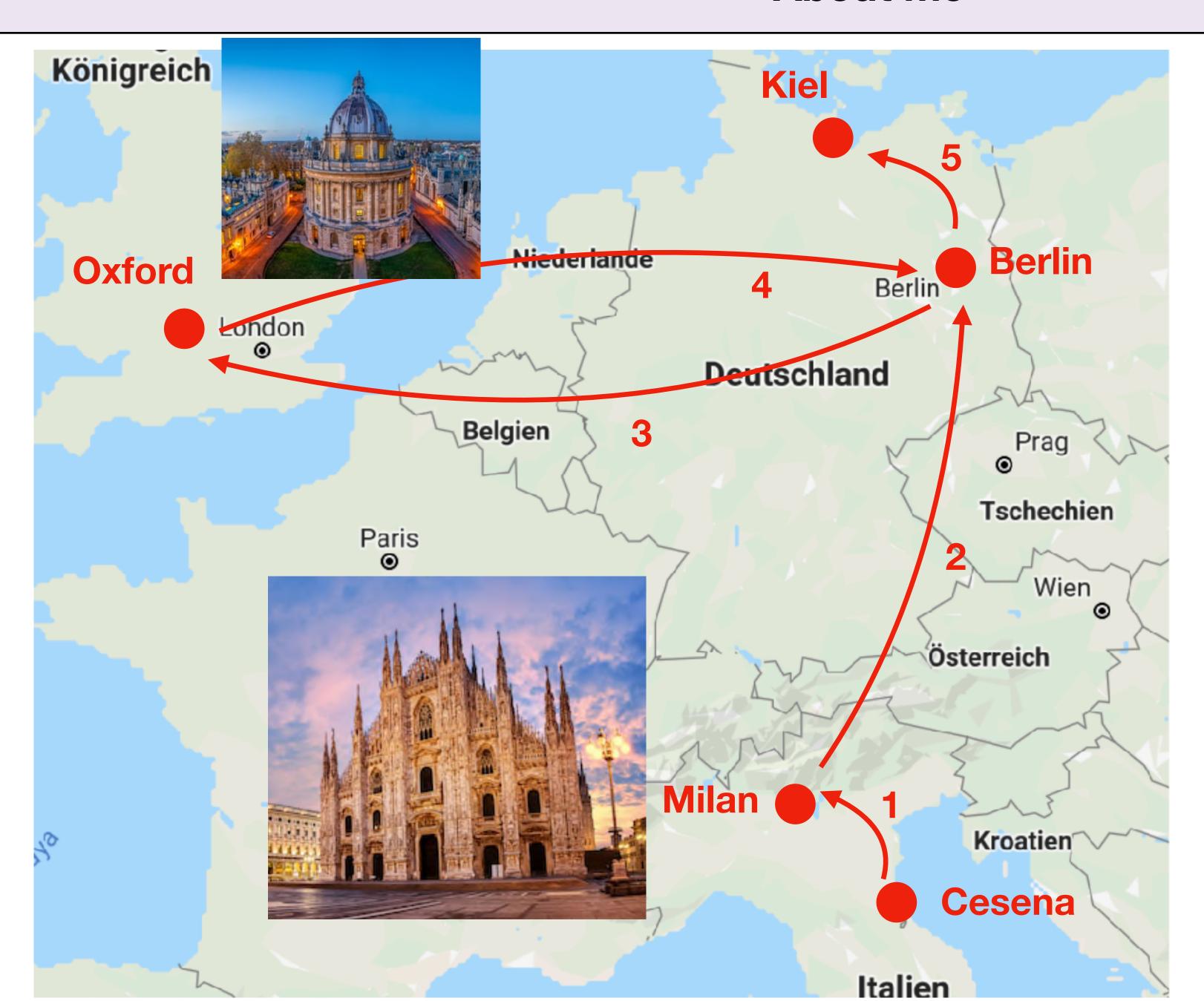
Introduction to phonons in crystalline solids

About me



from Cesena

1 Master in Milan

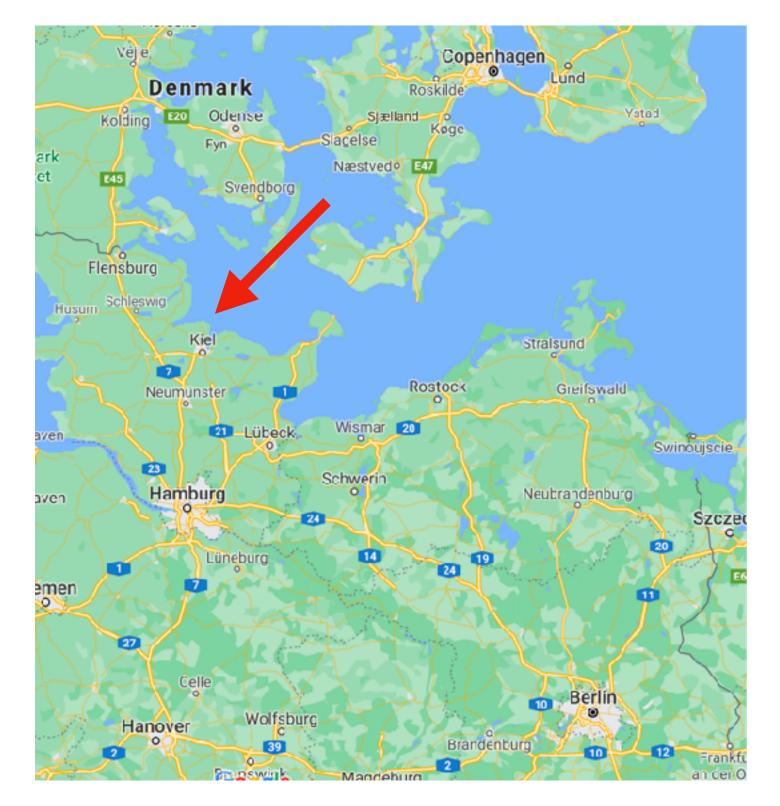
2 PhD in Berlin (FHI)

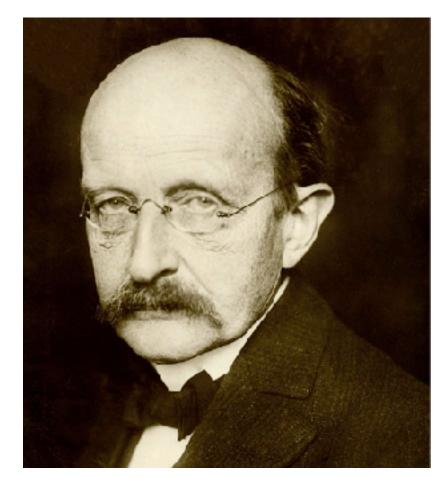
3 Postdoc in Oxford

4 Postdoc in Berlin

5 Since March 2020 Kiel

The University of Kiel (founded in 1665)





Max Planck

Hans Geiger

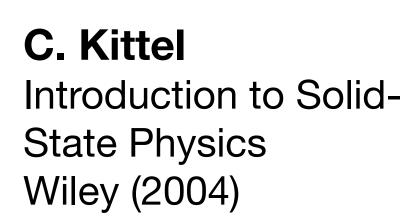
Heinrich Hertz

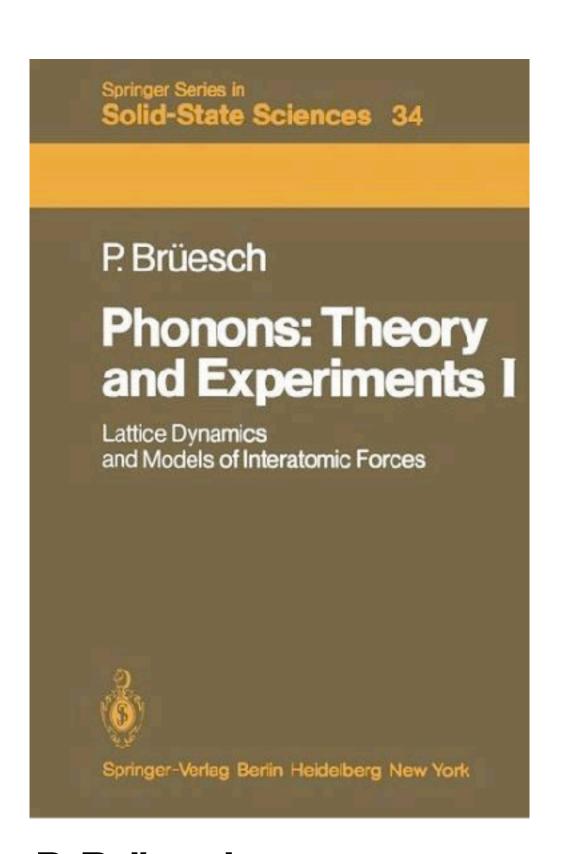
Phonons: recommended books

EIGHTH EDITION

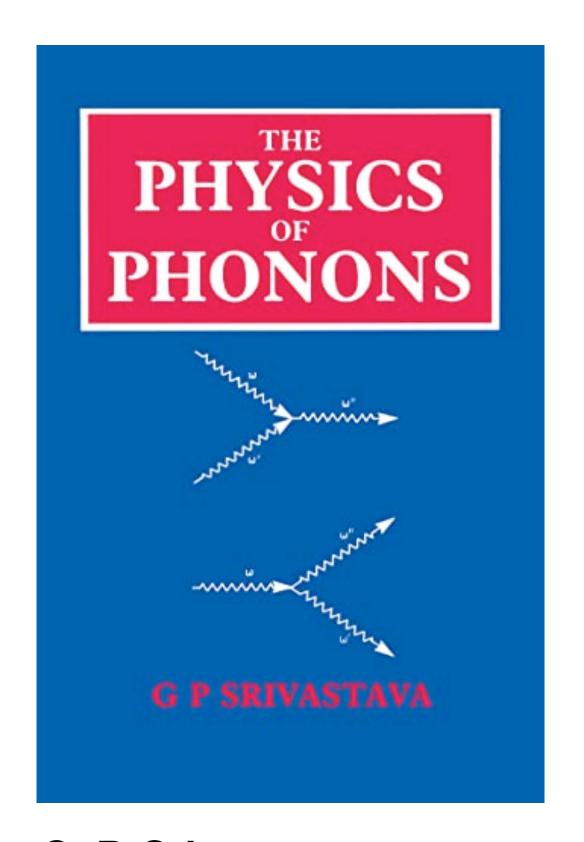
Introduction to Solid State Physics

CHARLES KITTEL

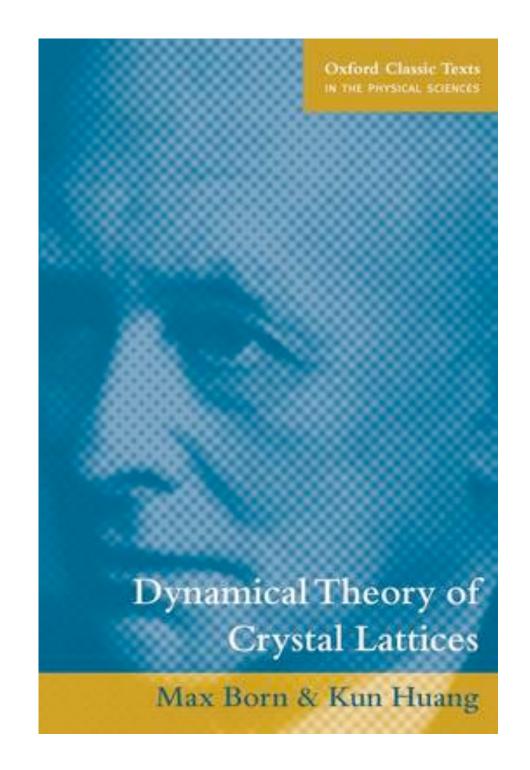




P. Brüesch
Phonons: Theory and experiments
Volumes 1, 2
Springer (1982)

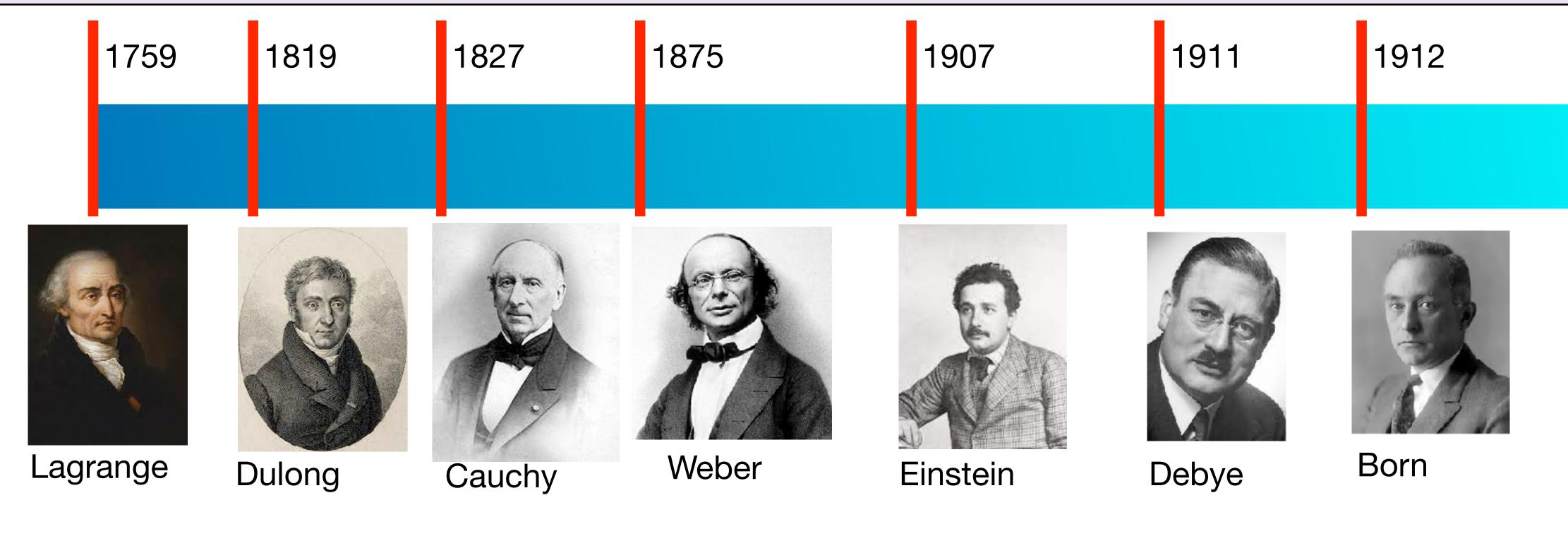


G. P. SrivastavaThe Physics of Phonons
Taylor & Francis (1990)



M. Born, K. Huang
Dynamical Theory of Crystal
Lattices
Oxford University Press (1954)

Early developments of the lattice dynamics



(1759) Lagrange: Equation of motions for a continuous string

(1819) Dulong and Petit: Measurement of the specific heat for 13 solids

Dulong-Petit law: The product of the atomic masses and the specific heat is (roughly) a constant.

