and only a common wage markup shock, respectively. The �fth and sixth columns
present estimates in which �xed costs and variable capital utilization are removed. The seventh column
removes search-based demand shocks, and the eighth column also removes the utilization series from the set
of observables.

We next probe more deeply into model �t by examining the second moments. The baseline

model tends to overestimate the volatility of output but �ts the volatility of the utilization

series and labor hours quite well. It captures the correlation between consumption and

investment. well as the correlations of the utilization series well and that of labor hours

moderately well. It also provides a reasonable, albeit not excellent, �t of the correlation

of utilization and labor hours. Finally, the model also matches the autocorrelation of the

utilization series reasonably well, especially for durables.

The third column shows the results after estimating the model with perfect labor mobility
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(θ = 0). Even though the posterior mean of ϕ decreases to 0.39, search-based demand shocks

continue to have an outsized role in the variance decomposition. The model �ts data worse

overall but better captures the correlation of the utilization variables. The fourth column

re-estimates the model under common wage-markup shocks. As expected from our discussion

of the shopping ratio (20), this omission dramatically worsens model �t. The reason is that

the shopping-e�ort ratio is now much more directly tied to the labor ratio, and it loses

�exibility in �tting the comovement of utilization. Consequently, at the posterior mean, the

correlations of utilization (−0.27) and especially labor hours (−0.92) become negative. The

volatilities are dramatically higher as well. The substantial reduction in model �t is re�ected

in a 1,633 reduction in the log marginal likelihood compared to the baseline.

In the next two columns, we remove �xed costs and variable capital utilization, one-

by-one. Both of these ingredients can be considered important robustness checks on the

search-based demand channel. Removing �xed costly does not greatly impact model �t.

It slightly improves the comovement of labor hours and attenuates the excess volatility of

output. However, it generates too low of a correlation of the utilization variables (0.29)

and further reduces the autocorrelation of the utilization of nondurables. Removing variable

capital utilization, however, is far more detrimental. The log marginal likelihood falls by

82.9. Intuitively, the model loses �exibility in explaining utilization and output. There is

more excess volatility of output in this case, and the implied autocorrelation of the utilization

variables collapses, becoming slightly negative for nondurables.

The penultimate (seventh) column removes search-based demand shock. This speci�ca-

tion resembles Katayama and Kim (2018), but goods market frictions still operate through

other shocks. It is immediately evident that this change completely prevents the model

from �tting the data: the log marginal data density collapses by nearly 1, 992, the standard

deviations exceed those of the data by two orders of magnitude, and the correlations and

autocorrelations are nearly unity. Intuitively, the capacity utilization data roughly pins down

the sectoral shopping e�orts, and the model lacks freedom to �t sectoral labor and output

and the relative price of investment jointly. The appendix shows that the special case of a

unitary consumption sector, no �xed costs, and no investment adjustment costs gives rise to

stochastic singularity.

The �nal column also removes utilization data, making the set of observables similar to
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Katayama and Kim (2018). Estimating this speci�cation con�rms that the model can �t non-

utilization data reasonably well. The volatility of output (0.64) and labor hours (0.56, 1.87)

are close to the empirical values. The model also �ts the labor comovement well (0.83),

thought the comovement of consumption and investment is too low (0.24). However, the

volatility of the utilization variables is too low, and their comovement is sharply negative

(−0.6). That is, absent search-based demand shocks, the model �ts standard macro series

well at the expense of matching the volatility and comovement of utilization. A corollary is

that a multisector real business cycle model without the goods market frictions would face

the same problem.

To better interpret these results, we examine impulse responses of consumption, invest-

ment, their respective labor inputs, utilization variables, and the relative price of investment

from the baseline model with the parameters set to the posterior mean. For ease of com-

parison, we present the impulse responses in growth rates. The utilization variables consist

of the observable subcomponents, durables and nondurables, together with aggregate uti-

lization. A large fraction of aggregate utilization re�ects services and is thus unobservable.

We also include shopping e�ort D and capital intensity h in reference to Equation (25):

dutilt ≈ 0.75dDt + 0.35dht.

Figure 6 plots the impulse response to a unit standard deviation reduction in shopping

e�ort. This shock prompts households to increase their shopping e�ort, leading to a boost

in matching and utilization. As a result, �rms experience a higher demand for labor in

both sectors, thanks to their improved ability to match. Consequently, the shock generates

positive comovement in the growth rates of sectoral output, sectoral input, and utilization

in the nondurables and durables sectors. As expected, the Solow residual rises on impact.

Moreover, the relative price of investment is countercyclical as in the data.
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Figure 6: A unit standard deviation negative shock ed to shopping e�ort in baseline model with parameters
set at the posterior mean. The outcome variables are presented in growth rates.

Figure 7 plots the impulse response to a unit standard deviation discount-factor shock.

Households are more patient, which raises the desire to consume in the future relative to

the present. As a result, consumption falls while investment rises. Additionally, there is an

increase in utilization in the durables sector but a decrease in utilization in the nondurables

sector. Limited factor mobility attenuates but does not prevent the fall in labor in the

consumption sector. Contrary to the data, there is positive comovement of investment and

its relative price.
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set at the posterior mean. The outcome variables are presented in growth rates.
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What about technology shocks? It may appear that technology shocks can generate all

the comovement properties as search demand shocks. To that end, Figure 8 plots the im-

pulse response to a unit standard deviation neutral stationary technology shock. The Solow

residual rises, but by a smaller amount than from the demand shock. The shock generates

positive comovement in consumption and investment, as well as in the labor input of each

sector. Thus, a positive technology shock is consistent with sectoral comovement as de-

scribed by Christiano and Fitzgerald (1998) and Katayama and Kim (2018). Limited factor

mobility contributes to this feature. Moreover, the relative price of investment falls. How-

ever, utilization in nondurables, part of the consumption sector, actually falls before rising.

The technology boost increases the expected return on investment, thereby incentivizing an

immediate rise in utilization in the durable sector. After a few periods, the e�ects of the

technology shock subside, and utilization in nondurables respond positively. Hence, search

demand shocks are unique in producing positive comovement in the growth rates of all series.
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Figure 8: A unit standard deviation negative shock ez to technology in the baseline model with parameters
set at the posterior mean. The outcome variables are presented in growth rates.

