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A. Stochastic singularity in the absence of search demand shocks for a special

case of the model

We �nd numerically in Table 5 that search-based demand shocks are essential to �t the

data. Here we show that, in a special case of the model, the absence of search demand shocks

actually gives rise to stochastic singularity. That is, an observable series is a deterministic

function of other observable series and predetermined variables. Since full-information meth-

ods require one to match the entire observed series for some sequence of shocks, this renders

estimation impossible under this approach.

Speci�cally, consider a unitary consumption sector and abstract from �xed costs and

investment adjustment costs. Then Equation 19 becomes

pi
pc

=
niWi

njWj

C

I
(1)

Absent search demand shocks, Equation 20 simpli�es to

Di

Dc

=
niWi

ncWc

(2)

and hence

Di

Dc

=
pi
pc

I

C
(3)

From (3), the shopping e�ort ratio is entirely pinned down in terms of observables. Utilization
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in this special case satis�es

utilj = AjD
ϕ
j h

αk
j j ∈ {c, i} (4)

Since, for each j, Dj is pinned down by observables, stochastic singularity arises if hj is also

pinned down by observables.

Recall that optimal utilization has the form δjh(hj)Qj = Rj for Qj = pj/(1−ϕ). Moreover,

we can express the rental of capital as Rj = αkYj/(hjKj) and hence

δjh(hj)
pj

1− ϕ
= αk

Yj

hjkj
(5)

so that hj is a function of observables and predetermined capital. Consequently, using (4),

utilization in each sector is a function of other observables, and there is stochastic singularity.
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B. Equilibrium of simpli�ed model

Given initial states {kc0, ki0} and {g0, θd0, θn0, zc0, zi0}, an equilibrium is a sequence of

prices {pit, Rct, Rit,Wt}∞t=0 and quantities {kct, kit, kt, Ct, It, Dct, Dit, Dt, nct, nit, nt, gt, θdt, θnt, zct, zIt}∞t=0

which solve the following system given the realization of shocks {egt, evt}∞t=0:

θntn
1/ν
t = (1− ϕ)Wt (6)

θdtD
1/η
t = ϕ

Ct

Dct

(7)

θdtD
1/η
t = ϕpit

It
Dit

(8)

Γt = Ct − θdt
D

1+1/η
t

1 + 1/η
− θnt

(nt)
1+1/ζ

1 + 1/ζ
(9)

Γ−σ
t pit = βE

{
[(1− ϕ)Rc,t+1 + pi,t+1(1− δ)](Γt+1gt+1)

−σ
}

(10)

E(Rc,t+1 −Ri,t+1) = 0 (11)

Ct = Ac(Dct)
ϕzctg

−αk
t kαk

ct n
αn
ct (12)

It = Ai(Dit)
ϕzitg

−αk
t kαk

it n
αn
it (13)

Itgt = (kc,t+1 + ki,t+1)gt − (1− δ)(kct + kit) (14)

(1− ϕ)
Wt

pt
= αn

Ct

nct

j ∈ {c, i}, with pct = 1 (15)

Wt

Rjt

=
αn

αk

kjt
njt

j ∈ {c, i} (16)

nt = nct + nit, kt = kct + kit, Dt = Dct +Dit (17)

log gt = (1− ρg)g + ρg log gt−1 + egt (18)

log vt = ρv log vt−1 + ev,t, v ∈ {θd, θn, zc, zI} (19)

log zit = log zct + log zIt (20)
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C. Equilibrium of baseline model

Given initial states {kmc0, ksc0, k0} and {g0, θb0, θd0, θi0, θn0, zc0, zI0, µc0, µi0}, an equilib-

rium is a sequence of prices {pit, Rjt, Qjt,Wct,Wit}∞t=0 and quantities {kjt, ijt, Yjt, Ct, Djt, n
a
t , njt, nct, nt, gt,

θbt, θdt, θit, θnt, zct, zIt, µct, µit}∞t=0 for j ∈ {mc, sc, i} that solves the following system given the

realization of shocks {egt, evt}∞t=0:

θn(n
a
t )

1/ν

(
nct

na
t

)ε

ω−ε = (1− ϕ)
Wct

µct
(21)

θn(n
a
t )

1/ν

(
nit

na
t

)ε

(1− ω)−ε = (1− ϕ)
Wit

µit
(22)

na
t =

[
ω−εn1+ε

ct + (1− ω)−εn1+ε
it

] 1
1+ε (23)

Γt = Ct − θdt
D

1+1/η
t

1 + 1/η
− θnt

(nt)
1+1/ζ

1 + 1/ζ
(24)

θdtD
1/η
t = ϕpjt

Yjt
Djt

j ∈ {mc, sc} (25)

