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Zusammenfassung

Ladungsdichtewellen (CDW) in niederdimensionalen Materialien bieten ein faszinierendes
System zur Untersuchung des Zusammenspiels von elektronischen Wechselwirkungen, Git-
terverzerrungen und Quanteneffekten. In dieser Arbeit wird der CDW-Phasenübergang in
monolagigem TiSe2 auf Grundlage von ab initio Methoden untersucht.

Die Effekte elektronischer Temperatur werden über Fermi–Dirac-Smearing modelliert, wodurch
eine temperaturabhängige Analyse phononischer Instabilitäten ermöglicht wird. Die Phononen-
spektren zeigen ein charakteristisches mode-softening, das mit der CDW in Verbindung
steht, und erlauben so die Bestimmung einer kritischen Übergangstemperatur. Die entsprechen-
den periodischen Gitterverzerrungen dienen als Grundlage zur Konstruktion von Potentialflächen,
deren Temperaturabhängigkeit eine unabhängige Abschätzung der Phasenübergangstemper-
atur erlaubt.

Zur Untersuchung quantennuklearer Effekte wird die atomare Bewegung im Rahmen eines
quantenmechanischen einteilchen-Modells innerhalb des durch die CDW definierten Konfig-
urationsraums beschrieben. Die Analyse der resultierenden Wellenfunktion liefert Einblicke
in die quantenmechanische Delokalisierung und die Möglichkeit einer quantenstabilisierten
CDW-Phase. Dieser Zugang unterstreicht die Relevanz quantennuklearer Effekte im Bere-
ich des Phasenübergangs und deren Einfluss auf die Stabilisierung oder Unterdrückung von
Gitterinstabilitäten in zweidimensionalen Materialien.
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Abstract

Charge density wave (CDW) phases in low-dimensional materials offer a compelling frame-
work for studying the interplay between electronic correlations, lattice distortions, and quan-
tum effects. This work investigates the CDW phase transition in monolayer TiSe2 based on
first-principles methods.

Electronic temperature effects are modeled via Fermi–Dirac smearing, enabling an analy-
sis of temperature-dependent phonon instabilities. Phonon spectra reveal the softening of
specific modes associated with the CDW, allowing the determination of a critical transition
temperature. The corresponding periodic lattice distortions are used to construct potential
energy surfaces, from which the disappearance of the energy barrier at higher temperatures
provides an independent estimate of the phase transition.

To explore quantum nuclear effects, atomic motion is treated within a single-particle quan-
tum framework in the configuration space associated with the CDW. Analysis of the resulting
wavefunction provides insight into quantum delocalization and the possibility of a quantum-
stabilized CDW phase. This approach highlights the relevance of quantum nuclear effects
near the phase boundary and their role in stabilizing or suppressing lattice instabilities in
two-dimensional materials.
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Chapter 1

Introduction

Charge density wave (CDW) phases are an intriguing class of electronic orders in condensed
matter systems, characterized by periodic modulations of the electron density. These phases
exhibit a complex interplay between electronic correlations, lattice distortions, and quantum
effects, making them a powerful platform for exploring fundamental physical phenomena.
The study of CDW in low-dimensional materials, particularly in monolayers, has attracted
significant attention due to their potential application in future electronic devices. One such
material is TiSe2, a Transition metal dichalcogenide (TMDC), which has long been known
for its CDW phase transition at low temperatures. Understanding the underlying mecha-
nisms of this transition is crucial for both fundamental physics and potential applications in
quantum technologies.

This thesis investigates the CDW phase transition in monolayer TiSe2 through first-principles
calculations, employing Density functional theory (DFT), Density functional perturbation
theory (DFPT), and numerical methods to provide a comprehensive understanding of the
material’s behavior near the phase transition. The study focuses on the coupling between the
electronic subsystem and the lattice degrees of freedom, which are central to the formation
and suppression of the CDW phase. To introduce a physically meaningful temperature, the
thermal occupations are broadened using Fermi–Dirac smearing, allowing for the simulation
of temperature-dependent changes in the Phonon spectrum and electronic structure. By an-
alyzing the phonon spectrum, electronic structure, and Potential energy surface (PES), this
work aims to provide quantitative estimates of the phase transition temperature.