(1827) Cauchy: Dynamics of mass points with forces between them

(1875) Weber: The specific heat of Si, B, C deviates from the Dulong-Petit law.

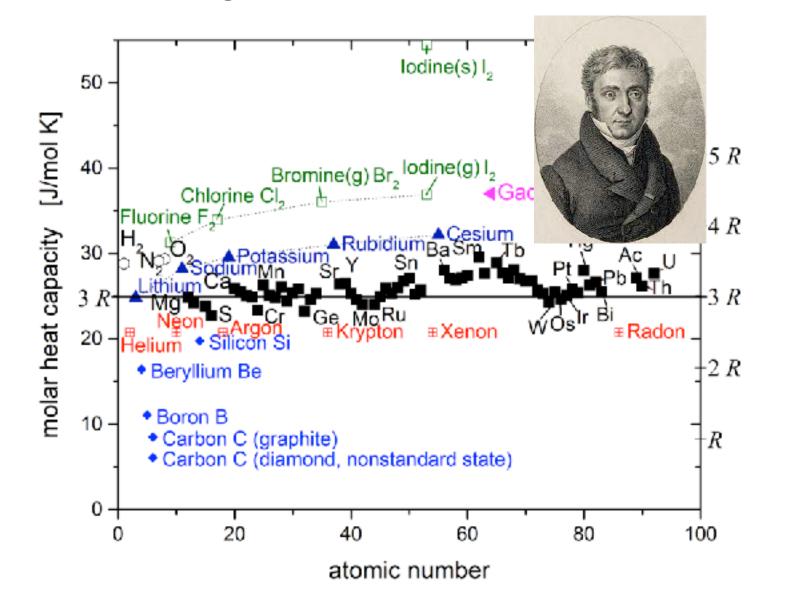
(1907) Einstein: Theory of specific heat: including atomic motion

(1911) Debye: Theory of specific heat: including collective atomic motion

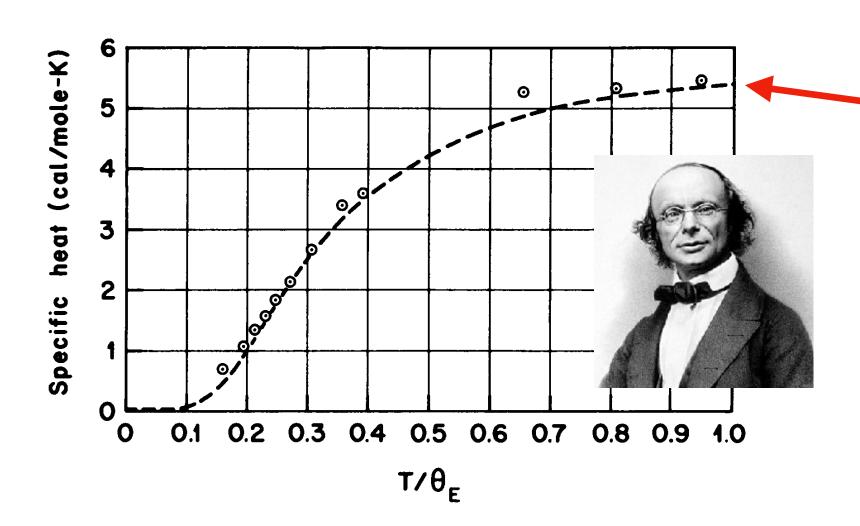
(1912) Born-van-Karman: Modern theory of phonons in a periodic 3D lattice

Early theory of specific heat

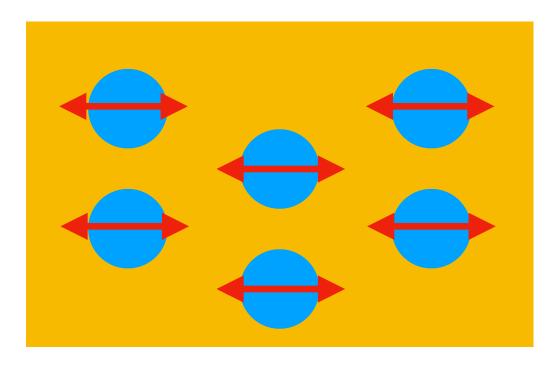
The Dulong-Petit Law: $c_v(T) \approx 3N_a k_{\rm B}$



... and its break down:



The Einstein model of the specific heat



Each atom \rightarrow harmonic oscillator Frequency ω_{E}

Bose-Einstein statistics

$$n(T) = [e^{\hbar \omega_E/k_B T} - 1]^{-1}$$

Vibrational energy of the oscillators

$$U(T) = \sum \hbar \omega_E n(T)$$

Specific heat:

$$c(T) = \partial U(T)/\partial T = 3N_a k_B \left(\frac{\hbar \omega_E}{k_B T}\right)^2 \frac{e^{\frac{\hbar \omega_E}{k_B T}}}{(e^{\frac{\hbar \omega_E}{k_B T}} - 1)^2}$$

The model reproduces the low and high-temperature limit

New paradigm:

Atom vibrations determine the temperature dependence of the specific heat

Part 1

Phonons: from 1D to real materials

Rigorous formulation: the many-body Hamiltonian

$$\hat{H} = \hat{T}_e + \hat{T}_n + \hat{V}_{e-e} + \hat{V}_{e-n} + \hat{V}_{n-n}$$

Kinetic energy

$$\hat{T}_e = \sum_{i=1}^{N_e} -\frac{\hat{\nabla}_i^2}{2}$$
 , $\hat{T}_n = \sum_{I=1}^{N_n} -\frac{\hat{\nabla}_I^2}{2M_I}$

Coulomb interaction

$$\hat{V}_{e-e} = \frac{1}{2} \sum_{ij}^{N_e} \frac{1}{|\hat{r}_i - \hat{r}_j|} \quad , \quad \hat{V}_{e-n} = \sum_{i}^{N_e} \sum_{I}^{N_n} \frac{-Z_I}{|\hat{r}_i - \hat{R}_I|} \quad , \quad \hat{V}_{n-n} = \frac{1}{2} \sum_{IJ}^{N_n} \frac{Z_I Z_J}{|\hat{R}_I - \hat{R}_J|}$$

$$\hat{H} \left| \Phi \right\rangle = E \left| \Phi \right\rangle$$
 Many-body Hamiltonian Energy of electrons + nuclei
$$\hat{H} = \hat{H}(\{\hat{r_i}, \hat{R}_I\})$$
 wave-function for electrons and nuclei
$$\Phi_n = \Phi_n(\{\hat{r_i}, \hat{R}_I\})$$

The Born-Oppenheimer approximation

The Born-Oppenheimer approximation:

$$\Psi_s(r,R) \simeq \psi_{\nu}(r;R)\chi_{\nu s}(R)$$

electrons (fixed nuclei)

$$\hat{H}^{\rm el}\,\psi_{\nu}(r) = E_{\nu}^{\rm el}\psi_{\nu}(r)$$

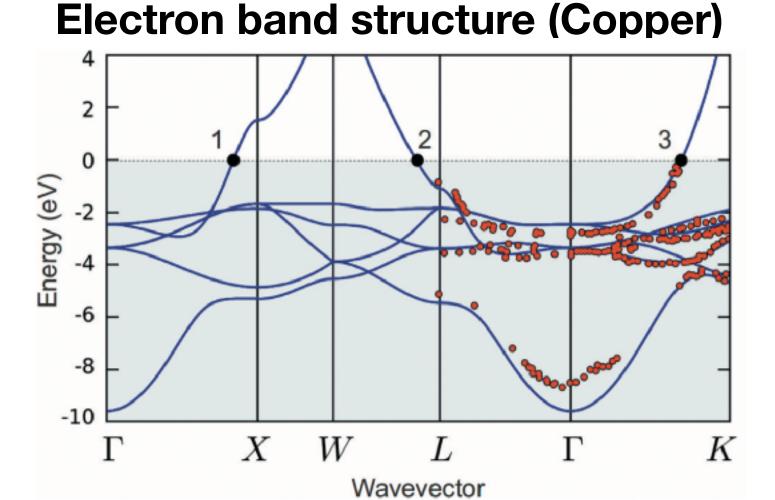
nuclei (fixed electrons)

$$\hat{H}^{\text{nuc}} \chi_{\nu s}(R) = E_s \chi_{\nu s}(R)$$

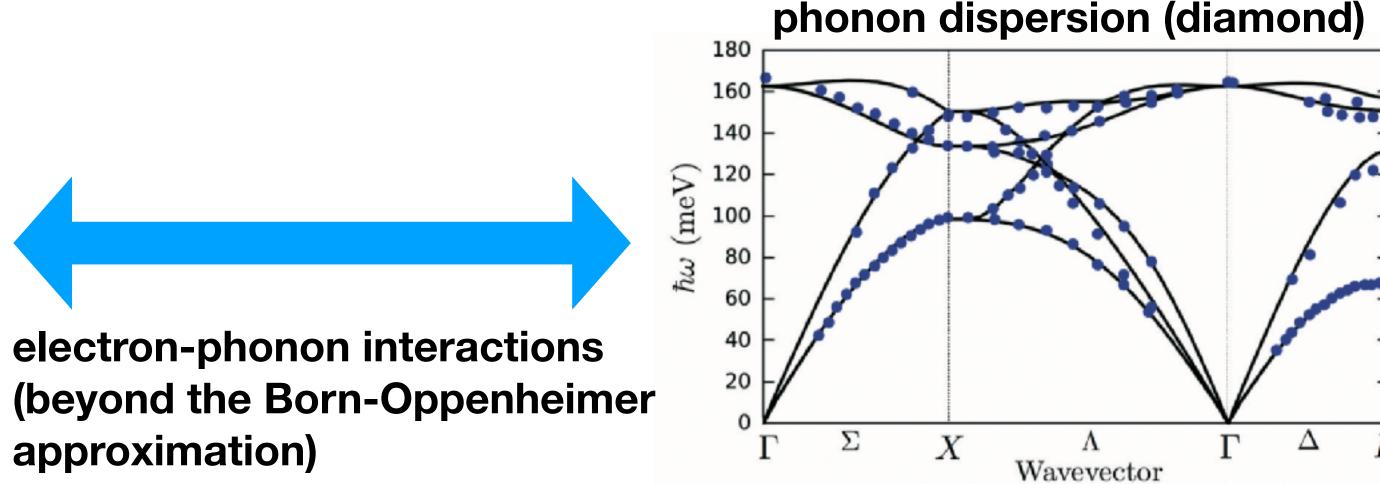
Density functional theory (DFT):

$$n(r) \Leftrightarrow \Psi$$

Hohenberg and Kohn, Phys. Rev. (1964) Kohn and Sham, Phys. Rev. (1965)



Figs.: Giustino, Materials Modelling using Density Functional Theory (2014)

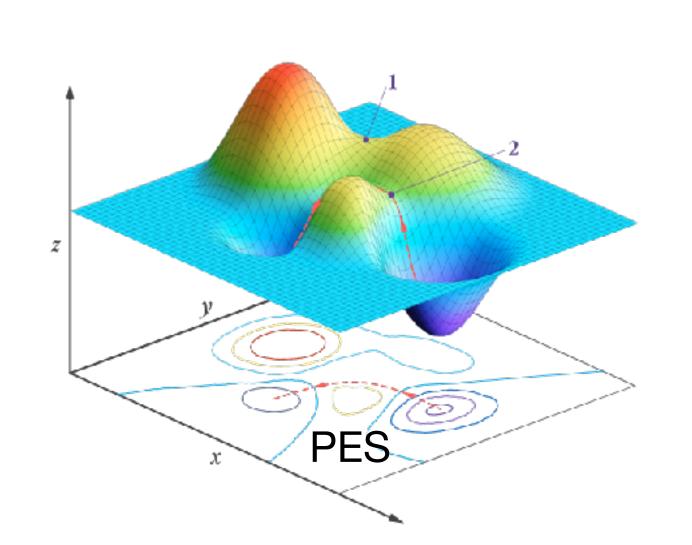


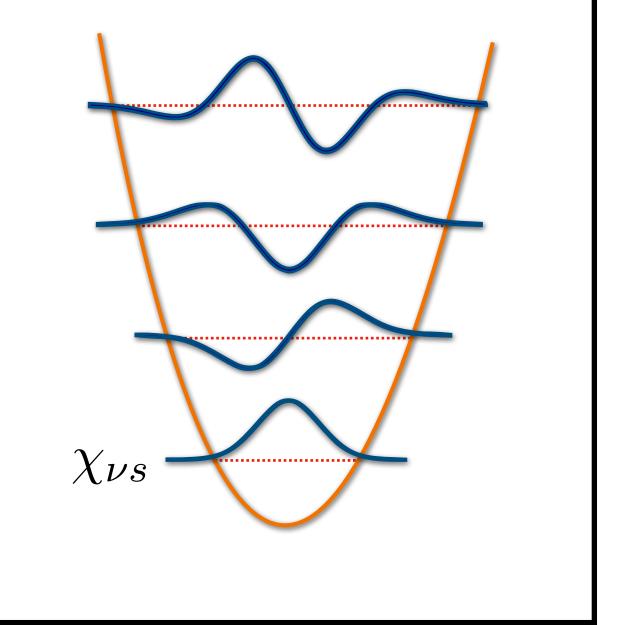
Exp.: [1] Courths, and Hüfner, Phys. Rep. 112, 53 (1984) [2] Warren et al., Phys. Rev. 158, 805 (1967)