θitθdtD
1/η
t = ϕpit

It
Dit

(26)

pit
1− ϕ

= Qjt[1− S′(xjt)xjt − S(xjt)] + βθbEt

(
Γt+1

Γt

)−σ

g−σ
t+1Qj,t+1S

′(xj,t+1)(xj,t+1)
2 j ∈ {mc, sc, i}

(27)

Qjt = βθbtEt
(
Γt+1

Γt

)−σ

g−σ
t+1 [(1− δj(hj,t+1))Qj,t+1 +Rj,t+1hj,t+1] j ∈ {mc, sc, i} (28)

Ct = [ω1−ρc
c Y ρc

mc,t + (1− ωc)
1−ρcY ρc

sc,t]
1/ρc (29)

Yjt = p
−1/(1−ρc)
jt ωjCt j ∈ {mc, sc, i} (30)

Ct = pmc,tYmc,t + psc,tYsc,t (31)

δh(hjt)Qjt = Rjt, j ∈ mc, sc, i (32)

Yjt = Aj(Djt)
ϕ(zjtg

−αk
t (hjtkjt)

αk(Njt)
αn − νj) j ∈ {mc, sc, i} (33)

kj,t+1gt = (1− δj(hjt))kjt + [1− S(xjt)]Ijtgt j ∈ {mc, sc, i} (34)

(1− ϕ)
Wjt

pjt
= αn

Yjt +AjD
ϕ
jtνj

njt
j ∈ {mc, sc, i} (35)

Wjt

Rjt
=

αn

αk

hjtkjt
njt

j ∈ {mc, sc, i} (36)

nct = nmct + nsct, nt = nct + nit, Dt = Dmct +Dsct +Dit (37)

kt = kmct + ksct + kit, It = Imct + Isct + Iit (38)

log gt = (1− ρg) log g + ρg log gt−1 + eg,t (39)

log vt = ρv log vt−1 + ev,t, v ∈ {θb, θd, θn, θi, zc, zI , µc, µi} (40)
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D. Convergence diagnostics

Figure 1 presents the multivariate convergence diagnostics from the Metropolis Hastings.

The top subplot (Interval) shows the Brooks and Gelman (1998) convergence diagnostics

for the 80% interval. The blue line shows the 80% interval based on pooled draws from all

sequences, while the red line shows the mean interval range based on draws of the individual

sequences. The second and third subplots (m2 and m3, respectively) show an estimate of the

same statistics for the squared and cubed absolute deviations from the pooled and within-

sample mean, respectively. We can visually assess convergence in terms of the blue and red

lines stabilizing horizontally and being close to each other.

Figure 1: Multivariate convergence diagnostics for the Metropolis-Hastings. The �rst, second and third rows
are respectively the criteria based on the eighty percent interval, the second and third moments. The di�erent
parameters are aggregated using the posterior kernel.

E. The forecast error variance decomposition for speci�c demand and technology

shocks

Here we decompose the variance decomposition of demand and technology shocks. The

main takeaway from Table 1 is that neutral search demand shocks dominate the forecast

error variance of all variables except for the relative price of investment. In particular, it

accounts for over 96% of the demand component of utilization.
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Table 1: Forecast error variance decomposition

ed edi

Y 97.23 2.77

SR 94.26 5.74

I 88.83 11.17

pi 46.65 53.35

nc 99.67 0.33

ni 96.38 3.62

util 96.92 3.08

D 99.97 0.03

h 98.77 1.23

Table 1: Contribution of components to forecast error variance decomposition of search shocks.

In a similar vein, Table 2, dissects the various constituent elements of technology shocks.

Stationary neutral technology shocks ez are by far the most important overall. However,

permanent technology shocks are relatively important for output and especially the Solow

residual. Investment-speci�c technology shocks are, unsurprisingly, important for investment,

its relative price, and labor in the investment sector. From both tables it is clear that each

is important at explaining at least some aspect of business cycle �uctuations.

Table 2: Forecast error variance decomposition

eg ez ezI

Y 31.68 63.30 5.02

SR 48.24 43.87 7.90

I 3.25 74.14 22.62

pi 0.14 43.91 55.95

nc 22.23 75.51 2.26

ni 6.20 61.70 32.10

util 0.64 83.26 16.10

D 10.20 76.28 13.52

h 1.34 89.29 9.36

Table 2: Contribution of components to forecast error variance decomposition of technology shocks.
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F. Estimation on arti�cial data and identi�cation of parameters

To assess the identi�ability of key parameters, we conduct an analysis employing arti�cial

data inspired by Schmitt-Grohé and Uribe (2012). This involves setting the parameters at

their mean values and following the calibration strategy outlined in Section 6 and Appendix

D. We generate an arti�cial dataset comprising 223 observations for each observable variable.

Subsequently, we estimate the model using this arti�cial data, employing the same estimation

techniques and prior distributions as in the baseline model. Compared to the posterior-

prior informativeness criterion considered in the main text, this simulation-based parameter

recovery method focuses on identi�cation properties of the model itself rather than the actual

data.