7. Conclusion

We investigate the contribution of demand shocks to business cycle �uctuations in a

three-sector model using Bayesian techniques. Actual output falls below capacity due to

matching frictions. Search-based demand shocks in�uence capacity utilization, which a�ects

the Solow residual. To estimate the model, we adopt a novel approach utilizing sectoral data
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on capacity utilization in both nondurables and durables sectors, alongside data on labor

hours and output in consumption and investment sectors. This unique data combination

incorporates information on sectoral productivity while subjecting the model to a rigorous

test. In particular, we require the model to �t not only overall capacity utilization dynamics

but also the volatility, comovement, and persistence of its subcomponents.

First, we estimate high and precise values of the matching function elasticity ϕ and a

precise value for the elasticity of shopping disutility η. We further assess parameter identi�-

cation by estimating the model on arti�cial data, drawn at the posterior mean, and showing

that parameter estimates are clustered around the true values. This second test highlights

that the model produces estimates that are not only informed by the data but also robust to

the data generating process. Second, shocks to shopping e�ort account for a large part of the

forecast error variance of output, the Solow residual, the relative price of investment, hours,

and utilization. Third, the model provides good empirical �t, explaining comovement in la-

bor input, output, and utilization well. Speci�cally, the model reasonably �ts the volatility,

comovement, and autocorrelation of the utilization series.

We examine in detail the contribution of di�erent model ingredients. The core �nd-

ings persist without �xed costs or limited factor mobility. However, sector-speci�c wage

markups and search-based demand shocks are crucial for accurately �tting sectoral data.

Models with only common wage markup shocks overestimate volatility and fail to capture

labor-utilization comovement. Without search-based demand shocks, shopping e�ort be-

comes overdetermined, constrained by both output and relative price variables as well as

utilization measures. Omitting search-based demand shocks and utilization variables allows

the model to �t standard macro series but leads to a counterfactual negative correlation of

utilization and understates its volatility.

More broadly, we have exploited sectoral data to argue in favor of a demand-based ex-

planation of the business cycle. Even though there is market power in wage setting, we have

deliberately abstracted from nominal rigidity to isolate the search-based demand channel,

thus not relying on monetary policy transmission or using monetary variables in estimation.

This choice actually tilts the playing �eld in favor of technology shocks. In particular, we

do not impose the �nding from the literature that technology shocks reduce labor input in

the short run (Gali (1999), Basu, Fernald, and Kimball (2006), Francis and Ramey (2005)).
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Nonetheless, a monetary context would be valuable by incorporating data on in�ation and

interest rates and using them to to discipline demand shocks. It would also link capacity

utilization, an observed notion of economic slack, to the output gap, the latent notion of

slack in New Keynesian models.

Our demand shocks include a standard shock to the discount factor (θb) and two novel

shocks related to goods market frictions (θd and θi), with the latter proving substantially

more in�uential for business cycle �uctuations. We do not literally suggest that relevant

demand shocks necessarily involve �uctuations in shopping disutility. A key requirement is

explaining the main comovement features of the data, including capacity utilization patterns.

A valuable direction for future work would be incorporating con�dence shocks, as in Angele-

tos, Collard, and Dellas (2018), within a framework of goods market frictions and endogenous

shopping e�ort. Connecting autonomous con�dence movements with shopping e�ort aligns

with Keynes (1936) while remaining conceptually distinct from the New Keynesian paradigm.
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Appendix A. Background on endogeneity of TFP

The early real business cycle literature treated the Solow residual as a pure measure of

technology, but subsequent analysis found that it contained important components unre-

lated to technology. To address this issue, Basu, Fernald, and Kimball (2006) purify the

Solow residual by removing aggregation e�ects, variation in capital and labor utilization,

non-constant returns to scale, and imperfect competition. They �nd that the puri�ed tech-

nology process is about half as volatile as TFP, appears to be permanent, and is generally

uncorrelated with output. Building on these �ndings, Fernald (2014) constructs a quarterly

measure of TFP adjusted for utilization. Figure A.9 plots detrended utilization-adjusted

TFP alongside standard TFP. The Fernald series not only leads the Solow residual but also

exhibits less volatility. Moreover, these series occasionally diverge signi�cantly, most notably

during the pandemic shock in 2020Q1, the Great Recession, and the recession of the early

1980's. For what follows, we de�ne Fernald utilization as the di�erence between cyclical TFP

and its utilization-adjusted counterpart.
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Figure A.9: Time series of the Solow residual and its utilization-adjusted counterpart, following the method-
ology in Fernald (2014). Each underlying series is detrended via the Hamilton regression �lter with the four
most recent observations 8 quarters in the past (p = 4, h = 8)

Appendix B. Data appendix

Table B.6 provides the details on constructing the model variables, which are used for

summary statistics and Bayesian estimation.
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Symbol Description Construction

C Nominal consumption PCND+PCESV

I Nominal gross private domestic investment PCDG+PNFI+PRFI

Deflator GDP De�ator GDPDEF

Pop Civilian non-institutional population CNP160V

Pc Price index: consumption PCEPI

Pi Price index: investment INVDEV

c Real per capita consumption C
Pop∗Pc

i Real per capita investment I
Pop∗Pi

y Real per capita output c+ i

nc Labor in consumption sector Labor in nondurables and services

ni Labor in investment sector Labor in construction and durables

n Aggregate labor nc + ni

pi Relative price of investment Pi/Pc

utilND Total capacity utilization: nondurables TCU

utilD Total capacity utilization: durables TCU

SR Solow residual Fernald (2014), FRB of San Francisco

SRutil Utilization-adjusted Solow residual Fernald (2014), FRB of San Francisco

Table B.6: Data sources used in motivating evidence and estimation.

The construction of sectoral data follows Katayama and Kim (2018). We obtain con-

sumption and investment as follows:

Ct =

(
Nondurable(PCND) + Services(PCESV )

Pc × CivilianNonstitutionalPopulation(CNP160V )

)
It =

(
Durable(PCDG) +NoresidentialInvestment(PNFI) +ResidentialInvestment(PRFI)

Pi × CivilianNoninstitutionalPopulation(CNP160V )

)

We use an HP-�ltered trend for population (λ = 10, 000) to eliminate jumps around census

dates.

For labor data, we make use of the BLS Current Employment Statistics (https://www.

bls.gov/ces/data). BLS Table B6 contains the number of production and non-supervisory

employees by industry, and BLS Table B7 contains average weekly hours of each sector. We
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compute total hours for nondurables, services, construction, and durables by multiplying

the relevant components of each table. Then we impute labor in consumption as sum of

labor in nondurables and services. Similarly, we construct labor in investment as sum of

labor in construction and durables. Figure B.10 plots labor hours in each sector. The close

comovement and greater volatility of hours in investment is evident.
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Figure B.10: Sectoral and aggregate hours. Each underlying series is detrended via the Hamilton regression
�lter with the four most recent observations 8 quarters in the past (p = 4, h = 8).