Nuclear Schrödinger equation

$$\hat{H}^{\text{nuc}} \chi_{\nu s}(R) = E_s \chi_{\nu s}(R)$$

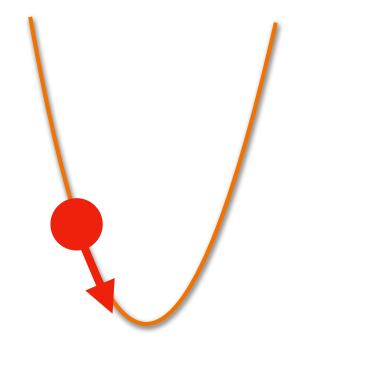
$$\hat{H}^{\mathrm{nuc}} = \hat{T}_n + \hat{U}$$
nuclear kinetic potential energy energy surface (PES)





Classical problem:

$$M_I \ddot{R}_I = -\frac{\partial U(\{R\})}{\partial R_I}$$



Quantum Classical picture

Equivalent in the Harmonic approximation

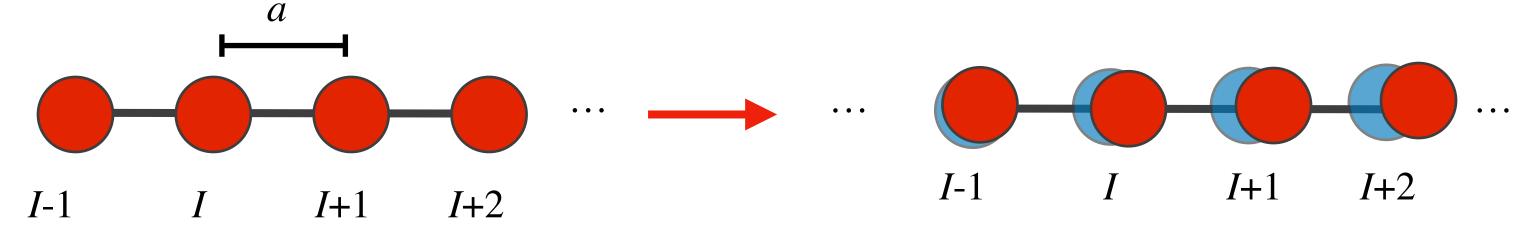
Quantum

Classical

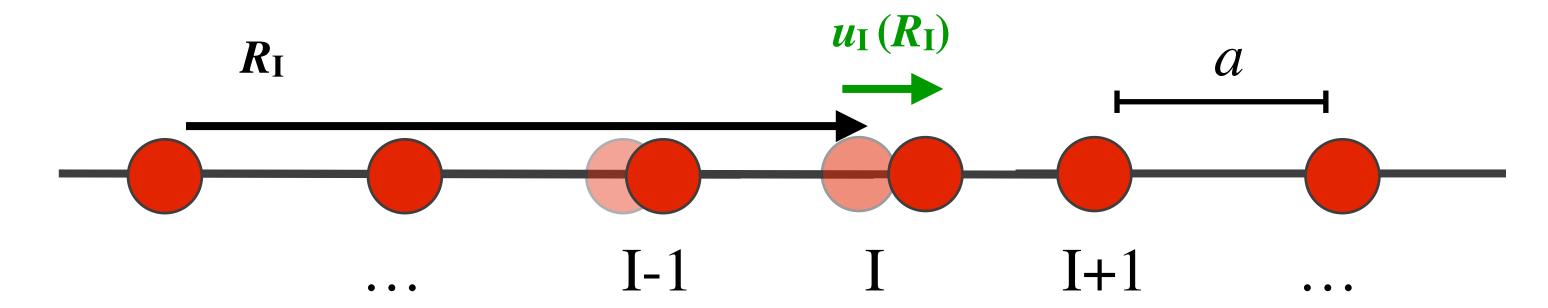
Atomic displacements in a (1D) crystal lattice

One-dimensional case

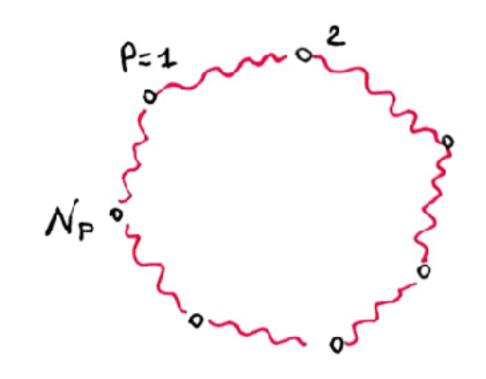
(Born-von-Karman boundary conditions)



3D case has more complex notation, but otherwise equivalent



- 1 atom per unit cell
- N unit cells (periodically repeated)



- R_I atomic position at equilibrium
- u_I displacement from equilibrium

Nuclei at equilibrium

$$\{R_I\}$$

$$U(\{R_I\})$$

$$\{R_I + u_I\}$$

$$U(\{R_I + u_I\})$$

Classical equation of motion (Newton's law)

$$M_I \ddot{R}_I = -\frac{\partial U(\{R\})}{\partial R_I}$$

$$M_I \ddot{u}_I = -\frac{\partial U(\{u\})}{\partial u_I}$$

Displaced nuclei

Our goal: solve the lattice equation of motion

The harmonic approximation

Central ingredient: The potential energy surface $U(\{R\}) = U(R_1, R_2, ..., R_N)$ Highly-dimensional and very complex to handle (approximation needed)

$$M_I \dot{u}_I = -\frac{\partial U(\{R\})}{\partial u_I}$$

If the displacements $\{u_{\rm I}\}$ are small ... we can Taylor expand the electronic ground-state energy

$$U(\left\{R_{I}+u_{I}\right\})=U_{0}(\left\{R_{I}\right\})$$
1st order
$$+\sum_{I}\frac{\partial U}{\partial u_{I}}\bigg|_{u_{I}=0}$$
 exactly zero at equilibrium
$$2^{\text{nd}} \text{ order } +\frac{1}{2}\sum_{IJ}\frac{\partial^{2}U}{\partial u_{I}\partial u_{J}}\bigg|_{u_{I}=0}$$

$$u_{I}u_{J}$$
3rd order
$$+\frac{1}{3!}\sum_{IJ}\frac{\partial^{3}U}{\partial u_{I}\partial u_{J}\partial u_{L}}\bigg|_{u_{I}=0}$$
 neglected

Harmonic approximation (not valid for liquids/gases)

$$U \simeq U^{(h)} = U_0 + \frac{1}{2} \sum_{IJ} \frac{\partial^2 U}{\partial u_I \partial u_J} \bigg|_{u_I = 0} u_I u_J$$

second-order force constant matrix (2FC) $\Phi_{IJ} \equiv \frac{\partial^2 U}{\partial u_I \partial u_J} \bigg|_{u_I = 0}$

$$U^{(h)} = U_0 + \frac{1}{2} \sum_{IJ} \mathbf{\Phi}_{IJ} u_I u_J = U_0 + \mathbf{u}^{\dagger} \cdot \mathbf{\Phi} \cdot \mathbf{u}$$

Lattice equation of motion in the harmonic approximation

$$F_I = M_I \dot{u}_I = -\frac{\partial U^{(h)}(\{u\})}{\partial u_I} \longrightarrow M_I \dot{u}_I = -\frac{\partial}{\partial u_I} \left[U_0 + \frac{1}{2} \sum_{IJ} \Phi_{IJ} u_I u_J \right] = \sum_J \Phi_{IJ} u_J$$

Dynamics of a 1D lattice in the harmonic approximation

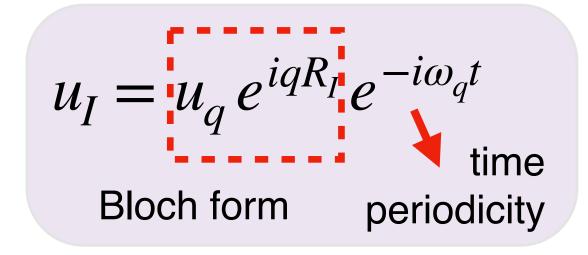
$$M\ddot{u}_I = \sum_J \Phi_{IJ} u_J$$

A second-order differential equation for the displacements

Ansatz for the displacement.

Most general function that:

- (i) satisfies the EOM
- (ii) obey the boundary conditions (iii) not an approximation



Key quantities:

- Phonon frequency ω_q
- Phonon eigenvector u_q

$$I = 1 \quad I = 2$$

$$L = Na$$

wave vector
$$q=2\pi/\lambda$$
 wave length $\lambda=L/n$ with $n=\{1,2,...,N\}$

$$M\omega_q^2 u_q = \sum_{J} \Phi_{IJ} e^{iq(R_J - R_I)} u_q$$

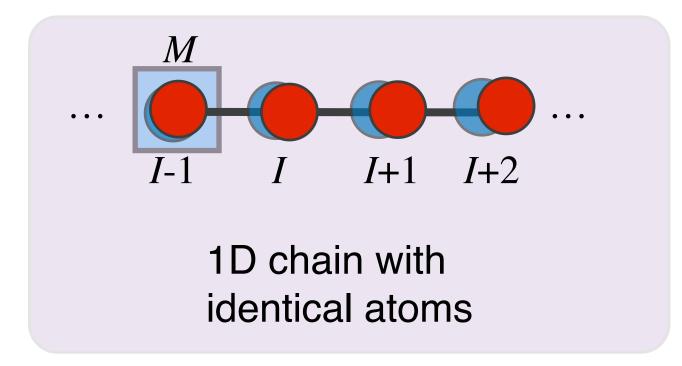
Dynamical matrix:
$$D(q) = \sum_{I} M^{-1} \Phi_{IJ} e^{iq(R_J - R_I)} = g \sin(qa)$$

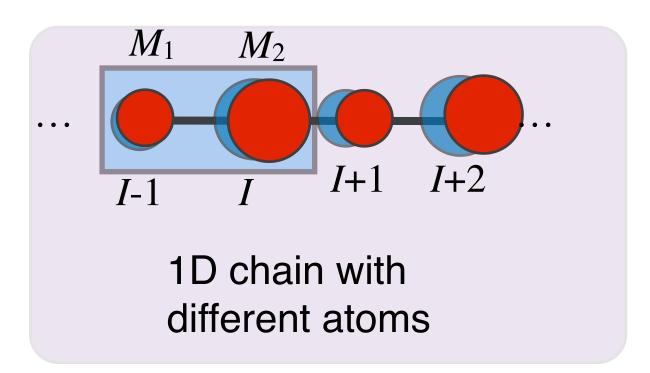
Secular equation (can be solved to obtain ω_q and u_q)

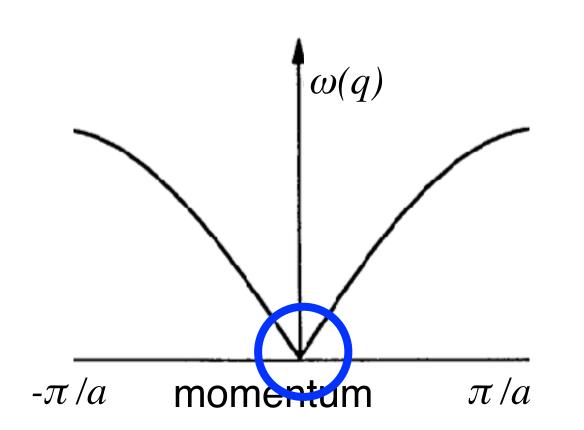
$$[D(q) - \omega_q^2]u_q = 0 \longrightarrow \omega_q^2 = D(q)$$

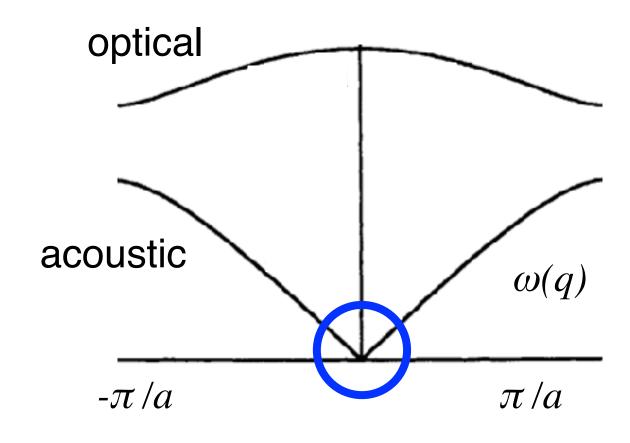
The problem is most easily solved by considering the collective motion of the ions (i.e., a phonon)

Phonon dispersion for the 1D chain









Acoustic modes vanish at q=0 (equivalent to crystal translation)

In general:
$$N_{\rm ph}^{\rm 1D}=N_{\rm atoms}$$
 $N_{\rm ph}^{\rm 3D}=3N_{\rm atoms}$

$$N_{\rm ph}^{\rm 3D} = 3N_{\rm atoms}$$

Summary of phonon calculations (1D chain)

Lattice EOM

$$M\ddot{u}_I = \sum_J \Phi_{IJ} u_J$$

Second-order force constant

$$\Phi_{IJ} \equiv \frac{\partial^2 U}{\partial u_I \partial u_J} \bigg|_{u_I = 0}$$

(2)Ansatz

$$u_I = u_q e^{iqR_I} e^{-i\omega_q t}$$

Dynamical matrix

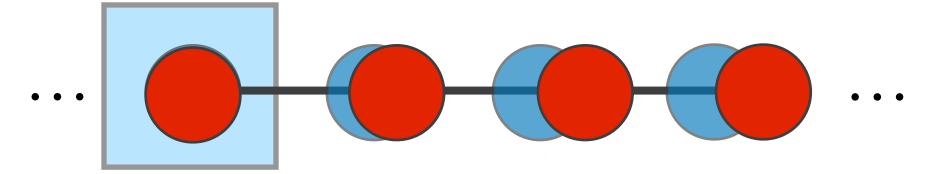
$$D(q) = \sum_{I} M^{-1} \Phi_{IJ} e^{iq(R_J - R_I)}$$