An essential aspect of this study is the exploration of Quantum nuclear effects (QNE), which
are treated within the framework of a single-particle Schrödinger equation solved for the
configuration space underlying the PES. The goal is to evaluate the role of QNE in stabi-
lizing or suppressing the CDW phase. The methodology is inspired by similar techniques
employed in the study of quantum paraelectrics [1]. The use of mass-weighted coordinates in
this study avoids arbitrary choices of phonon mass and displacement amplitudes, enabling a
physically grounded treatment of nuclear quantum motion. The combined analysis of DFPT,



2 Chapter 1. Introduction

PES topology, and quantum delocalization provides a comprehensive framework for under-
standing the role of quantum fluctuations in CDW phase transitions.

In summary, this thesis establishes a thorough first-principles analysis of the CDW phase
transition in TiSe2 and highlights the complex role of QNE. By combining phonon, elec-
tronic, and quantum mechanical approaches, it contributes to a deeper understanding of the
CDW phenomenon in low-dimensional materials and paves the way for future studies in this
exciting field.
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Chapter 2

Theory and Methods

In the following, we adopt the Hartree atomic unit system, as is common in solid-state
physics, to ensure consistency and clarity in all calculations. Within this unit system, the
constants and expressions commonly given in SI units transform as follows:

h̄ = e = 4πϵ0 = me = 1 (2.1)

2.1 Density Functional Theorie

Similar to how newtons second law predicts the behavior and response of macroscopic ob-
jects to some initial conditions the Schrödinger equation describes any quantum-mechanical
system and how it evolves. In solid state physics these systems are periodic structures (lat-
tices) of a finite number of nuclei and electrons. To correctly describe such a system the
Equation must include the correlation terms of the different constituents and is often reffered
to as the many body schrödiger equation. Solving this equation analytically or numerically
for larger systems is practically impossible.

Hence, the approach of DFT is employed. This chapter provides a basic derivation of the
method, following the detailed exposition presented in Materials Modelling using Density
Functional Theory by Giustino [2].

2.1.1 Many Body Schrödinger Equation

Solids consists of a finite number of nuclei and electrons. The state of such a quantum-
mechanical system is described by the wavefunction Ψi, which accounts for all degrees of
freedom within the system, including, in general, the positions and spin of each electron and
nucleon. The wavefunction Ψi and its corresponding eigenvalue Ei, denoted by the index i,
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are solutions to the eigenvalue problem known as the Many-Body Schrödinger Equation.

ĤΨi = EiΨi (2.2)

Ĥ represents the many-body Hamiltonian, the operator that governs the system’s dynamics
by incorporating the initial parameters, including the kinetic energy terms and the potential
interactions arising from the charges of electrons and nuclei.

Ĥ = T̂e + T̂n + V̂ee + V̂nn + V̂en (2.3)

• T̂ : Kinetic energy operator for electrons

T̂e = −
∑
i=1

∇2
i

2
(2.4)

• T̂n: Kinetic energy operator for nuclei

T̂n = −
∑
I=1

∇2
I

2MI

(2.5)

• V̂ee: Operator for Electron-electron interactions

V̂ee =
1

2

∑
i ̸=j

1

|r⃗i − r⃗j|
(2.6)

• V̂nn: Operator for Nucleus-nucleus interactions

V̂nn =
1

2

∑
I ̸=J

ZIZJ

|R⃗I − R⃗J |
(2.7)

• V̂en: Operator for Electron-nucleus interactions

V̂en = −
∑
i,I

ZI

|r⃗i − R⃗J |
(2.8)

Where i and j represent indices for electrons, while I and J denote indices for nuclei, run-
ning over all electrons and nuclei in the system, respectively. The position vectors r⃗i and R⃗I

correspond to the coordinates of the ith electron and the Ith nucleus. MI represents the mass
of the Ith nucleus, and ZI denotes its charge, which corresponds to the number of protons
in atomic units. The summations extend over all particles in the system, with the conditions
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i ̸= j and I ̸= J ensuring that self-interactions are excluded from the potential energy terms.
Using the Hartree atomic unit system the external parameters required to solve the time in-
dependent Schrödinger equation are reduced to only the atomic Masses MI and charges ZI

[2].