We also make use of disaggregated data on total capacity utilization from the Fed-

eral Reserve Board. Estimates are available for 89 detailed industries (71 manufacturing,

16 mining, 2 utilities) and also for several industry groups. Our focus is on durables

and nondurables. The data can be downloaded at https://www.federalreserve.gov/

datadownload/Choose.aspx?rel=G17.

Appendix C. Details of household and �rm problem

Competitive search creates additional interconnections between the household and �rm

problems. A complete characterization requires solving both jointly. We start with the

household problem. Let γmc, γsc, γi, λ, µmc, µsc, µi be the respective Lagrangian multipliers

on the constraints. The �rst order conditions are

[ymc] : umc = γmc + λpmc

[ysc] : usc = γsc + λpsc

[ij] : −γi − λpj + µj

(
1− S ′

j(xj)xj − Sj(xj)
)
+ βθbEµ′

jS
′
j(x

′
j)(x

′
j)

2 = 0 (C.1)

[dj] : ud = −AjD
ϕ−1
j Fjγj, j ∈ {mc, sc} (C.2)
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[di] : udθi = −AiD
ϕ−1
i Fiγi (C.3)

[nc] : un
∂na

∂nc

= −λW ∗
c (C.4)

[ni] : un
∂na

∂ni

= −λW ∗
i (C.5)

[hj] δh(hj)µj = λRj j ∈ {mc, sc, i} (C.6)

[k′
j] : µj = βθbE

{
λ′R′

jh
′
j + (1− δj(h

′
j))µ

′
j

}
j ∈ {mc, sc, i} (C.7)

The multipliers γmc, γsc, γi re�ect the value of an additional unit of traded output. In the con-

sumption submarkets, these represent a wedge between the marginal utility of consumption

and the marginal utility of wealth. For investment, the multiplier γi represents an analogous

wedge between the marginal utility of wealth and value of the investment good. Equations

(C.2) and (C.3) equate the marginal shopping disutility to the additional units obtained by

search multiplied by the value of the unit. Equations (C.4) and (C.5) equate the marginal

disutility of work in each sector to the (variable) wage multiplied by the marginal utility

of wealth. Equation (C.6) equates the marginal cost of depreciated capital to the value of

additional output generated in terms of consumption. Finally, (C.7) equates the marginal

value of capital to the expected discounted rate of return, composed of the rental income and

value of undepreciated capital.

We next characterize the envelope conditions:

∂V j

∂pj
= −λj = −λdjAjD

ϕ−1
j Fj j ∈ {mc, sc, i} (C.8)

∂V j

∂Dj

= (ϕ− 1)djAjD
ϕ−2
j Fjγj j ∈ {mc, sc, i} (C.9)

∂V j

∂Fj

= djAjD
ϕ−1
j γj j ∈ {mc, sc, i}

The ratio of (C.8) and (C.9) characterizes the indi�erence curve between price and tightness

in a submarket:

∂V j

∂pj

∂V j

∂Dj

= − λDj

(ϕ− 1)γj
(C.10)

We next turn to the �rm's problem. The �rm chooses labor type s in sector j so as to
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generate an e�ective labor bundle nj at the lowest possible cost. The problem is

min
nj(s)

∫ 1

0

Wj(s)nj(s)ds s.t. (C.11)(∫ 1

0

nj(s)
1/µjdj

)µj

≥ n (C.12)

Take the �rst order condition of (C.11) and recognize Wj as the Lagrangian multiplier on

constraint (C.12). Rearrange as

nj(s) =

(
Wj(s)

Wj

)−
µj

µj−1

nj

The corresponding wage index for composite labor input in sector j is

Wj =

[∫ 1

0

Wj(s)
1/(µj−1)ds

]µj−1

We can now examine the simpli�ed �rm problem. Let ιj and ∇j be the multipliers on

participation constraint and production technology. The �rst order conditions are

[Fj] ∇j = pjAjD
ϕ
j + ιj

∂V j

∂F j

[nj] Wj = ∇jzjfn (C.13)

[k] hjRj = ∇jzjfk (C.14)

[pj] AjD
ϕ
j Fj + ιj

∂V j

∂pj
= 0 (C.15)

[Dj] ϕAjD
ϕ−1
j pjFj + ιj

∂V j

∂Dj
= 0 (C.16)

Take the ratio of �rst order conditions (C.15) and (C.16) to alternately characterize the

indi�erence curve between price and tightness:

∂V j

∂pj

∂V j

∂Dj

=
Dj

ϕpj

Plug in (C.10) to �nd

Dj

ϕpj
= − λDj

(ϕ− 1)γj
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which we rearrange as

γj =
ϕ

1− ϕ
λpj

Since γj = uj − λpj for j = {mc, sc}, we have

λ = (1− ϕ)
uj

pj
(C.17)

which allows us to characterize γi:

γi = ϕ
uj

pj
pi j ∈ {mc, sc}

Note that (C.17) also implies that the marginal utility relative to the price is the same in

each consumption subsector. The values of γmc, γsc and λ allows us to rewrite the shopping

optimality conditions and labor leisure tradeo�:

−ud = ϕujAjD
ϕ−1
j [zjf(hjkj, nj)− νj] j ∈ {mc, sc}

−udθi = ϕ
umcpi
pmc

AiD
ϕ−1
i [zif(hiki, ni)− νi]

un
∂na

∂nj

= −umc(1− ϕ)

pmc

W ∗
j j ∈ {c, i}

We next revisit the investment �rst order condition (C.1) and characterize Tobin's Q. For

sector j ∈ {mc, sc, i} we have

λpi + γi = µj(1− S ′(xj)xj − S(xj)) + βθbEµ′
j(S

′(x′
j)(x

′
j)

2)

λpi +
ϕ

1− ϕ
λpi = µj(1− S ′(xj)xj − S(xj)) + βθbEµ′

j(S
′(x′

j)(x
′
j)

2)

λpi
1− ϕ

= µj(1− S ′(xj)xj − S(xj)) + βθbEµ′
j(S

′(x′
j)(x

′
j)

2)

