Supplemental online appendix

Mario Rafael Silva?, Marshall Urias®

@ Department of Accountancy, Economics, and Finance, Hong Kong Baptist University
bPeking University HSBC Business School

A. Stochastic singularity in the absence of search demand shocks for a special

case of the model

We find numerically in Table 5 that search-based demand shocks are essential to fit the
data. Here we show that, in a special case of the model, the absence of search demand shocks
actually gives rise to stochastic singularity. That is, an observable series is a deterministic
function of other observable series and predetermined variables. Since full-information meth-
ods require one to match the entire observed series for some sequence of shocks, this renders
estimation impossible under this approach.

Specifically, consider a unitary consumption sector and abstract from fixed costs and
investment adjustment costs. Then Equation 19 becomes
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Absent search demand shocks, Equation 20 simplifies to
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From (3), the shopping effort ratio is entirely pinned down in terms of observables. Utilization
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in this special case satisfies
utily = A;DIRS* j € {c,i} (4)

Since, for each j, D; is pinned down by observables, stochastic singularity arises if h; is also
pinned down by observables.
Recall that optimal utilization has the form &7 (h;)Q; = R, for Q; = p,/(1— ). Moreover,

we can express the rental of capital as R; = «Y;/(h;K;) and hence
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so that h; is a function of observables and predetermined capital. Consequently, using (4),

utilization in each sector is a function of other observables, and there is stochastic singularity.



B. Equilibrium of simplified model

Given initial states {ke, kio} and {go,0a0,Ono, 2c0, Zio}, an equilibrium is a sequence of
prices {pita Ret, Ry, Wt},?io and quantities {kcta kit, ke, Ct, Ity Doy, Dig, Dy, Ny, Mg, Mt Gty Ot Ont, Zets th}fio

which solve the following system given the realization of shocks {eg, €, }72:
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]E(Rc,t-i-l - Ri,t—i—l) =0 (11)
Cy = Ac(Der)®zergy “F kg ny (12)
I, = Ai(D)?zingy “Kngy (13)
Ligr = (kegs1 + kigs1)ge — (1 — 6) (ke + Kir) (14)
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Ny = Nt + Nty ke = ket + ki, Dy = Doy + Dy
log g: = (1 — pg)g + pglog gi—1 + eg
10g Vi = Po 10g Vi1 + Euyty U € {Hda 9717 Zey ZI}

log z;; = log zo¢ + log zp4



C. Equilibrium of baseline model

Given initial states {kmco, ksco, Ko} and {go, G0, Oao, 0i0, Onos 2c0, 210, Lo, tio }, an equilib-
rium is a sequence of prices {pit, Rjt, Qjt, Wer, Wit 152, and quantities {kjz, ij¢, Yie, Cp, Dje, 08, Mjt, Ner, Nty G,
Ovt, Ot Oits Onts Zet, 21ty Hets Mt oo for § € {mc, sc,i} that solves the following system given the

realization of shocks {eg, et}
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Q= 805t (F5 ) G0 = 030Dy + Bygiahyaal € {mecsesi) (29)
Co = we oY+ (1= we) ~PeY i) /P (29)
Y = pﬁl/(l_pC)ijt j € {mec,sc,i} (30)
Ct = Dme,tYmet + Dse,t Yseit (31)
On(hj)Qjt = Rje, j € me, sc,i (32)
Yje = Aj(Dje)? (ze9; “* (hjekje) * (Nje)* —vy)  j € {me, sc, i} (33)
kjerage = (1= 05(hje))kje + [1 = S(zj0)lLjege  J € {me, sc,i} (34)
(1-— qﬁ)% = anw J € {me, sc,i} (35)
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Net = Nmet + Nsets Nt = Net + Nity Dt = Dimet + Dset + Dit (37)
kt = kmet + kset + kits It = Imet + Iset + Lit (38)
loggi = (1= pg)logg + pglog gi—1 + €g (39)
log vy = pylogvei—1 + evr, v € {0, 04,00, 0, 2c, 21, pre, 11i} (40)