2.1.2 Born-Oppenheimer Approximation

Solving the many-body Schrödinger equation requires accounting for 3(Ne + Nn) degrees
of freedom, where NE and NI represent the number of electrons and nuclei, respectively.
To make this equation computationally feasible, it is necessary to introduce approximations.
The first major simplification being the Born–Oppenheimer approximation (BOA) separating
the electronic and nuclear degrees of freedom effectively decoupling their motion. Within
this approximation the many-body wave function can be written as a product of an electronic
and a nuclear wave function [3]:

Ψ(r, R) =
∑
h

ψh(r;R)ϕh(R). (2.9)

Since nuclei are much heavier than electrons (MI ≫ me), they move much more slowly.
Consequently, electrons can instantaneously adjust to the positions R of the nuclei, allowing
us to treat nuclear coordinates as fixed parameters when solving the electronic Schrödinger
equation.

Ĥeψh(r;R) = Eh(R)ψh(r;R), (2.10)

where the electronic Hamiltonian is given by:

Ĥe = T̂e + V̂ee + V̂en. (2.11)

Accordingly the nuclear Schrödinger Equation is of the form:

ĤnΩhk(R) = Ehk(R)Ωhk(R) (2.12)

with the nuclear Hamiltonian:

Ĥn = T̂n + V̂nn + Eh(R) (2.13)
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The BOA significantly reduces computational complexity by allowing the electronic struc-
ture problem to be solved independently for fixed nuclear positions thus reducing the systems
degrees of freedom to 3Ne.

2.1.3 Hohenberg-Kohn-Theorem

Despite the simplification achieved by the BOA, the computational cost of solving the many-
electron Schrödinger equation still increases exponentially with the number of electrons. In
the 1960s, Hohenberg and Kohn developed a method with means to reduce this cost to a
linear factor scaling [4]. The main insight of this Theorem is that ground state properties
like the ground state wavefunction ψ0 and energy E0 of a system of electrons are entirely
determined by the electron density n0 .

The electron density and the electron density operator for an Ne-electron system are defined
as:

n(r) = ⟨Ψ|n̂(r)|Ψ⟩ (2.14)

n̂(r) =
Ne∑
i

δ(r− r̂i), (2.15)

where r̂i are the particle position operators. Using this definition the external potential cre-
ated by the nuclei can be expressed as:

⟨ψ|V̂en|ψ⟩ =
∫

n(r)Ven(r;R) dr (2.16)

Eh = ⟨ψh|Ĥe|ψh⟩ = ⟨ψh|T̂e + V̂ee|ψh⟩+
∫

n(r)Ven(r;R) dr (2.17)

In this form it becomes obvious that the Energy is a functional of the many electron Schrödinger
equation Eh = F [ψh(r1, . . . , rN)].

Hohenberg-Kohn 1

The first part of the Hohenberg-Kohn theorem uniquely connects the ground-state electron
density n0 and the external potential V̂en. This unintuitive conclusion can easily be achieved
by reductio ad absurdum.



2.1. Density Functional Theorie 7

Assume the ground-state density n0 can be obtained by two different potentials V I
en and V II

en .
If ψI

0 and ψII
0 are the corresponding ground states, we find:

⟨ψI
0|ĤI

e |ψI
0⟩ = EI

0 < ⟨ψII
h |ĤI

e |ψII
h ⟩ (2.18a)

⟨ψII
0 |ĤII

e |ψII
0 ⟩ = EII

0 < ⟨ψI
0|ĤII

e |ψI
0⟩ (2.18b)

By subtraction and equation (2.17), we obtain:

EI
0 − EII

0 <

∫
n(r)

[
V I
en(r;R)− V II

en (r;R)
]
dr (2.19a)

EII
0 − EI

0 <

∫
n(r)

[
V II
en (r;R)− V I

en(r;R)
]
dr (2.19b)

Adding (2.19a) and (2.19b), we obtain 0 < 0, a contradiction. This concludes the proof that
no two different potentials Ven can yield the same ground-state electron density or, in other
words, that the ground state density uniquely specifies the external potential Ven. As a result,
any quantity that can be written as a functional of the ground-state wavefunction can instead
be expressed as a functional of the electron density.