Let Qj = µj/λ: relative price of capital in sector j in terms of consumption. Using Qj rewrite

the choice of optimal investment as

pi
1− ϕ

= Qj[1− S ′
j(xj)xj − Sj(xj)] + βθbE

λ′

λ
Q′

jS
′
j(x

′
j)(x

′
j)

2
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We also use Tobin's Q to rewrite the optimal utilization in j ∈ {mc, sc, i} and the Euler

equation:

δh(hj)Qj = Rj

Qj = βθbE
λ′

λ

[
(1− δ(h′

j))Q
′
j +R′

jh
′
j

]
It remains to solve for the Lagrangian multipliers ιj and ∇j on the �rm problem. This is

straightforward given λ and γj. First,

ιj =
Ajq

ϕ
j Fj

∂V j

∂pj

=
1

λ

Second,

∇j = pjAjD
ϕ
j + ιj

∂V j

∂F j

= pjAjD
ϕ
j +

AjD
ϕ
j γj

λ

= pjAjD
ϕ
j + AjD

ϕ
j

ϕ

1− ϕ
pj

= AjD
ϕ
j

(
pj +

ϕ

1− ϕ
pj

)
=

pjAjD
ϕ
j

1− ϕ

The value of additional production capacity ∇j exceeds the additional sales pjAjD
ϕ
j . This

is because the additional sales also relax the participation constraint of households. Finally,

the value of these multipliers enables us to characterize the factor demands for the �rms.

Substitute for ∇j in (C.13) to �nd

(1− ϕ)
Wj

pj
= Aj(Dj)

ϕzj
∂f(hjkj, nj)

∂n

=
αn

nj

AjD
ϕ
j zjf(hjkj, nj)

=
αn

nj

AjD
ϕ
j

(
yj

AjD
ϕ
j

+ νj

)
=

αn

nc

(yj + AjD
ϕ
j νj)
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=
α

nc

yj(1 + νR)

where we use νR
j = νjΨT/yj. We can simplify the capital demand (or rental rate) (C.14)

using ratios as

Wj

Rj

=
αn

αk

hjkj
nj

Aggregating across sectors, the steady-state labor labor of income is αn(1 + νR)/(1− ϕ)

and the capital share of income is αk(1 + νR)/(1− ϕ).

Appendix D. Calibration

In general, we determine some (�xed) parameters from long-run targets, estimate the

parameter set Θ described in the main text, and back out the remaining (dependent param-

eters) given draws from Θ and long-run targets. The dependent parameters are thus random

variables. Here we use the term calibration more broadly to characterize the determination

of dependent parameters as a function of both estimated parameters and long-run targets.

Several key targets used for calibration are investment-to-output piI/Y , capital-to-output

pik/Y , the labor share of income, the unconditional growth rate g, and share of services Sc

in consumption. In terms of model variables at quarterly frequency, we have

κ ≡ piI/Y = 20%, pik/Y = 2.75(4) = 11, g = 0.45%, τ ≡ nW

Y
= 67%, Ssc ≡

pscysc
C

= 65%

The �rst two targets are identical to Bai, Rios-Rull, and Storesletten (2024), and the third

corresponds to 1.8% per capital annual growth, which is very close to the average over the

data sample. Capital accumulation (ignoring adjustment costs) in transformed variables 16

is given by

gk̂′ = (1− δ)k̂ + gÎ

16Investment is divided by the stochastic trend Ît = It/Xt while the capital stock is divided by the lagged
stochastic trend K̂t = Kt/Xt−1 to maintain its status as a predetermined variable.
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Balanced growth, in terms of original variables, implies a steady state in terms of k̂, such

that

δ = 1− g +
I

k
≈ 1.37%

Next, we characterize αn, αk and σb. Labor demand (17) for each sector implies

Wjnj =
αn

1− ϕ
pjY

j(1 + νR
j )

where νR
j = νjX/Fj. The steady state labor share is thus

∑
Wjnj

Y
=

αn

1− ϕ

C + piI

Y
(1 + νR

ss) =
αn

1− ϕ
(1 + νR

ss)

so that αn = (1− ϕ)labor share/(1 + νR
ss).

In steady state, the rate of return on capital in each sector is equal, so we let R denote

the common value: R = Rj for all j. It is helpful to use the interest rate r on an illiquid

bond as the value which satis�es βg−σ = 1/(1 + r).

The Euler equations in the steady state imply

Q = βg−σ[(1− δ)Q+R] ⇒

(1 + r)Q = (1− δ)Q+R

(r + δ)Q = R

Given that capital utilization hj = 1 for all j in the steady state, the parameter σb satis�es

σb =
R

Q
= r + δ

Combining with Tobin's Q, pi/(1− ϕ) = Q, we have

(1− ϕ)
R

pi
= r + δ
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Now, turn to the �rm demand for capital (18):

(1− ϕ)
Rj

pj
= αk

Yj

kj
(1 + νR)

An immediate corollary is that Yj/kj = Y/k for all k and hence

r + δ = αk
Y

k
(1 + νR)

so that

αk =
r + δ

1 + νR

k

Y

We pin down the weight of services ωsc as the empirical measure Sc = pscYsc/C and set

Sc = 0.65. The ratio of demand in consumption subsectors implies

Ymc

Ysc

=

(
pmc

psc

)−ξ
ωmc

ωsc

Multiply each side by pmc/psc, so that

pmcYmc

pscYsc

=

(
pmc

psc

)1−ξ
ωmc

ωsc

and plug in Sc:

(
1− Sc

Sc

)
=

(
pmc

psc

)1−ξ
1− Sc

Sc

so that pmc = psc. Since we normalize psc = 1 and have also normalized the consumption

price index to unity, we have pmc = psc = pc = 1.

Given the target for capacity utilization ΨT,j, we wish to �nd the corresponding level

coe�cient Aj = ΨT,j/D
ϕ
j . This entails solving for each Dj. We �rst solve for D. Let us sum

each side of the shopping optimality condition across sectors:

∑
j

D1/ηDj =
∑
j

ϕpjYj

D
η+1
η = ϕY
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Given that we choose technology coe�cients such that Y = 1, we obtain D = ϕ
η

η+1 .