 $M\omega(q)^2 = D(q)$

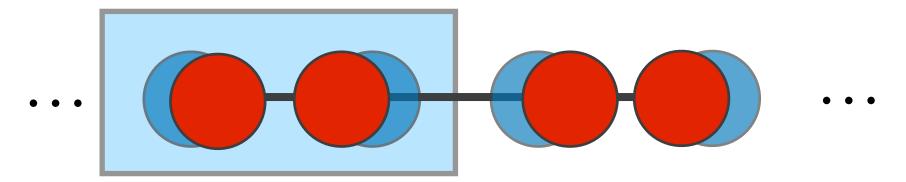
Secular equation

Classification of lattice vibrations

• Acoustic phonons: <u>in-phase</u> vibrations of the atoms in the unit cell



• Optical phonons: <u>out-of-phase</u> vibrations of the atoms in the unit cell

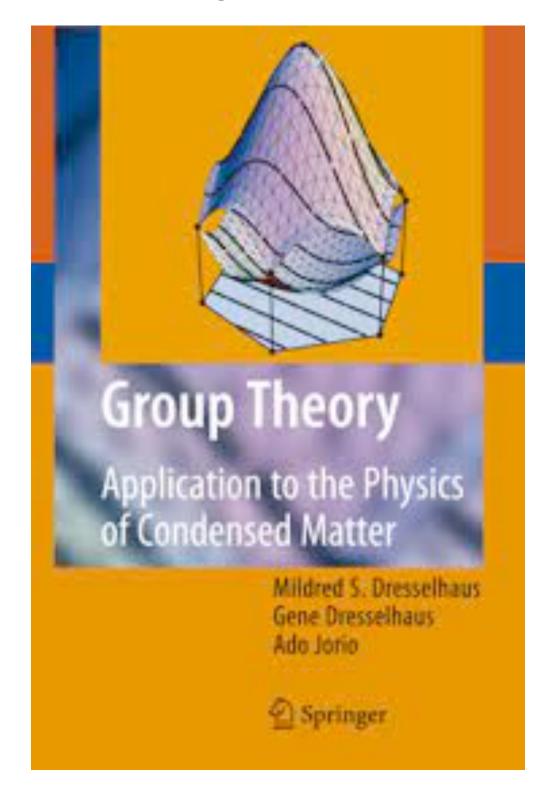


(at least 2 atoms per unit cell are needed)

- Transverse phonons: displacement perpendicular to propagation
- Longitudinal phonons: displacement parallel to propagation

- Transverse Optical (TO)
- Transverse Acoustic (TA)
- Longitudinal Optical (LO)
- Longitudinal Acoustic (LA)

Symmetry classification based on group theory



Dresselhaus,

Group Theory: Applications to the Physics of Condensed Matter Springer

Phonons: from 1D to 3D

- N unit cells
- N_b atoms in a unit cell
- 3 spatial dimensions

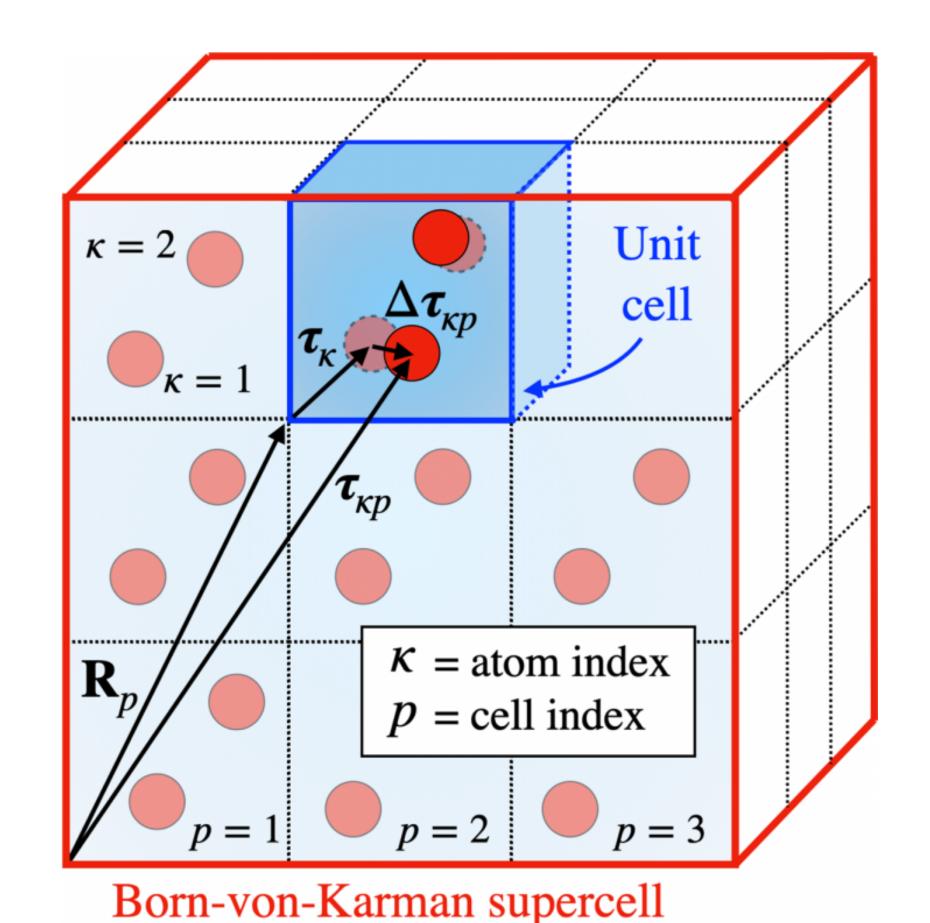
$$\{\mathbf{R}_I\}
ightarrow \{\mathbf{R}_I + \mathbf{u}_I\}$$

The potential energy surface

In 1D:
$$U^{(h)}(R_1, \cdots, R_N) \simeq U_0 + \frac{1}{2} \sum_{IJ} \frac{\partial^2 U}{\partial u_I \partial u_J} \Big|_{\substack{u_I = 0}}$$
 second-order force constant matrix $\Phi_{\kappa \alpha p, \kappa' \alpha' p'}$ In 3D: $U^{(h)}(\mathbf{R}_1, \mathbf{R}_2, \cdots) \simeq U_0 + \frac{1}{2} \sum_{\kappa \kappa'} \sum_{pp'} \sum_{\alpha \alpha'} \frac{\partial^2 U}{\partial u_{\kappa \alpha p} \partial u_{\kappa' \alpha' p'}} \Big|_{\substack{u = 0}} u_{\kappa \alpha p} u_{\kappa' \alpha' p'}$

cells

coordinates



Straightforward generalization from 1D to 3D

atoms

Summary of phonon calculations (1D chain)

$M_I \dot{u}_I = -\frac{\partial U(\{R\})}{\partial u_I}$

Lattice EOM

$$M\ddot{u}_I = \sum_J \Phi_{IJ} u_J$$

Second-order force constant

$$\Phi_{IJ} \equiv \frac{\partial^2 U}{\partial u_I \partial u_J} \bigg|_{u_I = 0}$$

Dynamical matrix

$$D(q) = \sum_{J} M^{-1} \Phi_{IJ} e^{iq(R_J - R_I)}$$

(3)Ansatz

$$u_I = u_q e^{iqR_I} e^{-i\omega_q t}$$

$$M\omega(q)^2 = D(q)$$

Secular equation

Phonon calculations in 3D crystals

$$M_{\kappa} i i_{\kappa \alpha p} = -\frac{\partial U(\{R\})}{\partial u_{\kappa \alpha p}}$$

Lattice EOM

$$M\ddot{u}_{\kappa\alpha p} = \sum_{\kappa\alpha p} \Phi_{\kappa\alpha p,\kappa'\alpha'p'} u_{\kappa'\alpha'p'}$$

Second-order force constant

$$\Phi_{\kappa\alpha p,\kappa'\alpha'p'} = \frac{\partial^2 U}{\partial u_{\kappa\alpha p}\partial u_{\kappa'\alpha'p'}}$$

Dynamical matrix
$$D(q) = \sum_{\kappa\alpha p} \frac{\Phi_{\kappa\alpha p,\kappa'\alpha'p'}}{\sqrt{M_{\kappa}M_{\kappa'}}} e^{i\mathbf{q}(\mathbf{R}_p - \mathbf{R}_{p'})}$$

Ansatz

$$u_{\kappa\alpha p} = u_{\mathbf{q}}^{\kappa\alpha} e^{i\mathbf{q}\mathbf{R}_{\kappa\alpha p}} e^{-i\omega_q t}$$

$$\left[\mathbf{D}(\mathbf{q}) - \omega_{\mathbf{q}}^2\right] \mathbf{u}_{\mathbf{q}}^{\kappa} = 0$$

Secular equation

(eigenvalue problem, easy solution)