Table 3 plots the true value used in generating the arti�cial data alongside the 5th, 50th,

and 95th percentiles of the posterior distribution for each parameter value. We �nd that the

highest posterior density intervals typically contain the true parameter value, often toward

the center. In particular, the posterior median for ϕ, 0.911, is very close to 0.913. The

persistence parameters of demand shocks ρd and ρdi are well-identi�ed, though the posterior

probability band for ed does not capture the true value. There is also excellent identi�cation

of ha, σ, ε, ξ, and νR. The posterior probability bands also contain the true values of the

persistence and conditional standard deviation of technology shocks. Estimates are highly

di�use, however, for the conditional standard deviation of wage markup shocks eµC .
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Table 3: Estimation on arti�cial data

Posterior distribution

Parameter True value Median 5% 95%

σ 1.58 1.70 1.24 1.85

ha 0.736 0.714 0.689 0.746

ν 1.24 1.29 1.09 1.50

ϕ 0.913 0.911 0.872 0.955

ζ 0.224 0.241 0.203 0.276

ξ 0.882 0.809 0.717 0.892

νR 0.0943 0.118 0.0694 0.21

σac 1.76 2.04 1.69 2.47

σai 0.441 0.289 0.216 0.374

ΨK 12.5 7.78 7.26 8.30

ε 1.46 1.53 1.38 1.69

ρg 0.516 0.333 0.221 0.387

ρz 0.793 0.748 0.648 0.850

ρzi 0.848 0.820 0.769 0.870

ρn 0.989 0.911 0.851 0.969

ρd 0.906 0.885 0.844 0.927

ρdi 0.982 0.933 0.883 0.983

ρb 0.911 0.921 0.878 0.958

ρµc 0.759 0.931 0.835 0.979

ρµi 0.977 0.959 0.935 0.986

eg 0.00437 0.00407 0.00362 0.00455

eZ 0.00941 0.00828 0.00738 0.00915
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ezi 0.0194 0.0185 0.0165 0.0203

en 0.00613 0.00597 0.00456 0.00727

ed 0.136 0.102 0.0895 0.112

edi 0.0151 0.0145 0.0132 0.0158

eb 0.0154 0.0100 0.00527 0.0156

eµc 0.000747 0.00170 0.0001 0.00376

eµi 0.0273 0.0267 0.0242 0.0292

Table 3: We generate arti�cial data from the model with pa-

rameter values equal to the posterior mean of the Bayesian

estimation on the actual data, in tandem with the calibration

strategy. We then use this arti�cial data as observables in

estimation. The posterior median, 5th percentile, and 95th

percentile from the posterior distribution are compared along-

side the true values.

G. Shopping costs in the form of expenditure

Michaillat and Saez (2015) also use matching frictions in the goods market and emphasizes

the impact of aggregate-demand shocks on output and employment. At �rst glance, it is

di�cult to compare the two settings because Michaillat and Saez (2015) specify the matching

frictions di�erently, formalize matching costs in terms of expenditure rather than disutility,

and also incorporate money demand via money in the utility. Accordingly, we represent

matching costs in terms of expenditures in a static form of BRS and show that the same key

logic holds. However, the labor share of income turns out to be di�erent since expenditure

shows up in the national income accounts, but e�ort does not.

As in the static model in the main text, each �rm has a location production function

F = znαn using just labor. Each unit of search requires an expenditure ρ. In terms of

national income accounting, these expenditures are part of consumption, but they yield no

utility to households. The remaining part of consumption, ce, does directly yield utility.
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Household preferences take the form u(ce, n) = U(Γ) where U is increasing, strictly con-

cave, and di�erentiable

Γ = ce − θn
n1+1/ζ

1 + 1/ζ
(41)

Thus, there are zero wealth e�ects on labor supply (GHH).

The link between e�ective consumption and overall consumption satis�es

ce = C − dρ (42)

= d(ΨdF − ρ) (43)

The necessary units of shopping to consume one service are 1/(ΨdF − ρ). The associated

expenditures are thus

T (D) =
ρ

ΨdF − ρ
(44)

The expression for T in (44) di�ers from the analogue in Michaillat and Saez (2015) only by

the fact that the Ψd is multiplied by capacity F , which is a consequence of one unit traded

per match in their setup.

A household who chooses a particular submarket (p,D) has expenditure pce(1+T (D)) =

pC and associated income π + nW , where π denotes �rms' pro�ts.