Now, take the ratio of the shopping conditions rearrange for relative shopping e�ort:

Dmc

Dsc

=
pmc

psc

Ymc

Ysc

=
1− Sc

Sc

(D.1)

Similarly,

Dj

Di

= Sj
1− I/Y

I/Y
(D.2)

Now, we put (D.1) and (D.2) together to characterize shopping e�ort in each sector:

Dmc = (1− Sc)(1− I/Y )D

Dsc = Sc(1− I/Y )D

Di = (I/Y )D

Appendix E. Cyclical deviations of Solow residual and total capacity utilization

In the main text we analyze the relationship between the Solow residual and capacity

utilization in growth rates. Here we compare them in terms of cyclical deviations. Using

(21), the cyclical component of the Solow residual is

ŜRj ≡
SRj

Xτ
=

AjD
ϕ
j zjh

αk
j g1−αk−τ k̂αk−1+τ

j nαn−τ
j

1 + νR
j

= g1−τ Ŷj

k̂1−τ
j nτ

j

The log linear representation is

˜̂
SRj = ϕD̃j + z̃j + αkh̃j + (1− αk − τ)g̃ + (αk − 1 + τ)

˜̂
kj + (αn − τ)ñj −

νR
ss

1 + νR
ss

ν̃R
j

and note that g̃t = log gt − log g which is �rst-order equivalent to Xobs. Log linearizing (24)

yields

ũtilj = ϕD̃j + (1 + νR
ss)αkh̃j
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Thus, in the absence of �xed costs, we have

˜̂
SRj|νj=0 = ũtilj + z̃j + (1− αk − τ)(log gt − log g) + (αk − 1 + τ)

˜̂
kj + (αn − τ)ñj

Given the detrending, the coe�cient on nonstationary technology is 1− αk − τ rather than

1 − αk. Otherwise, the relationship between cyclical components of the Solow residual and

utilization has the same form as the one in growth rates.

The relationship between the cyclical form and growth rate form is

dSRt = ∆ logSRt

= log ŜRt + τ logXt − (log ŜRt−1 + τ logXt−1)

= ∆
˜̂
SRjt + τ log gt

The growth rate of the Solow residual equals the growth rate of cyclical deviations plus the log

deviation of the stochastic trend growth rate relative to the unconditional mean multiplied

by the labor share.

Appendix F. Stochastic singularity in the absence of search demand shocks for

special case of the model

We �nd numerically in Table 5 that search-based demand shocks are essential to �t the

data. Here we show that, in a special case of the model, the absence of search demand shocks

actually gives rise to stochastic singularity. That is, an observable series is a deterministic

function of other observable series and predetermined variables. Since full-information meth-

ods require one to match the entire observed series for some sequence of shocks, this renders

estimation impossible under this approach.

Speci�cally, consider a unitary consumption sector and abstract from �xed costs and

investment adjustment costs. Then equation (19) becomes

pi
pc

=
niWi

njWj

C

I
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Absent search demand shocks, (20) simpli�es to

Di

Dc

=
1

θi

niWi

ncWc

and hence

Di

Dc

=
pi
pc

I

C
(F.1)

From (F.1), the shopping e�ort ratio is entirely pinned down in terms of observables. Uti-

lization in this special case satis�es

utilj = AjD
ϕ
j h

αk
j j ∈ {c, i} (F.2)

Since, for each j, Dj is pinned down by observables, stochastic singularity arises if hj is also

pinned down by observables.

Recall that optimal utilization has the form δjh(hj)Qj = Rj for Qj = pj/(1−ϕ). Moreover,

we can express the rental of capital as Rj = αkYj/(hjKj) and hence

δjh(hj)
pj

1− ϕ
= αk

Yj

hjkj

so that hj is a function of observables and predetermined capital. Consequently, using (F.2),

utilization in each sector is a function of other observables, and there is stochastic singularity.
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Appendix G. Analysis of simpli�ed model

We consider a dynamic version of the static model, which includes capital accumu-

lation.17 We estimate the shock processes {θd, θn, g, z, zI}, each AR(1) with persistence

{ρd, ρn, ρg, ρz, ρi} and conditional standard deviation {σd, σn, σg, σz, σi}. This approach ex-

tends the set of shocks used by BRS to include neutral stationary technology shocks. While

generally adhering to the same calibration strategy and targets, we now �x the following pa-

rameters: risk aversion β = 0.99, σ = 2.0, and Frisch elasticity ζ = 0.72.18 We estimate the

model by adding total capacity utilization as an observable series to the BRS speci�cation,

which includes output, investment, labor productivity, and the relative price of investment.

We then compare the estimates with and without capacity utilization.

Table G.7 reports the prior distributions used for both speci�cations. In addition to ϕ and

η, we specify distributions for the persistence parameters of nonstationary neutral technology,

stationary neutral technology, investment-speci�c technology, labor supply, and shopping

e�ort. We apply identical prior distributions for the conditional standard deviation and

persistence of the stationary shocks. These conditional standard deviations follow an inverse

gamma distribution with a mean of 0.01 and a standard deviation of 0.1. The persistence

parameters have a prior mean of 0.6 and a standard deviation of 0.2.

Table G.7: Prior distributions

Parameter Distribution Mean Std

ϕ Beta 0.32 0.20

η Gamma 0.20 0.15

σeg Inv. Gamma 0.01 0.10

σx Inv. Gamma 0.01 0.10

ρg Beta 0.10 0.05

ρx Beta 0.60 0.20

Table G.7: Prior distributions. We use the symbol x as a shorthand for a shock in the set {θd, θn, z, zI}.

Table G.8 compares the posterior means and 90% probability bands of the key shopping-

17Appendix G lists the full set of equilibrium conditions.
18BRS also �x ζ = 0.72 but they use σ = 1 and β = 0.997. We have also estimated the model with ϕ = 0.32

and η = 0.2 as by BRS and obtained a similar variance decomposition as that paper.
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related parameters. In the �rst panel, the parameter ϕ is imprecisely estimated with a lower

posterior mean. In fact, the 90% probability band includes essentially a null e�ect. By

contrast, when we add total capacity utilization, the posterior mean increases substantially

to 0.88 and the estimate is precise. Estimates for the shopping cost elasticity η are also

signi�cantly higher and more precisely estimated. Generally, estimates of ρd and σd are more

precise as well, though the properties di�er. With the use of utilization data, demand shocks

exhibit greater persistence, but their innovations become less volatile.

Table G.8: Role of capacity utilization on parameter estimates

Parameter BRS dataset Add capacity utilization

Post. mean 90% HPD interval Post. mean 90% HPD interval

ϕ 0.0978 [0.0001, 0.205] 0.883 [0.863, 0.906]

η 0.412 [0.282, 0.572] 1.87 [1.86, 1.90]

ρd 0.871 [0.775, 0.961] 0.928 [0.914, 0.941]

σd 0.0484 [0.0024, 0.0987] 0.0075 [0.0068, 0.0081]

Table G.8: Estimation of baseline BRS model with two sets of observable series. The �rst considers growth
rates of output, investment, labor productivity, and the relative price of investment. The second speci�cation
also considers total capacity utilization growth.