 κ : atom index

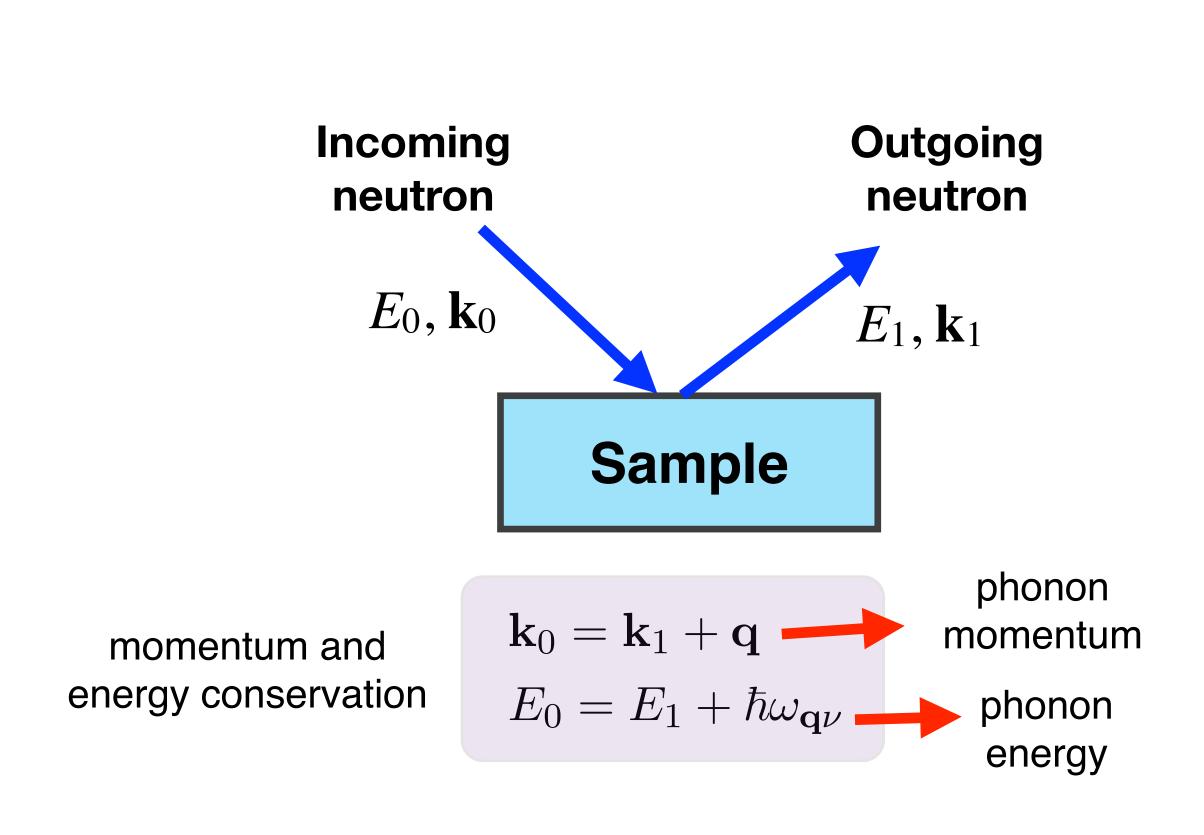
p : cell index

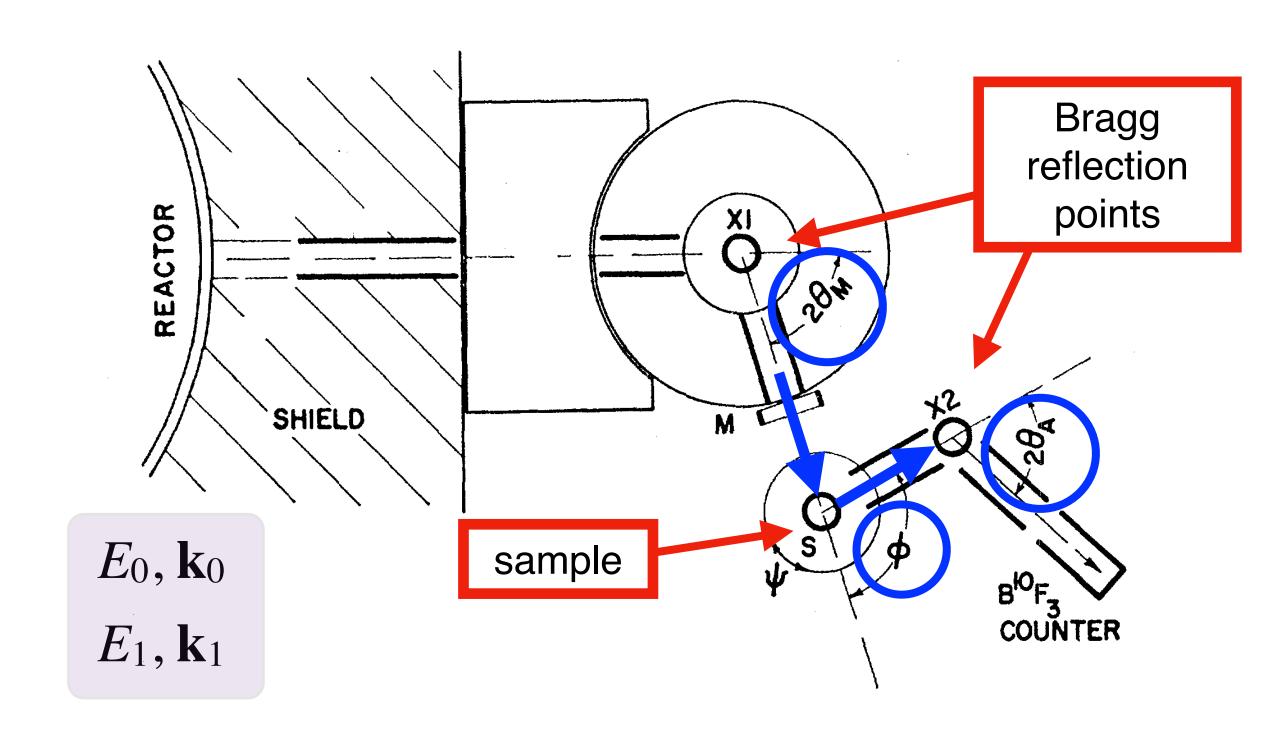
 α : cartesian coordinate

Part 2

Experimental measurements of the phonon dispersion

Phonon dispersions from Inelastic neutron scattering

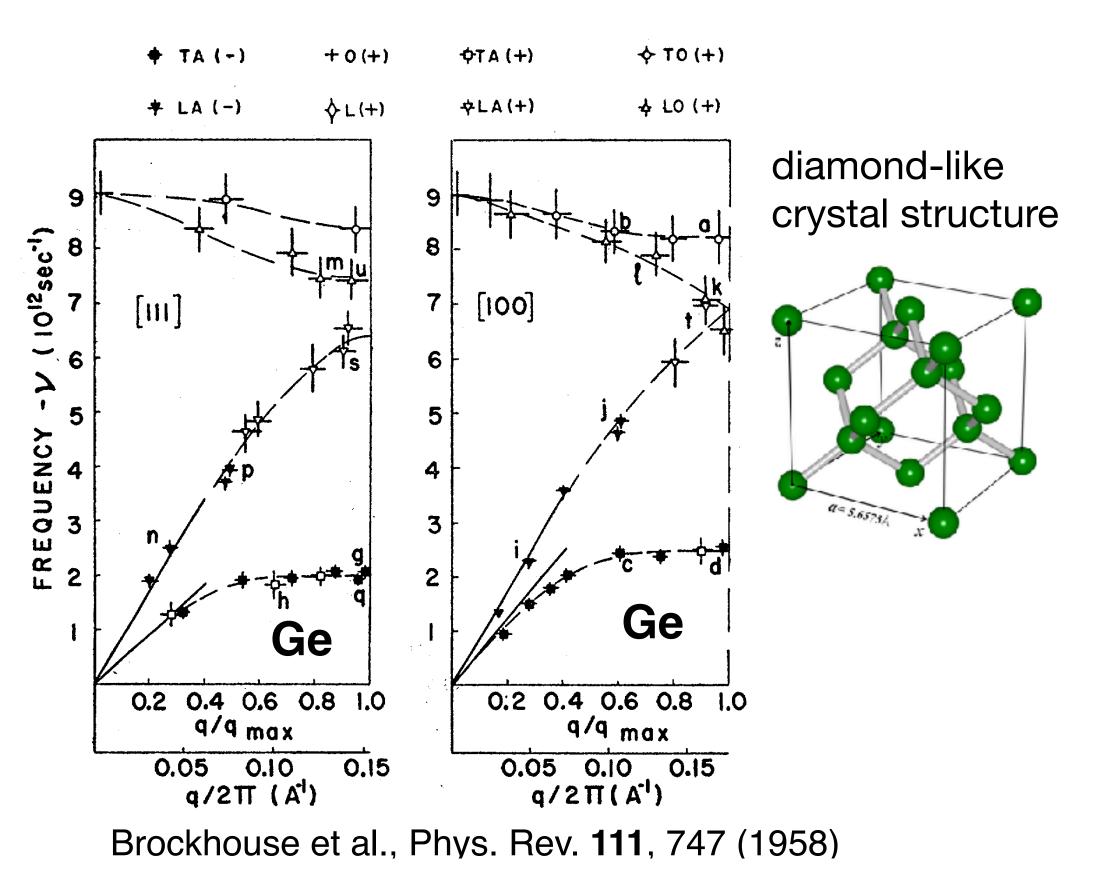




Bertram Brockhouse, Nobel prize in Physics 1994

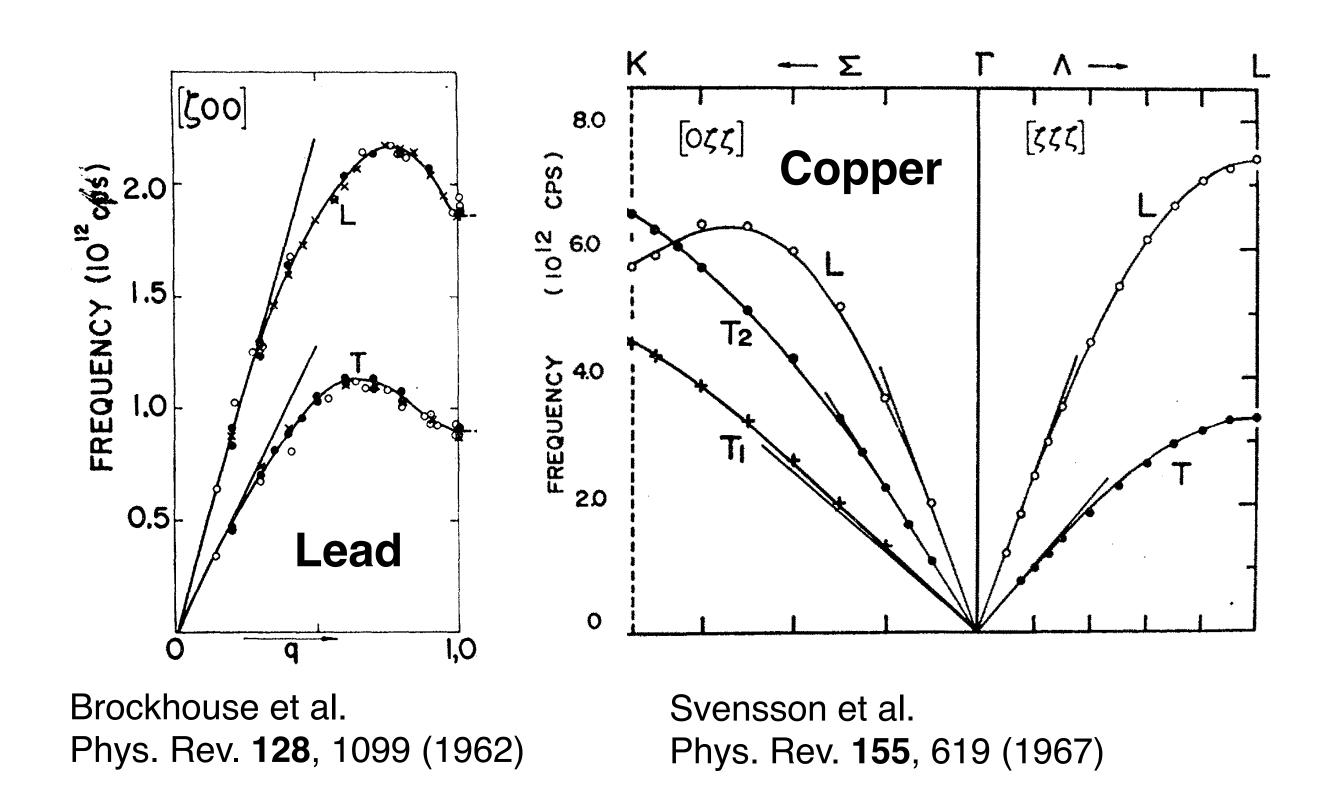
"for pioneering contributions to the development of neutron scattering techniques for studies of condensed matter"

Phonons in solids: elemental semiconductors and metals



2 atoms per unit cell → 6 phonon modes symmetry → degeneracies (only 4 modes visible)

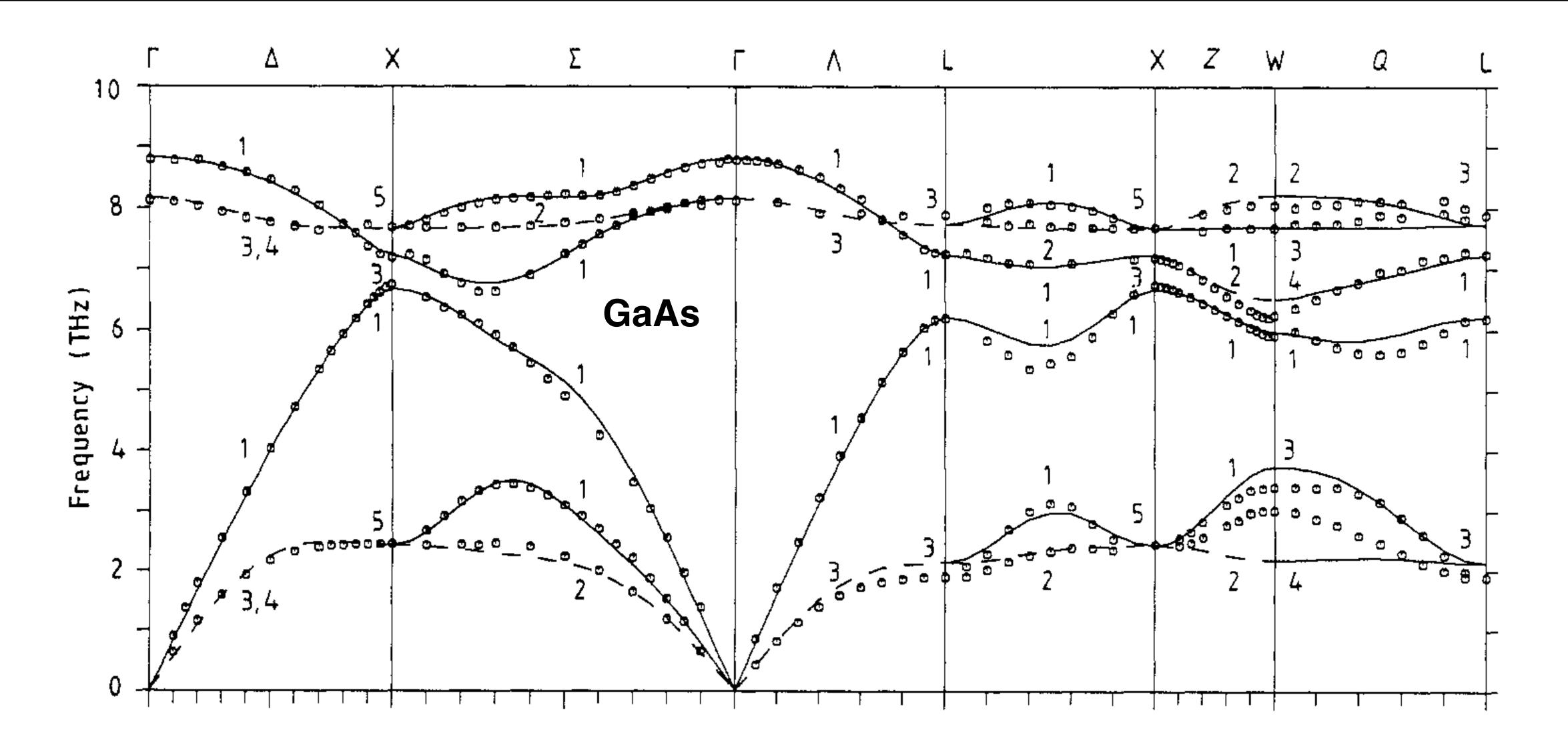
- Longitudinal Acoustic = LA
- Transverse Acoustic = TA
- Longitudinal Optical = LO
- Transverse Optical = TO