The problem of the household in submarket (p,D) is

maxu(ce, n) s.t. (45)

pce(1 + T (D)) = π + nW (46)

The �rst order conditions with respect to c and n yield the following labor-leisure or labor

supply condition:

θnn
1/ζ =

W/p

1 + T (D)
(47)

The search wedge 1/(1 + T (D)) reduces the return to working, analogous to a consumption

tax or labor income tax.
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We next solve the problem of the �rm. To keep customers from deviating to another

submarket, it must post a combination of price and tightness (p,D) such that p(1+T (D)) ≤

H for some H. The problem is

max
n,p,D

pΨT (D)znαn − nW s.t. (48)

p(1 + T (D)) ≤ H (49)

The �rst order condition for n is

αn
ΨTF

n
= W

Aggregate consumption satis�es C = ΨTF , so that nW/C = αn. Hence, the labor share

of income is αn. By contrast, if the matching costs were in terms of disutility, then the

corresponding labor share of income would be αn/(1− ϕ).

The problem over the price-tightness pair (p,D) can be simpli�ed by substituting for the

constraint in the objective as

ΨT (D)

1 + T (D)
=

ΨT

ΨD

(ΨdF − ρ) =
D

F
(ADϕ−1F − ρ)

Di�erentiating with respect to D yields

ρ = ϕΨDF (50)

or, in closed form,

D =

(
ϕAznαn

ρ

)1/(1−ϕ)

(51)

Notice that (51) depends not only on both the parameters of matching technology ϕ,A and

cost ρ but also on z and n.
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Thus, we normalize p = 1 and de�ne equilibrium as a tuple (D,C, ce, n,W ) satisfying

ρ = ϕΨD (52)

C = ADϕznαn (53)

ce =
C

1 + T (D)
(54)

W =
αnC

n
(55)

θnn
1/ζ =

W

1 + T (D)
(56)

Compared to the baseline setup, the wedge on labor supply is now 1/(1 + T (D)) instead of

1− ϕ and the labor share of income is αn. Moreover, the cost of shopping is linear, which is

analogous to letting η → ∞ in the BRS speci�cation.

A key di�erence in the labor share of income is that purchased shopping services are still

part of GDP. Thus, the Solow residual is SR = C/nαn = ADϕz. Both matching frictions

and technology enter into GDP, but, unlike BRS, there is no input share mismeasurement.

Michaillat and Saez (2015) argue that the e�ect of aggregate demand shocks on output and

employment depends on sticky prices. The reason is that the demand shocks they consider�

consumption preference or money supply�do not a�ect e�cient level of market tightness.

Under competitive search, tightness is necessarily at the e�cient level, so some deviation

would thus be necessary for such demand shocks to matter.

However, under the matching setup considered here, the e�cient level of market tightness

also depends on labor hours and technology. It follows that any demand shock that a�ects

labor demand also raises D and the Solow residual. In the current bare-bones setup, a

reduction in θn stimulates labor demand, which raises shopping and tightness. Additionally,

we included money as Michaillat and Saez (2015), then a consumption preference shock or

shock to the level of money supply would also a�ect labor and hence tightness.

In general, the in�uence of labor hours on the e�cient level of tightness holds provided

that the expenditure ρ does not scale one-for-one with capacity. If the cost of a shopping

were ρF instead of ρ, then we would instead have T = ρ/(Ψd−ρ) and D would be determined

by ρ = ϕΨd. The e�cient level of tightness would just depend on ϕ,A, and ρ. We believe

it plausible a priori that shopping expenditure costs scale less than one-for-one with �rm
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capacity, though of course parsing these micro-level features require more granular data and

research.

H. Related measures of capacity utilization for other countries

Country Sectors Covered Survey/
Calc.?

How Question is Framed / Method Source

Canada Manufacturing,
mining, utilities,
construction

Survey �At what percentage of your production capacity are you
currently operating?�

Statistics Canada

Euro Area Manufacturing Survey �At what capacity is your company currently operating
(as a percentage of full capacity)?�

European Commis-
sion

UK Manufacturing,
services

Survey �What is the current rate of capacity utilization in your
business?� (�rms give a percentage)

O�ce for National
Statistics / CBI

Japan Manufacturing,
mining

Calculated Based on indices of industrial production and capacity,
using statistical/engineering estimates

Ministry of Econ-
omy, Trade and In-
dustry (METI)

South Korea Manufacturing Survey Firms are surveyed: �At what % of capacity are you
currently operating?�

Statistics Korea
(KOSTAT)

Russia Manufacturing Survey Firms report their current use of production capacity as
% of �normal/full� capacity

Rosstat

China Manufacturing Survey Firms asked: �What is the current utilization rate of
your production capacity?�

National Bureau of
Statistics of China
(NBSC)

Table 4: International Capacity Utilization Measures
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