D. Convergence diagnostics

Figure 1 presents the multivariate convergence diagnostics from the Metropolis Hastings.
The top subplot (Interval) shows the Brooks and Gelman (1998) convergence diagnostics
for the 80% interval. The blue line shows the 80% interval based on pooled draws from all
sequences, while the red line shows the mean interval range based on draws of the individual
sequences. The second and third subplots (m2 and m3, respectively) show an estimate of the
same statistics for the squared and cubed absolute deviations from the pooled and within-
sample mean, respectively. We can visually assess convergence in terms of the blue and red

lines stabilizing horizontally and being close to each other.
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Figure 1: Multivariate convergence diagnostics for the Metropolis-Hastings. The first, second and third rows
are respectively the criteria based on the eighty percent interval, the second and third moments. The different
parameters are aggregated using the posterior kernel.

E. The forecast error variance decomposition for specific demand and technology

shocks

Here we decompose the variance decomposition of demand and technology shocks. The
main takeaway from Table 1 is that neutral search demand shocks dominate the forecast
error variance of all variables except for the relative price of investment. In particular, it

accounts for over 96% of the demand component of utilization.



Table 1: Forecast error variance decomposition
€d €di
Y 97.23 2.77
SR 94.26 5.74
I 88.83 11.17
Di 46.65 53.35
n.  99.67 0.33
n;  96.38 3.62
util  96.92 3.08
D 99.97 0.03
h 98.77 1.23

Table 1: Contribution of components to forecast error variance decomposition of search shocks.

In a similar vein, Table 2, dissects the various constituent elements of technology shocks.
Stationary neutral technology shocks e, are by far the most important overall. However,
permanent technology shocks are relatively important for output and especially the Solow
residual. Investment-specific technology shocks are, unsurprisingly, important for investment,
its relative price, and labor in the investment sector. From both tables it is clear that each

is important at explaining at least some aspect of business cycle fluctuations.

Table 2: Forecast error variance decomposition

€g €z €21

Y 31.68 63.30 5.02
SR 48.24 43.87 7.90
I 3.25 7414 22.62
Di 0.14 4391 55.95
n. 2223 7551 2.26
n;  6.20 61.70 32.10
utel 0.64  83.26 16.10
D 10.20 76.28 13.52
h 1.34  89.29 9.36

Table 2: Contribution of components to forecast error variance decomposition of technology shocks.



F. Estimation on artificial data and identification of parameters

To assess the identifiability of key parameters, we conduct an analysis employing artificial
data inspired by Schmitt-Grohé and Uribe (2012). This involves setting the parameters at
their mean values and following the calibration strategy outlined in Section 6 and Appendix
D. We generate an artificial dataset comprising 223 observations for each observable variable.
Subsequently, we estimate the model using this artificial data, employing the same estimation
techniques and prior distributions as in the baseline model. Compared to the posterior-
prior informativeness criterion considered in the main text, this simulation-based parameter
recovery method focuses on identification properties of the model itself rather than the actual
data.

Table 3 plots the true value used in generating the artificial data alongside the 5th, 50th,
and 95th percentiles of the posterior distribution for each parameter value. We find that the
highest posterior density intervals typically contain the true parameter value, often toward
the center. In particular, the posterior median for ¢, 0.911, is very close to 0.913. The
persistence parameters of demand shocks p,; and pg; are well-identified, though the posterior
probability band for e; does not capture the true value. There is also excellent identification
of ha,o,e,&, and v, The posterior probability bands also contain the true values of the
persistence and conditional standard deviation of technology shocks. Estimates are highly

diffuse, however, for the conditional standard deviation of wage markup shocks e,c.