1 atoms per unit cell → 3 phonon modes

- Longitudinal Acoustic = LA
- Transverse Acoustic = TA

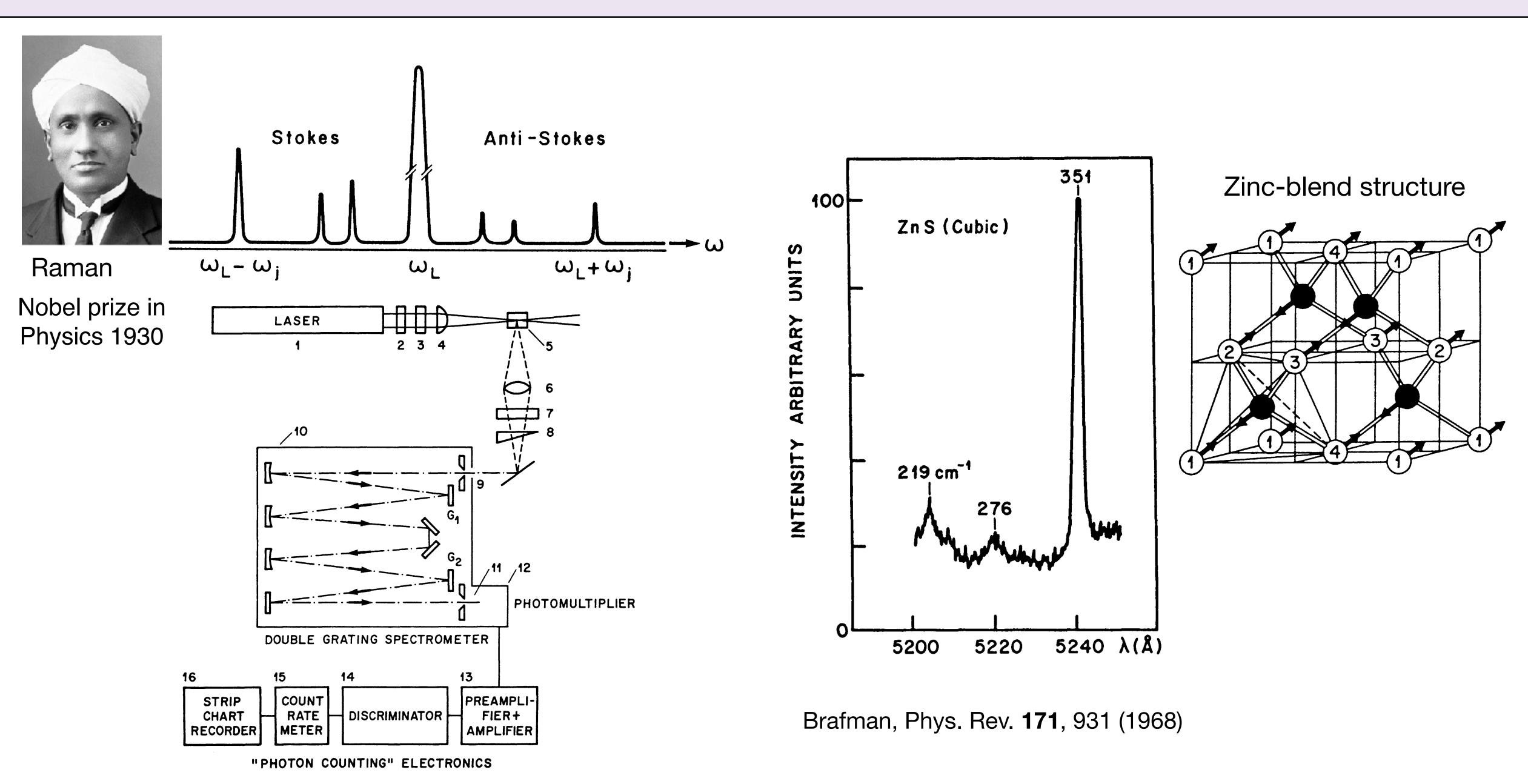
Phonon dispersions of GaAs



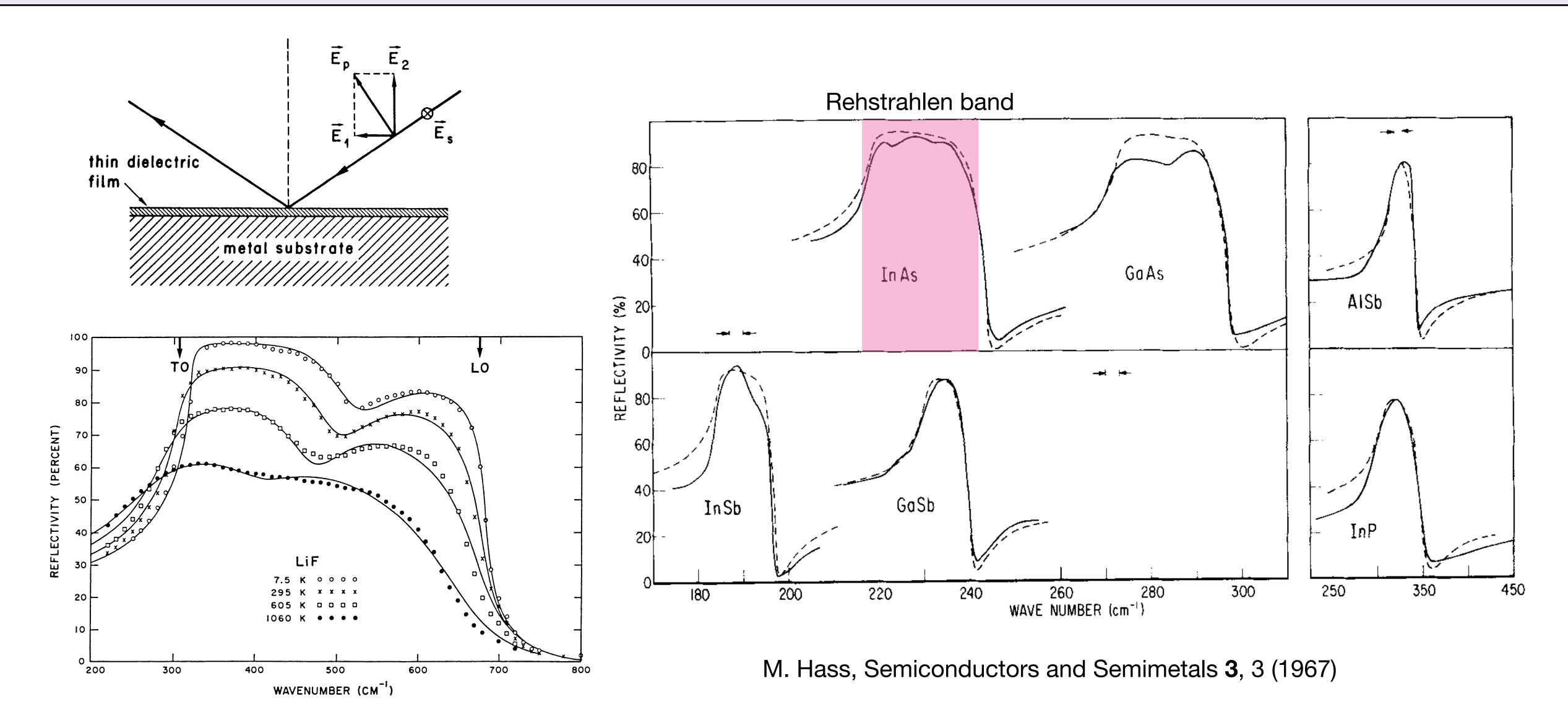
Points: experiment

Lines: parametrized model (12-14 parameters)

Phonons in experiments: Raman and Brillouin scattering

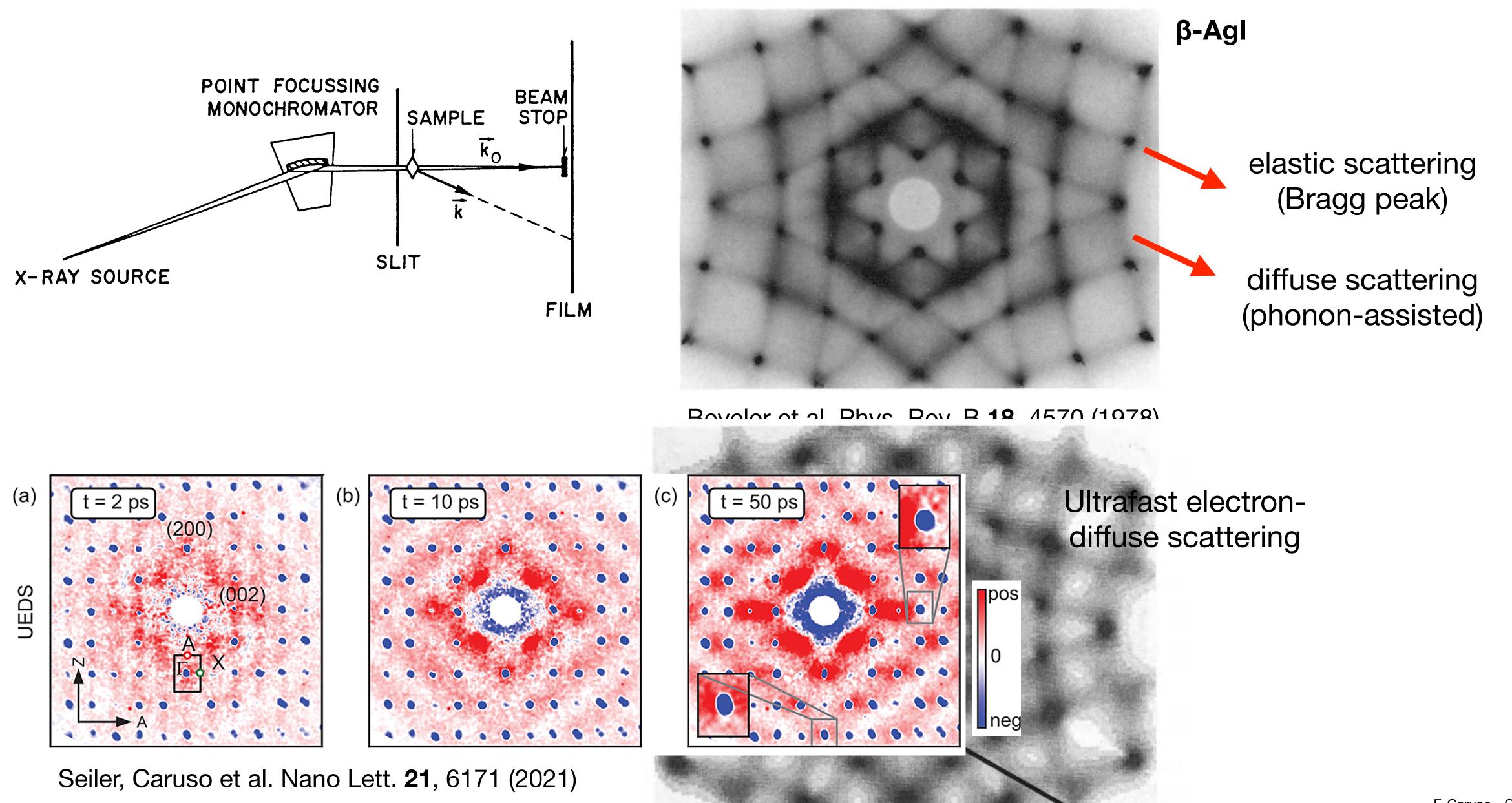


Phonons in experiments: Reflectivity measurements of polar semiconductors



Jasperse et al, Phys. Rev. **146**, 526 (1966)

Phonons in experiments: Diffuse and elastic X-ray and electron scattering



Part 3

Towards ab-initio calculations of phonons

Back to theory: Phonon calculations in practice

Quantities of interest for the lattice dynamics

- ullet phonon frequency $\omega_{{f q}
 u}$
- phonon eigenvector $u_{{\bf q}\nu}^{\kappa}$
- thermal conductivity
- electron-phonon interactions
- ullet phonon lifetimes $au_{{f q}
 u}$
- influence of phonon in spectroscopy

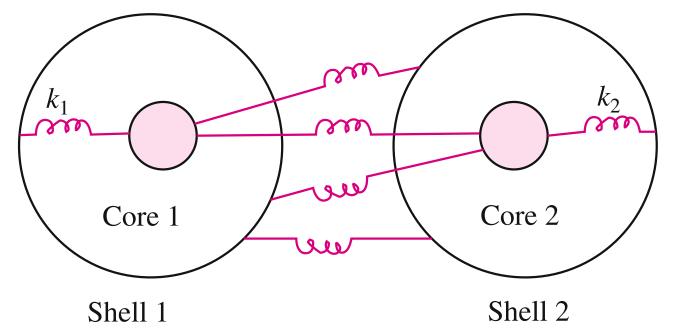
Directly available from the **secular equation**

$$\left[\mathbf{D}(\mathbf{q}) - \omega_{\mathbf{q}}^2\right] \mathbf{u}_{\mathbf{q}}^{\kappa} = 0$$

We need the second-derivatives of the potential energy surface

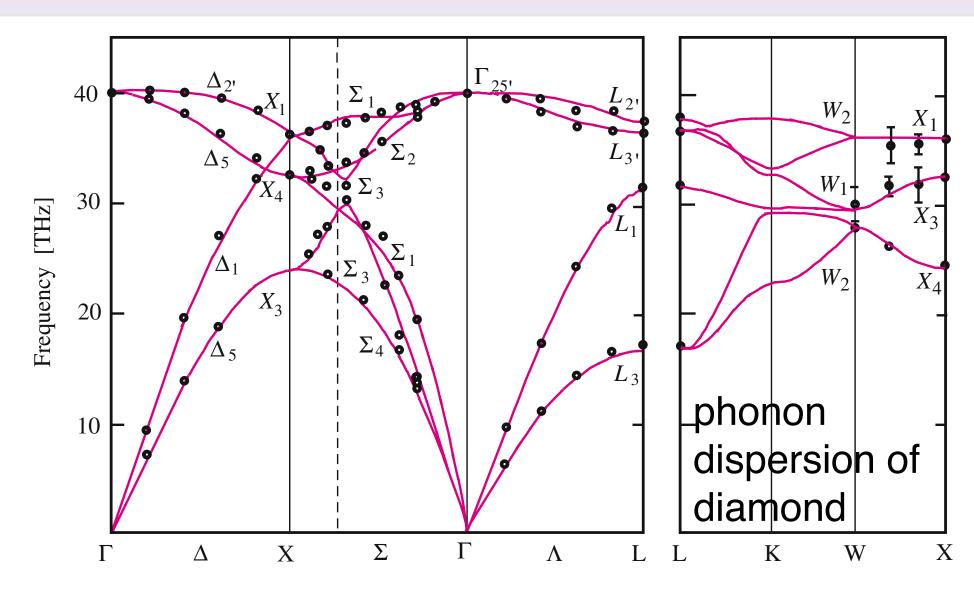
$$\Phi_{\kappa\alpha p,\kappa'\alpha'p'} = \frac{\partial^2 U}{\partial u_{\kappa\alpha p}\partial u_{\kappa'\alpha'p'}} \qquad \qquad D(q) = \sum_{\kappa\alpha p} \frac{\Phi_{\kappa\alpha p,\kappa'\alpha'p'}}{\sqrt{M_{\kappa}M_{\kappa'}}} e^{i\mathbf{q}(\mathbf{R}_p - \mathbf{R}_{p'})}$$

Before ab-initio methods: Phenomenological models



Problems:

- highly-parametrized
- not predictive (need experiments)



Yu, Cardona, Fundamentals of Semiconductors, Springer

Phonon calculations from first principles

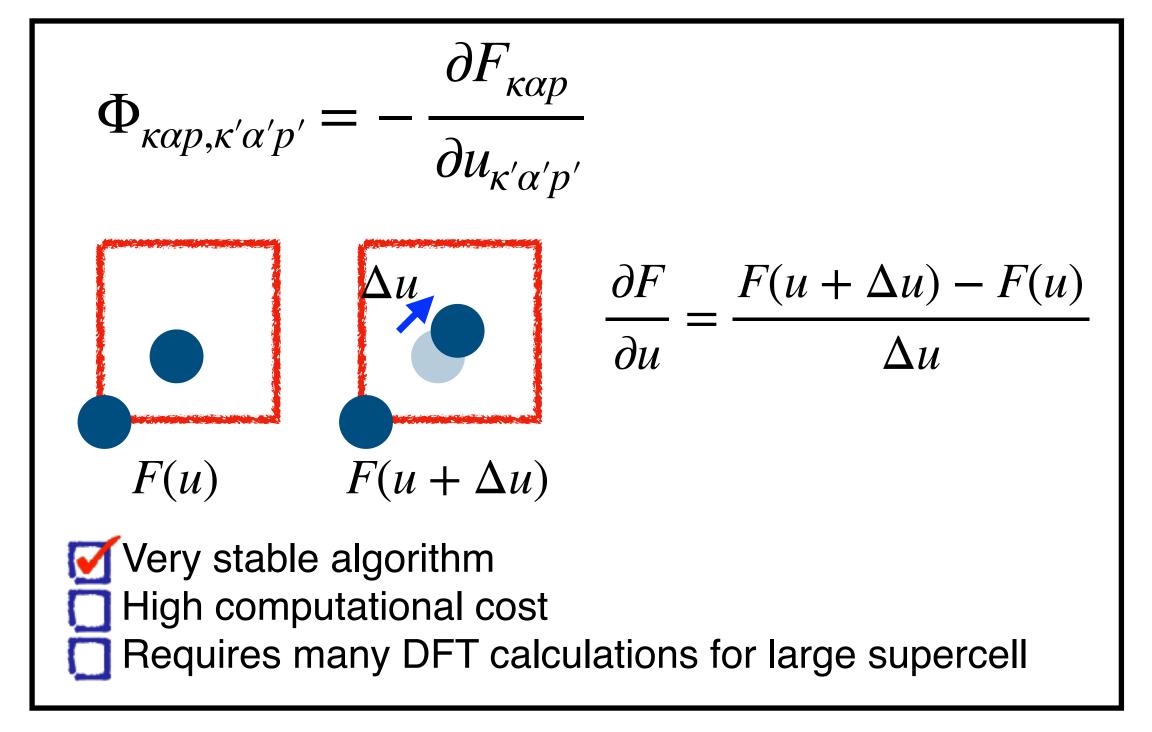
Potential energy surface from **Density functional theory** (formally exact theory)

$$U(R) = E^{\rm el}[n] + \frac{1}{2} \sum_{IJ} \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|}$$
 electronic energy nuclear Coulomb energy