The top panel of Table G.9 compares the standard deviations at the posterior mean of

shocks θd, shopping e�ort D, and utilization util, where the last two are expressed in growth

rates. The main result is that total capacity utilization is ten times more volatile even

though shopping-e�ort shocks are less volatile and shopping e�ort has similar volatility. The

key di�erence lies in the transmission of shopping e�ort to utilization through ϕ. The bottom

panel highlights the role of these varying parameter estimates for the forecast error variance

fraction attributable to demand shocks. It is very small in the former case but large in the

latter, accounting for about two thirds of output, almost a third of labor productivity, and

about half the Solow residual.
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Table G.9: Comparison of volatility and variance decomposition

BRS dataset Add capacity

utilization

Volatility

θd 9.84 2.00

D 1.54 1.69

util 0.15 1.49

FEVD

Y 7.73 63.6

Y/N 2.49 27.0

SR 6.14 54.1

Table G.9: The �rst sub-table documents standard deviations of shopping-related variables under two sets of
observables. The second sub-table shows the fraction of the unconditional variance decomposition attributable
to the demand shock θd. See Table G.8.

These two exercises sharply illustrate the informative role of total capacity utilization.

The shopping-related parameters more precisely estimated, demand shocks explain much

more of the forecast error variance, and the volatility of total capacity utilization in the

model rises ten-fold, much closer to the empirical value.19

Yet there are signi�cant caveats to this analysis. First, in the absence of variable capital

utilization, only shopping can in�uence total capacity utilization. Firms should also be able

to select the intensity of capital use. To make the dynamic tradeo� more interesting and

better �t investment data, there should also be investment adjustment costs. Then capacity

utilization will re�ect both shopping e�ort and intensity of capital use. Moreover, given the

focus on productivity, it makes sense to incorporate �xed production costs. These empirically

relevant costs help explain why productivity rises with output and also a�ect the contribution

of capital intensity to capacity utilization.

Second, total capacity utilization is inappropriate as an economy-wide target since it is

19On page 28, footnote 14, BRS state that, in the absence of cross-sectional evidence, `we �nd that the
parameter ϕ is not well identi�ed by the aggregate data. In particular, the resulting estimates of ϕ vary
widely across data sets, ranging from 0.09 to 0.44 depending on whether we include or omit shopping time
data.' By contrast, we �nd that ϕ is well-identi�ed from aggregate data given the inclusion of capacity
utilization.
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only constructed for speci�c industries. In particular, it is not measured for consumption

services, a large part of the economy. Enriching the model to include multiple sectors allows

us to exploit dis-aggregated capacity utilization data in our estimation.

Third, the model struggles to �t aspects of sectoral data, which important for the trans-

mission mechanism operating via goods market frictions. In the second speci�cation, though

the correlation of labor in each sector is not too far below the data (0.58), the autocor-

relation is 0.18 for nc and −0.01 for ni. For consumption and investment, the respective

autocorrelations are 0.28 and 0.20, well below the empirical values.

In the special case of BRS, relative shopping e�ort across sectors equals the relative labor

allocation and the relative value of output:

Dc

Di

=
nc

ni

=
C

piI
(G.1)

Equation (G.1) highlights the informative role of sectoral data: (1) the labor ratio pins

down the ratio of shopping e�ort, (2) and labor inputs and sectoral output data provides

information on sectoral labor productivity, which are in turn linked to the relative price of

investment. Such data is especially relevant given our focus on a demand-based explanation

of productivity.

Unfortunately, (G.1) raises the following challenge. The variables C, I, and pi are observ-

ables in estimation and thus determine nc/ni. Trying to use nc and ni�or even just their

ratio�as observables in estimation would induce stochastic singularity. The use of these

series versus the relative price of investment becomes arbitrary.

Section 5 generalizes (G.1), breaking the one-for-one link between shopping e�ort and

hours. The more general form arises from using sector-speci�c wage markup shocks, incor-

porating imperfect competition in the labor market in the vein of Schmitt-Grohé and Uribe

(2012). Additionally, limited factor mobility facilitates sectoral comovement and dampens

excessive volatility, and �xed costs permit a more general relationship between output and

augment the contribution of capital intensity to total capacity utilization.

Appendix H. Equilibrium in simpli�ed model

Given initial states {kc0, ki0} and {g0, θd0, θn0, zc0, zi0}, an equilibrium is a sequence of

prices {pit, Rct, Rit,Wt}∞t=0 and quantities {kct, kit, kt, Ct, It, Dct, Dit, Dt, nct, nit, nt, gt, θdt, θnt, zct, zIt}∞t=0
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which solve the following system given the realization of shocks {egt, evt}∞t=0:

θntn
1/ν
t = (1− ϕ)Wt

θdtD
1/η
t = ϕ

Ct

Dct

θdtD
1/η
t = ϕpit

It
Dit

Γt = Ct − θdt
D

1+1/η
t

1 + 1/η
− θnt

(nt)
1+1/ζ

1 + 1/ζ

Γ−σ
t pit = βE

{
[(1− ϕ)Rc,t+1 + pi,t+1(1− δ)](Γt+1gt+1)

−σ
}

E(Rc,t+1 −Ri,t+1) = 0

Ct = Ac(Dct)
ϕzctg

−αk
t kαk

ct n
αn
ct

It = Ai(Dit)
ϕzitg

−αk
t kαk

it n
αn
it

Itgt = (kc,t+1 + ki,t+1)gt − (1− δ)(kct + kit)

(1− ϕ)
Wt

pt
= αn

Ct

nct

j ∈ {c, i}, with pct = 1

Wt

Rjt

=
αn

αk

kjt
njt

j ∈ {c, i}

nt = nct + nit, kt = kct + kit, Dt = Dct +Dit

log gt = (1− ρg)g + ρg log gt−1 + egt

log vt = ρv log vt−1 + ev,t, v ∈ {θd, θn, zc, zI}

log zit = log zct + log zIt
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Appendix I. Equilibrium of baseline model