Table 3: Estimation on artificial data

Posterior distribution
Parameter True value | Median 5% 95%
o 1.58 1.70 1.24 1.85
ha 0.736 0.714 0.689 0.746
v 1.24 1.29 1.09 1.50
0] 0.913 0.911 0.872 0.955
¢ 0.224 0.241 0.203 0.276
13 0.882 0.809 0.717 0.892
i 0.0943 0.118  0.0694 0.21
Cac 1.76 2.04 1.69 2.47
Cai 0.441 0.289 0.216 0.374
Uy 12.5 7.78 7.26 8.30
€ 1.46 1.53 1.38 1.69
Py 0.516 0.333 0.221 0.387
Pz 0.793 0.748 0.648 0.850
Pzi 0.848 0.820 0.769 0.870
Pn 0.989 0.911 0.851 0.969
Pd 0.906 0.885 0.844 0.927
Pdi 0.982 0.933 0.883 0.983
Ob 0.911 0.921 0.878 0.958
Puc 0.759 0.931 0.835 0.979
Ppi 0.977 0.959 0.935 0.986
eq 0.00437 0.00407 0.00362 0.00455
ez 0.00941 0.00828 0.00738 0.00915




€i 0.0194 0.0185  0.0165  0.0203
én 0.00613 0.00597 0.00456 0.00727
ed 0.136 0.102 0.0895  0.112
edi 0.0151 0.0145 0.0132  0.0158
ey 0.0154 0.0100  0.00527 0.0156
Cuc 0.000747 0.00170 0.0001  0.00376
Cui 0.0273 0.0267  0.0242  0.0292

Table 3: We generate artificial data from the model with pa-
rameter values equal to the posterior mean of the Bayesian
estimation on the actual data, in tandem with the calibration
strategy. We then use this artificial data as observables in
estimation. The posterior median, 5th percentile, and 95th
percentile from the posterior distribution are compared along-

side the true values.

G. Shopping costs in the form of expenditure

Michaillat and Saez (2015) also use matching frictions in the goods market and emphasizes
the impact of aggregate-demand shocks on output and employment. At first glance, it is
difficult to compare the two settings because Michaillat and Saez (2015) specify the matching
frictions differently, formalize matching costs in terms of expenditure rather than disutility,
and also incorporate money demand via money in the utility. Accordingly, we represent
matching costs in terms of expenditures in a static form of BRS and show that the same key
logic holds. However, the labor share of income turns out to be different since expenditure
shows up in the national income accounts, but effort does not.

As in the static model in the main text, each firm has a location production function
F = zn% using just labor. Each unit of search requires an expenditure p. In terms of
national income accounting, these expenditures are part of consumption, but they yield no

utility to households. The remaining part of consumption, ¢, does directly yield utility.



Household preferences take the form u(c®,n) = U(I') where U is increasing, strictly con-

cave, and differentiable

pl+1/¢
F—c—p, A1
¢ 1+1/¢ (41)

Thus, there are zero wealth effects on labor supply (GHH).

The link between effective consumption and overall consumption satisfies

c=C—dp (42)
= d(V,F — p) (43)

The necessary units of shopping to consume one service are 1/(¥,F — p). The associated

expenditures are thus

p

ﬂDyziﬁt;

(44)

The expression for 7" in (44) differs from the analogue in Michaillat and Saez (2015) only by
the fact that the W, is multiplied by capacity F', which is a consequence of one unit traded
per match in their setup.

A household who chooses a particular submarket (p, D) has expenditure pc®(14+7T(D)) =
pC' and associated income 7 + nW, where 7 denotes firms’ profits.

The problem of the household in submarket (p, D) is

maxu(c®,n) s.t. (45)

pc’(1+T(D)) =m+nW (46)

The first order conditions with respect to ¢ and n yield the following labor-leisure or labor

supply condition:

0 nl/C _ W/p

1+7(D) (47)

The search wedge 1/(1 + T'(D)) reduces the return to working, analogous to a consumption

tax or labor income tax.
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We next solve the problem of the firm. To keep customers from deviating to another
submarket, it must post a combination of price and tightness (p, D) such that p(1+7(D)) <
H for some H. The problem is

max pUr(D)zn* —nW  s.t. (48)

n,p,D

p(1+T(D)) < H (49)

The first order condition for n is
e
n

=W

Qn

Aggregate consumption satisfies C' = U F, so that nW/C' = «,. Hence, the labor share
of income is a,,. By contrast, if the matching costs were in terms of disutility, then the
corresponding labor share of income would be a,, /(1 — ¢).