How to calculate the second derivatives?

$$\Phi_{\kappa\alpha p,\kappa'\alpha'p'} = \frac{\partial^2 U}{\partial u_{\kappa\alpha p}\partial u_{\kappa'\alpha'p'}}$$

Option 1: Finite differences



Option 2: Density functional perturbation theory

REVIEWS OF MODERN PHYSICS, VOLUME 73, APRIL 2001

Phonons and related crystal properties from density-functional perturbation theory

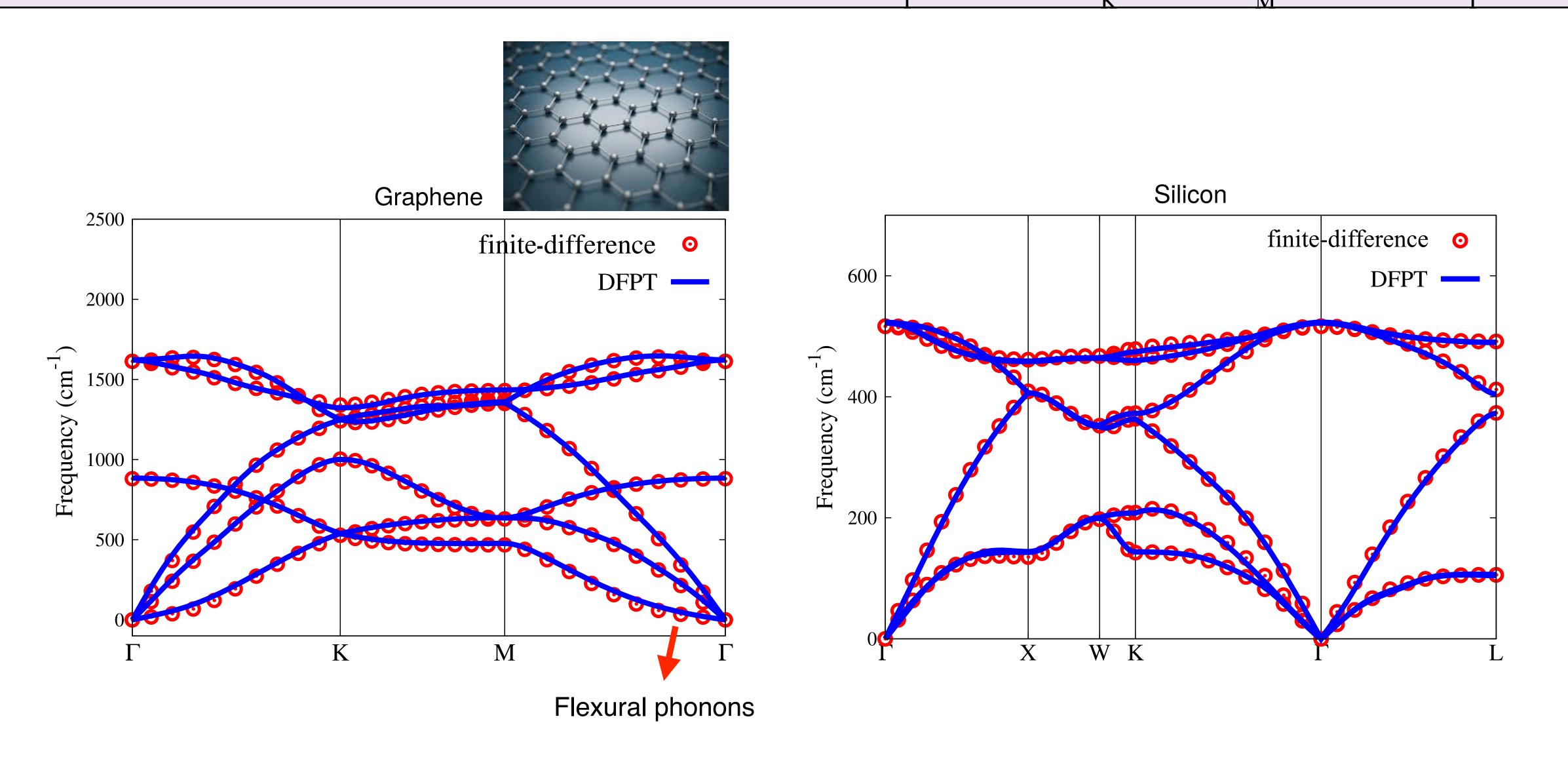
Stefano Baroni, Stefano de Gironcoli, and Andrea Dal Corso

SISSA-Scuola Internazionale Superiore di Studi Avanzati and INFM-Istituto Nazionale di Fisica della Materia, I-34014 Trieste, Italy

Paolo Giannozzi*

- **M** Does not requires supercell.
- More difficult to converge

Phonon calculations from first principle PPT vs finite differences



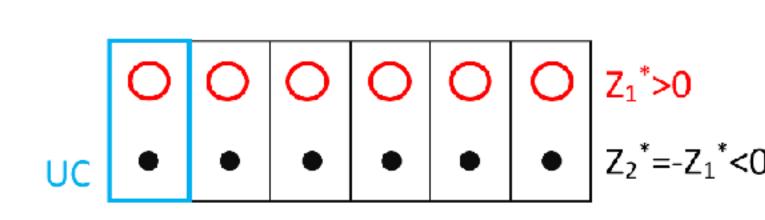
H. Shang, Comp. Phys. Commun. **215**, 26 (2017) Silicon

Phonons in polar semiconductors and long-range electric fields

Lattice vibrations are coupled to macroscopic electric fields in polar semiconductors

Polar materials: materials with finite Born effective charges

$$\mathbf{Z}_{\kappa}^{\star} = -\frac{\partial \mathbf{P}}{\partial \mathbf{R}_{\kappa}}$$



Electric fields must be included in the lattice equation of motion
$$\mathbf{F}_{I} = M\mathbf{u}_{I} = -\sum_{J} \Phi_{IJ} \mathbf{u}_{J} - e \sum_{I} \mathbf{Z}_{I}^{\star} \mathbf{E}$$

$$\mathbf{F}_{I} = M\ddot{\mathbf{u}}_{I} = -\sum_{J} \Phi_{IJ} \mathbf{u}_{J} - e \sum_{J} \mathbf{Z}_{I}^{\star} \mathbf{E}$$

Maxwell equation in solids:

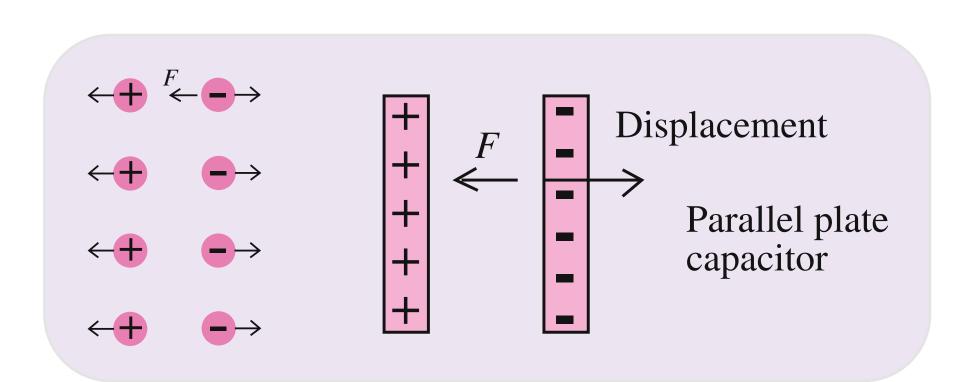
1
$$\mathbf{D} = \mathbf{E} + 4\pi \mathbf{P}_{el} + 4\pi \mathbf{P}_{ion} = \epsilon_{\infty} \mathbf{E} + \frac{4\pi e}{\Omega} \sum_{I} \mathbf{Z}^{\star}_{I} \mathbf{u}_{I}$$
 Lattice contribution to the polarization

(2)
$$\mathbf{q} \cdot \mathbf{D} = 0$$
 and $\mathbf{q} \times \mathbf{E} = 0 \implies \mathbf{E} = \hat{\mathbf{q}}(\hat{\mathbf{q}} \cdot \mathbf{E})$

$$\mathbf{E} = -\frac{4\pi e}{\Omega} \sum_{I} \frac{\mathbf{q} \left(\mathbf{q} \cdot \mathbf{Z}_{I}^{\star} \mathbf{u}_{I} \right)}{\mathbf{q} \cdot \epsilon_{\infty} \cdot \mathbf{q}}$$

Replace \mathbf{E} into \mathbf{F}_I

$$\mathbf{F}_{I} = M\ddot{\mathbf{u}}_{I} = -\sum_{J} \left[\Phi_{IJ} - \frac{4\pi e^{2}}{\Omega} \sum_{J} \frac{(\mathbf{Z}_{I}^{\star} \cdot \mathbf{q})(\mathbf{q} \cdot \mathbf{Z}_{J}^{\star})}{\mathbf{q} \cdot \epsilon_{\infty} \cdot \mathbf{q}} \right] \mathbf{u}_{J}$$

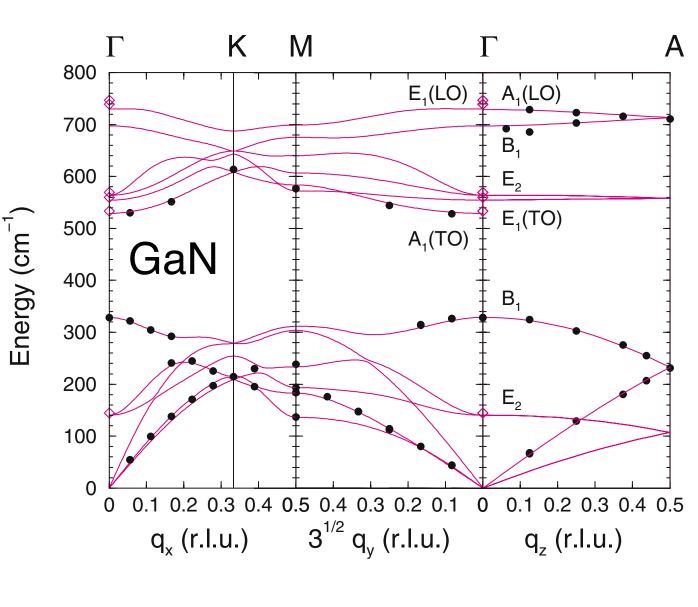


The non-analytic part fo the dynamical matrix

$$\mathbf{F}_{I} = M\ddot{\mathbf{u}}_{I} = -\sum_{J} \left[\Phi_{IJ} - \frac{4\pi e^{2}}{\Omega} \sum_{J} \frac{(\mathbf{Z}_{I}^{\star} \cdot \mathbf{q})(\mathbf{q} \cdot \mathbf{Z}_{J}^{\star})}{\mathbf{q} \cdot \epsilon_{\infty} \cdot \mathbf{q}} \right] \mathbf{u}_{J}$$

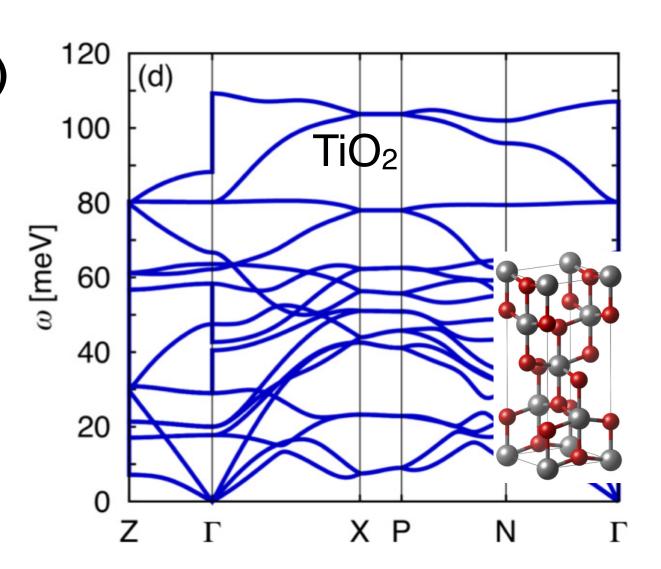
$$\Phi_{IJ}^{(na)} = \frac{4\pi e^2}{\Omega} \sum_{I} \frac{(\mathbf{Z}_{I}^{\star} \cdot \mathbf{q})(\mathbf{q} \cdot \mathbf{Z}_{J}^{\star})}{\mathbf{q} \cdot \epsilon_{\infty} \cdot \mathbf{q}}$$

$$\tilde{\Phi}_{IJ} = \Phi_{IJ} + \Phi_{IJ}^{(na)}$$



Phenomena associated to polar semiconductors (and to $\Phi_{IJ}^{(\mathrm{na})}$)

- LO-TO splitting
- Lyddane-Sachs-Teller relations $\frac{\omega_{\text{LO}}^2}{\omega_{\text{TO}}^2} = \frac{\varepsilon^0}{\varepsilon^\infty}$
- Absorption of infrared light (Rehstrahlen bands)
- Modern theory of polarization in ferroelectrics
- Fröhlich electron-phonon coupling
- Polarons



- X. Gonze, C. Lee Phys. Rev. B **55**, 10355 (1997)
- S. Baroni et al, Rev. Mod. Phys. **73**, 515 (2001)

Limits of the approximations involved

1 Adiabatic (Born-Oppernheimer) approx.

Assumption: timescales of ionic motions much slower than electronic timescales

timescales of ionic dynamics
$$\tau_{\rm ph} = \frac{2\pi}{\omega_{\rm ph}} \simeq 50-200~{\rm fs}$$

timescales of electron dynamics

$$\tau_{\rm e} = \frac{2\pi}{\omega_{\rm pl}}$$

insulators metals doped insulators
$$\omega_{\rm pl} \ \ \, 10\text{-}20~{\rm eV} \ \ \, 5\text{-}10~{\rm eV} \ \ \, 10\text{-}100~{\rm meV} \ \ \, \tau_{\rm e} \ \ \, < 1~{\rm fs} \ \ \, < 1~{\rm fs} \ \ \,$$