Given initial states {kmc0, ksc0, k0} and {g0, θb0, θd0, θi0, θn0, zc0, zI0, µc0, µi0}, an equilib-

rium is a sequence of prices {pit, Rjt, Qjt,Wct,Wit}∞t=0 and quantities {kjt, ijt, Yjt, Ct, Djt, n
a
t , njt, nct, nt, gt,

θbt, θdt, θit, θnt, zct, zIt, µct, µit}∞t=0 for j ∈ {mc, sc, i} that solves the following system given the

realization of shocks {egt, evt}∞t=0:

θn(n
a
t )

1/ν

(
nct

na
t

)θ

ω−θ = (1− ϕ)
Wct

µct

θn(n
a
t )

1/ν

(
nit

na
t

)θ

(1− ω)−θ = (1− ϕ)
Wit

µit

na
t =

[
ω−θn1+θ

ct + (1− ω)−θn1+θ
it

] 1
1+θ

Γt = Ct − θdt
D

1+1/η
t

1 + 1/η
− θnt

(nt)
1+1/ζ

1 + 1/ζ

θdtD
1/η
t = ϕpjt

Yjt
Djt

j ∈ {mc, sc}

θitθdtD
1/η
t = ϕpit

It
Dit

pit
1− ϕ

= Qjt[1− S′(xjt)xjt − S(xjt)] + βθbEt

(
Γt+1

Γt

)−σ

g−σ
t+1Qj,t+1S

′(xj,t+1)(xj,t+1)
2 j ∈ {mc, sc, i}

Qjt = βθbtEt
(
Γt+1

Γt

)−σ

g−σ
t+1 [(1− δj(hj,t+1))Qj,t+1 +Rj,t+1hj,t+1] j ∈ {mc, sc, i}

Ct = [ω1−ρc
c Y ρc

mc,t + (1− ωc)
1−ρcY ρc

sc,t]
1/ρc

Yjt = p
−1/(1−ρc)
jt ωjCt j ∈ {mc, sc, i}

Ct = pmc,tYmc,t + psc,tYsc,t

δh(hjt)Qjt = Rjt, j ∈ mc, sc, i

Yjt = Aj(Djt)
ϕ(zjtg

−αk
t (hjtkjt)

αk(Njt)
αn − νj) j ∈ {mc, sc, i}

kj,t+1gt = (1− δj(hjt))kjt + [1− S(xjt)]Ijtgt j ∈ {mc, sc, i}

(1− ϕ)
Wjt

pjt
= αn

Yjt +AjD
ϕ
jtνj

njt
j ∈ {mc, sc, i}

Wjt

Rjt
=

αn

αk

hjtkjt
njt

j ∈ {mc, sc, i}

nct = nmct + nsct, nt = nct + nit, Dt = Dmct +Dsct +Dit

kt = kmct + ksct + kit, It = Imct + Isct + Iit

log gt = (1− ρg) log g + ρg log gt−1 + eg,t

log vt = ρv log vt−1 + ev,t, v ∈ {θb, θd, θn, θi, zc, zI , µc, µi}
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Appendix J. The forecast error variance decomposition for speci�c demand and

technology shocks

Here we decompose the variance decomposition of demand and technology shocks. The

main takeaway from Table J.10 is that neutral search demand shocks dominate the forecast

error variance of all variables except for the relative price of investment. In particular, it

accounts for over 96% of the demand component of utilization.

Table J.10: Forecast error variance decomposition

ed edi

Y 97.23 2.77

SR 94.26 5.74

I 88.83 11.17

pi 46.65 53.35

nc 99.67 0.33

ni 96.38 3.62

util 96.92 3.08

D 99.97 0.03

h 98.77 1.23

Table J.10: Contribution of components to forecast error variance decomposition of search shocks.

In a similar vein, J.11, dissects the various constituent elements of technology shocks.

Stationary neutral technology shocks ez are by far the most important overall. However,

permanent technology shocks are relatively important for output and especially the Solow

residual. Investment-speci�c technology shocks are, unsurprisingly, important for investment,

its relative price, and labor in the investment sector. From both tables it is clear that each

is important at explaining at least some aspect of business cycle �uctuations.
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Table J.11: Forecast error variance decomposition

eg eZ ezI

Y 31.68 63.30 5.02

SR 48.24 43.87 7.90

I 3.25 74.14 22.62

pi 0.14 43.91 55.95

nc 22.23 75.51 2.26

ni 6.20 61.70 32.10

util 0.64 83.26 16.10

D 10.20 76.28 13.52

h 1.34 89.29 9.36

Table J.11: Contribution of components to forecast error variance decomposition of technology shocks.

Appendix K. Estimation on arti�cial data and identi�cation of parameters

To assess the identi�ability of key parameters, we conduct an analysis employing arti�cial

data inspired by Schmitt-Grohé and Uribe (2012). This involves setting the parameters at

their mean values and following the calibration strategy outlined in Section Appendix D.

We generate an arti�cial dataset comprising 223 observations for each observable variable.

Subsequently, we estimate the model using this arti�cial data, employing the same estimation

techniques and prior distributions as in the baseline model.

Table K.12 plots the true value used in generating the arti�cial data alongside the 5th,

50th, and 95th percentiles of the posterior distribution for each parameter value. We �nd

that the highest posterior density intervals typically contain the true parameter value, often

toward the center. In particular, the posterior median for ϕ, 0.782, is very close to 0.752. The

parameters associated with search demand shocks ρd, ρdi, ed, edi are also well identi�ed. There

is also excellent identi�cation of ha, σ, θ, ξ, and νR. The persistence of permanent technology

shocks is tougher to identify, as the true value 0.508 lies above the 95th percentile.
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Table K.12: Estimation on arti�cial data