The problem over the price-tightness pair (p, D) can be simplified by substituting for the

constraint in the objective as

Differentiating with respect to D yields

p=¢UpF (50)
or, in closed form,
an \ 1/(1-9)
p

Notice that (51) depends not only on both the parameters of matching technology ¢, A and

cost p but also on z and n.
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Thus, we normalize p = 1 and define equilibrium as a tuple (D, C, ¢, n, W) satisfying

p=¢Up (52)
C = AD?zn®n (53)
.. C
W= O‘:;C (55)
1474
/¢ _
R ) (56)

Compared to the baseline setup, the wedge on labor supply is now 1/(1 + T'(D)) instead of
1 — ¢ and the labor share of income is «,,. Moreover, the cost of shopping is linear, which is
analogous to letting n — oo in the BRS specification.

A key difference in the labor share of income is that purchased shopping services are still
part of GDP. Thus, the Solow residual is SR = C/n® = AD®z. Both matching frictions
and technology enter into GDP, but, unlike BRS, there is no input share mismeasurement.

Michaillat and Saez (2015) argue that the effect of aggregate demand shocks on output and
employment depends on sticky prices. The reason is that the demand shocks they consider—
consumption preference or money supply—do not affect efficient level of market tightness.
Under competitive search, tightness is necessarily at the efficient level, so some deviation
would thus be necessary for such demand shocks to matter.

However, under the matching setup considered here, the efficient level of market tightness
also depends on labor hours and technology. It follows that any demand shock that affects
labor demand also raises D and the Solow residual. In the current bare-bones setup, a
reduction in 6, stimulates labor demand, which raises shopping and tightness. Additionally,
we included money as Michaillat and Saez (2015), then a consumption preference shock or
shock to the level of money supply would also affect labor and hence tightness.

In general, the influence of labor hours on the efficient level of tightness holds provided
that the expenditure p does not scale one-for-one with capacity. If the cost of a shopping
were pF' instead of p, then we would instead have T' = p/(¥,;—p) and D would be determined
by p = ¢W¥4. The efficient level of tightness would just depend on ¢, A, and p. We believe

it plausible a priori that shopping expenditure costs scale less than one-for-one with firm
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capacity, though of course parsing these micro-level features require more granular data and

research.

H. Related measures of capacity utilization for other countries

Country Sectors Covered Survey/ How Question is Framed / Method Source
Calc.?
Canada Manufacturing, Survey “At what percentage of your production capacity are you Statistics Canada
mining, utilities, currently operating?”
construction
Euro Area Manufacturing Survey “At what capacity is your company currently operating European Commis-
(as a percentage of full capacity)?” sion
UK Manufacturing, Survey “What is the current rate of capacity utilization in your Office for National
services business?” (firms give a percentage) Statistics / CBI
Japan Manufacturing, Calculated Based on indices of industrial production and capacity, Ministry of Econ-
mining using statistical/engineering estimates omy, Trade and In-
dustry (METT)
South Korea Manufacturing Survey Firms are surveyed: “At what % of capacity are you Statistics Korea
currently operating?” (KOSTAT)
Russia Manufacturing Survey Firms report their current use of production capacity as Rosstat
% of “normal/full” capacity
China Manufacturing Survey Firms asked: “What is the current utilization rate of National Bureau of
your production capacity?” Statistics of China
(NBSC)
Table 4: International Capacity Utilization Measures
References

BROOKS, S. P., aND A. GELMAN (1998): “General methods for monitoring convergence of

iterative simulations,” Journal of computational and graphical statistics, 7(4), 434-455.

MICHAILLAT, P., aND E. SAEZ (2015): “Aggregate demand, idle time, and unemployment,”

The Quarterly Journal of Economics, 130(2), 507-569.

SCHMITT-GROHE, S., AND M. URIBE (2012): “What’s news in business cycles,” Economet-

rica, 80(6), 2733-2764.

13



	Stochastic singularity in the absence of search demand shocks for a special case of the model
	Equilibrium of simplified model
	Equilibrium of baseline model
	Convergence diagnostics
	The forecast error variance decomposition for specific demand and technology shocks
	Estimation on artificial data and identification of parameters
	 Shopping costs in the form of expenditure
	Related measures of capacity utilization for other countries