Phenomena beyond the adiabatic approximation:

- Phonon "damping" due to electron-phonon scattering
- Non-adiabatic renormalization of the phonon energies

2 Harmonic approximation

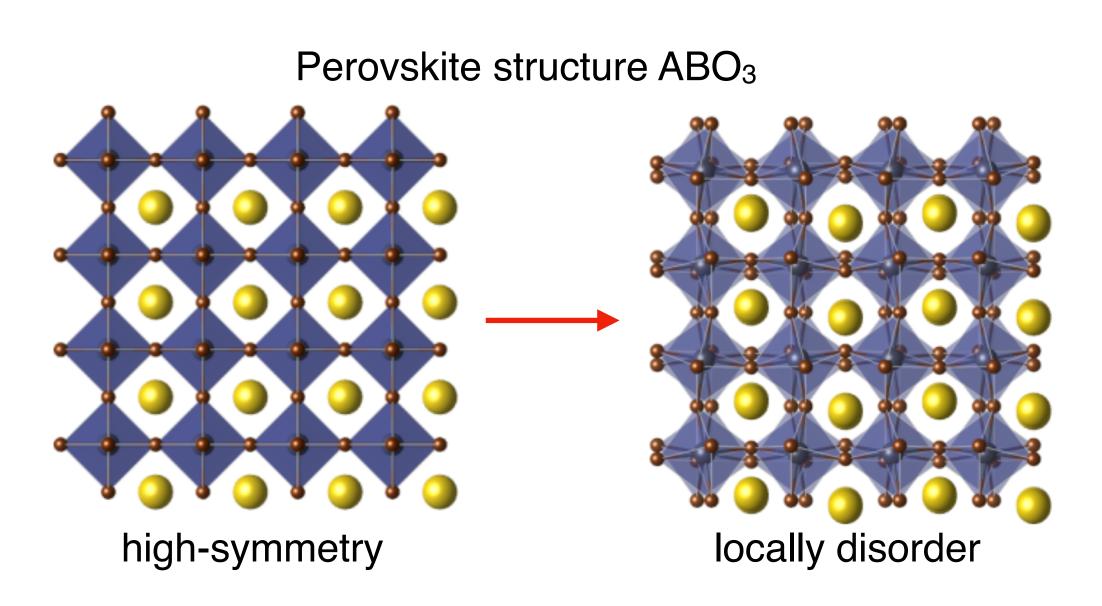
$$E_0(\{R_I + u_I\}) = E_0(\{R_I\}) + \frac{1}{2} \sum_{II'} \frac{\partial^2 E_0}{\partial u_I \partial u_{I'}} \Big|_{R_I} u_I u_{I'}$$

Assumption: $+\frac{1}{3!}\sum_{II'I''}\frac{\partial^3 E_0}{\partial \nu_I \partial a_{I'} \partial u_{I''}}\bigg|_{R_I}u_{I}u_{I'}u_{I''}+\cdot$

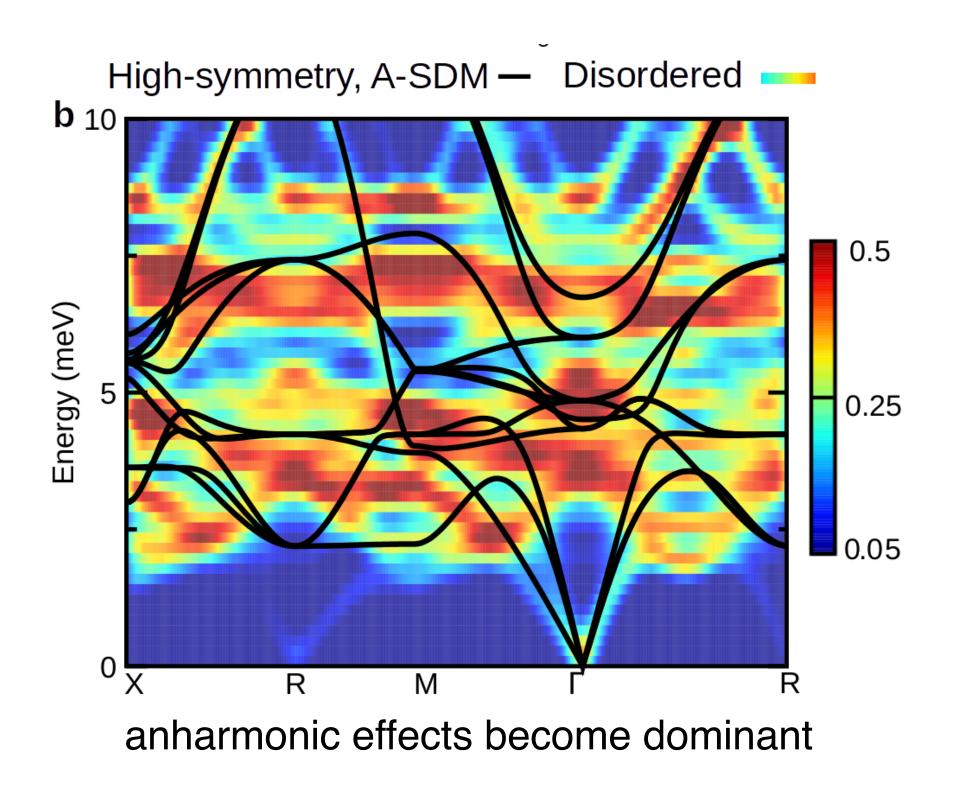
Phenomena beyond the harmonic approximation:

- Phonon-phonon scattering
- Thermal expansion
- Thermal conductivity
- Non-equilibrium dynamics of the lattice
- Ferroelectricity, piezoelectricity

Beyond phonons: Breakdown of the harmonic approximation

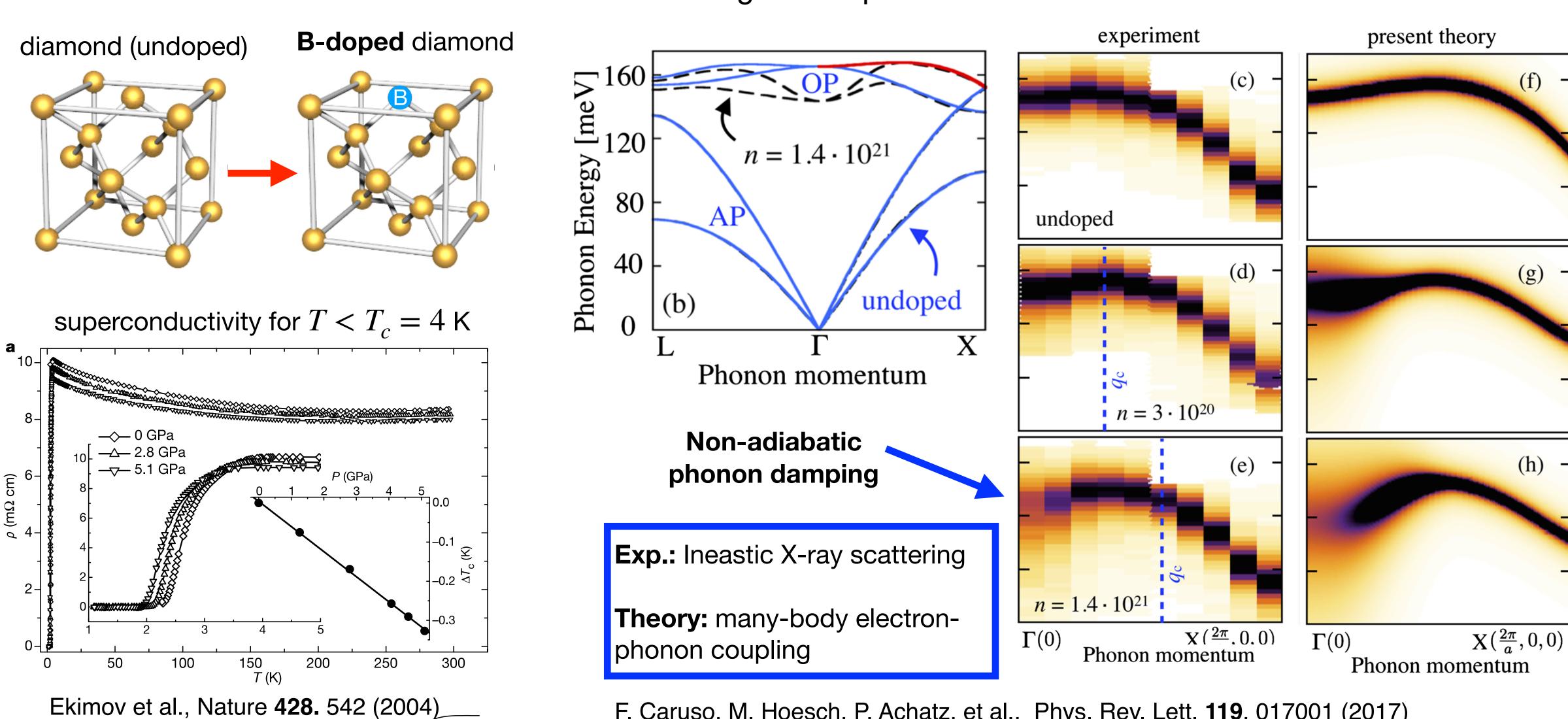


- Anharmonic effects can become important in "soft" crystals
- Structural disorder can alter the vibrational spectrum
- Does it make sense to talk about phonons?



Beyond phonons: Breakdown of the adiabatic approximation

Phonon softening in B-doped diamond



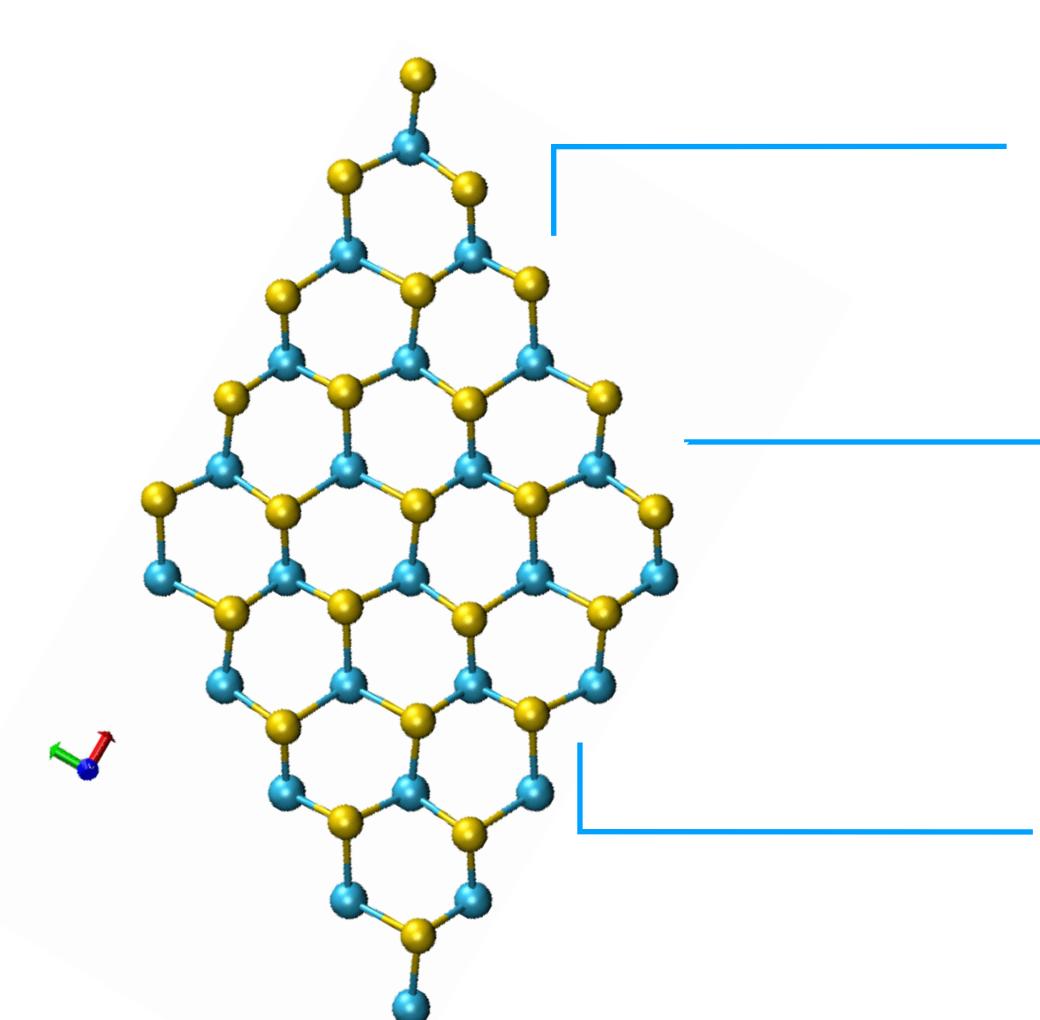
F. Caruso, M. Hoesch, P. Achatz, et al., Phys. Rev. Lett. **119**, 017001 (2017)

Phonon visualization

1. https://henriquemiranda.github.io/phononwebsite/phonon.html

2. https://interactivephonon.materialscloud.io/

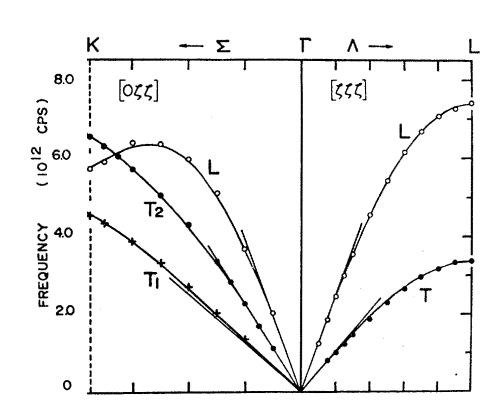
Summary: introduction to phonons



Theory of phonons in crystalline solids

$$\hat{H}^{\text{nuc}} \chi_{\nu s}(R) = E_s \chi_{\nu s}(R)$$

Phonons in experiments



Ab-initio calculations of phonons in solids