Posterior distribution

Parameter True value Median 5% 95%

σ 1.711 1.737 1.517 2.001

ha 0.6338 0.6506 0.6083 0.6843

ζ 0.9251 1.001 0.8656 1.133

ϕ 0.7524 0.7815 0.7382 0.825

η 0.3437 0.295 0.2201 0.3943

ξ 0.8655 0.8045 0.6743 0.934

νR 0.2443 0.2373 0.1628 0.3118

σac 1.897 1.795 1.357 2.262

σai 0.4440 0.3317 0.2355 0.4404

ΨK 8.364 7.092 6.195 9.292

θ 1.059 1.083 0.9549 1.216

ρg 0.5077 0.3264 0.2561 0.4397

ρz 0.7427 0.6284 0.5121 0.7305

ρzI 0.8646 0.8913 0.8440 0.9358

ρn 0.9874 0.9517 0.8518 0.9999

ρd 0.9244 0.8873 0.8363 0.9334

ρdi 0.9836 0.9259 0.8790 0.9726

ρb 0.9280 0.9181 0.8798 0.9555

ρµc 0.7912 0.8396 0.4721 0.9852

ρµi 0.9804 0.9658 0.9420 0.9889

eg 0.005891 0.005634 0.005050 0.006281

ez 0.007803 0.006860 0.006110 0.007650

ezI 0.01491 0.01459 0.01317 0.01618

en 0.008313 0.008074 0.006501 0.009594

ed 0.09850 0.11396 0.08138 0.1385

edI 0.01728 0.01661 0.01523 0.01807

eb 0.009097 0.008272 0.003727 0.01412

eµc 0.0006684 0.001754 0.0001000 0.004045

eµi 0.02244 0.02128 0.01920 0.02326
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Table K.12: We generate arti�cial data from the model with parameter values equal to the posterior mean
of the Bayesian estimation on the actual data, in tandem with the calibration strategy. We then use this
arti�cial data as observables in estimation. The posterior median, 5th percentile, and 95th percentile from
the posterior distribution are compared alongside the true values.

Appendix L. Supplementary appendix: Shopping costs in the form of expendi-

ture

Michaillat and Saez (2015) also use matching frictions in the goods market and emphasizes

the impact of aggregate-demand shocks on output and employment. At �rst glance, it is

di�cult to compare the two settings because Michaillat and Saez (2015) specify the matching

frictions di�erently, formalize matching costs in terms of expenditure rather than disutility,

and also incorporate money demand via money in the utility. Accordingly, we represent

matching costs in terms of expenditures in a static form of BRS and show that the same key

logic holds. However, the labor share of income turns out to be di�erent since expenditure

shows up in the national income accounts, but e�ort does not.

As in the static model in the main text, each �rm has a location production function

F = znαn using just labor. Each unit of search requires an expenditure ρ. In terms of

national income accounting, these expenditures are part of consumption, but they yield no

utility to households. The remaining part of consumption, ce, does directly yield utility.

Household preferences take the form u(ce, n) = U(Γ) where U is increasing, strictly con-

cave, and di�erentiable

Γ = ce − θn
n1+1/ζ

1 + 1/ζ

Thus, there are zero wealth e�ects on labor supply (GHH).

The link between e�ective consumption and overall consumption satis�es

ce = C − dρ

= d(ΨdF − ρ)

The necessary units of shopping to consume one service are 1/(ΨdF − ρ). The associated
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expenditures are thus

T (D) =
ρ

ΨdF − ρ
(L.1)

The expression for T in (L.1) di�ers from the analogue in Michaillat and Saez (2015) only by

the fact that the Ψd is multiplied by capacity F , which is a consequence of one unit traded

per match in their setup.

A household who chooses a particular submarket (p,D) has expenditure pce(1+T (D)) =

pC and associated income π + nW , where π denotes �rms' pro�ts.

The problem of the household in submarket (p,D) is

maxu(ce, n) s.t.

pce(1 + T (D)) = π + nW

The �rst order conditions with respect to c and n yield the following labor-leisure or labor

supply condition:

θnn
1/ζ =

W/p

1 + T (D)

The search wedge 1/(1 + T (D)) reduces the return to working, analogous to a consumption

tax or labor income tax.

We next solve the problem of the �rm. To keep customers from deviating to another

submarket, it must post a combination of price and tightness (p,D) such that p(1+T (D)) ≤

H for some H. The problem is

max
n,p,D

pΨT (D)znαn − nW s.t.

p(1 + T (D)) ≤ H

The �rst order condition for n is

αn
ΨTF

n
= W

Aggregate consumption satis�es C = ΨTF , so that nW/C = αn. Hence, the labor share

of income is αn. By contrast, if the matching costs were in terms of disutility, then the
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corresponding labor share of income would be αn/(1− ϕ).

The problem over the price-tightness pair (p,D) can be simpli�ed by substituting for the

constraint in the objective as

ΨT (D)

1 + T (D)
=

ΨT

ΨD

(ΨdF − ρ) =
D

F
(ADϕ−1F − ρ)

Di�erentiating with respect to D yields

ρ = ϕΨDF

or, in closed form,

D =

(
ϕAznαn

ρ

)1/(1−ϕ)

(L.2)

Notice that (L.2) depends not only on both the parameters of matching technology ϕ,A and

cost ρ but also on z and n.

Thus, we normalize p = 1 and de�ne equilibrium as a tuple (D,C, ce, n,W ) satisfying

ρ = ϕΨD

C = ADϕznαn

ce =
C

1 + T (D)

W =
αnC

n

θnn
1/ζ =

W

1 + T (D)

Compared to the baseline setup, the wedge on labor supply is now 1/(1 + T (D)) instead of

1− ϕ and the labor share of income is αn. Moreover, the cost of shopping is linear, which is

analogous to letting η → ∞ in the BRS speci�cation.

A key di�erence in the labor share of income is that purchased shopping services are still

part of GDP. Thus, the Solow residual is SR = C/nαn = ADϕz. Both matching frictions

and technology enter into GDP, but, unlike BRS, there is no input share mismeasurement.

Michaillat and Saez (2015) argue that the e�ect of aggregate demand shocks on output and
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employment depends on sticky prices. The reason is that the demand shocks they consider�

consumption preference or money supply�do not a�ect e�cient level of market tightness.

Under competitive search, tightness is necessarily at the e�cient level, so some deviation

would thus be necessary for such demand shocks to matter.

However, under the matching setup considered here, the e�cient level of market tightness

also depends on labor hours and technology. It follows that any demand shock that a�ects

labor demand also raises D and the Solow residual. In the current bare-bones setup, a

reduction in θn stimulates labor demand, which raises shopping and tightness. Additionally,

we included money as Michaillat and Saez (2015), then a consumption preference shock or

shock to the level of money supply would also a�ect labor and hence tightness.

In general, the in�uence of labor hours on the e�cient level of tightness holds provided

that the expenditure ρ does not scale one-for-one with capacity. If the cost of a shopping

were ρF instead of ρ, then we would instead have T = ρ/(Ψd−ρ) and D would be determined

by ρ = ϕΨd. The e�cient level of tightness would just depend on ϕ,A, and ρ. We believe

it plausible a priori that shopping expenditure costs scale less than one-for-one with �rm

capacity, though of course parsing these micro-level features require more granular data and

research.
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