Hohenberg-Kohn 2

So far, we know that for a given v(r), the ground-state density n0(r) uniquely determines the
external potential and thus the Hamiltonian and wavefunction. However, it does not tell us
how to obtain this ground-state density n0(r). The second part of the Theorem often referred
to as the Hohenberg-Kohn variational principal of density functional theory states that the
true ground state density is the one that minimizes the total energy. According to the first
half of the Theorem this energy can be expressed as a functional of the ground state density:

E[n] = F [n] +

∫
Ven(r)n(r) dr (2.20)

where F [n] is a universal functional incorporating kinetic and interaction energies:

F [n] = min
Ψ→n

⟨Ψ|T̂e + V̂ee|Ψ⟩ (2.21)

Since F [n] is defined as a minimum over all wavefunctions yielding n, it follows that for any
trial density n′ ̸= n0,

F [n0] ≤ F [n′] (2.22)
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The energy due to the external potential is determined simply by the electron density. Euqa-
tion 2.22 thus implies:

E[n0] ≤ E[n′], ∀n. (2.23)

This constrained search formalism based on the proof by Hohenberg-Kohn and Percus-Levy-
Lieb establishes that n0(r) minimizes the total Energy E[n] [5].

2.1.4 Kohn-Sham Equations

Despite the elegance of the Hohenberg-Kohn theorem, the exact form of the universal func-
tional F [n] remains unknown due to the missing explicit expressions for the kinetic energy
term T̂e and the exchange-correlation effects in V̂ee. To address this challenge, Kohn and
Sham [6] introduced an auxiliary system of non-interacting electrons that reproduces the
exact ground-state density of the interacting system.

The total energy functional can be written as:

E[n] = F [n] +

∫
Ven(r)n(r) dr, (2.24)

where Ven represents the external potential due to the nuclei. The functional F [n] is further
decomposed as:

F [n] = En
Te

+ En
Vee
, (2.25)

where En
Te

is the exact kinetic energy and En
Vee

accounts for electron-electron interactions.
In the Kohn-Sham formalism, this is rewritten in terms of an auxiliary system:

F [n] = En
Taux

+ EH [n] + EXC [n]. (2.26)

In this context the term En
Taux

refers to the kinetic energy of the non-interacting auxiliary
system. EH [n] is the Hartree energy, which represents the classical Coulomb interaction
of the electron density. Finally, EXC [n] is the exchange-correlation energy, which accounts
for the remaining many-body effects present in the interacting system. By expressing these
terms explicitly the total Energy functional is given by:

E[n] = −
∑
i

∫
ϕ∗
i (r)

∇2

2
ϕi(r) dr+

1

2

∫ ∫
n(r)n(r′)

|r− r′|
dr dr′+EXC [n]+

∫
n(r)Ven(r) dr.

(2.27)
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According to the Hohenberg-Kohn 2.1.3 variational principle, the total energy is minimized
by the ground-state density:

δE

δϕ∗
i

∣∣∣∣
n0

=
δE

δn

δn

δϕ∗
i

∣∣∣∣
n0

=
δE

δn
ϕi

∣∣∣∣
n0

= 0. (2.28)

The othonormality constraint ⟨ϕi|ϕj⟩ = δij is enfroced using the method of Lagrange multi-
pliers:

L = E −
∑
ij

λij [⟨ϕi|ϕj⟩ − δij] . (2.29)

0
!
=

δL

δϕ∗
i

=
δE

δϕ∗
i

−
∑
j

λij |ϕj⟩. (2.30)

δE

δϕ∗
i

=
∑
j

λij |ϕj⟩. (2.31)

Using the definition of the functional derivative while obeying the chain rule:

δE

δϕ∗
i

=

[
−∇

2
+

∫
dr′

n(r′)

|r− r′|
+
δEXC [n]

δn(r)
+ Ven(r)

]
|ϕi(r)⟩ =

∑
j

λij |ϕj⟩. (2.32)

To diagonalize the matrix λij , we introduce a set of orthonormal wavefunctions φi and arrive
at the Kohn-Sham equation:

ĤKS φi(r) = εi φi(r) (2.33)

With the Kohn-Sham Hamiltonian and Kohn-Sham potential:

ĤKS = −∇
2
+ VKS (2.34)

VKS = Ven(r) + VH(r) + VXC(r, [n]) (2.35)

where VH(r) is the Hartree potential and VXC(r, [n]) is the exchange-correlation potential.
Their explicit expressions follow from Equation 2.32:

VH(r) =

∫
dr′

n(r′)

|r− r′|
, (2.36)

VXC(r, [n]) =
δEXC [n]

δn(r)
. (2.37)
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The wavefunction of the auxiliary system is given by a single Slater determinant composed
of the Kohn-Sham orbitals:

ΨKS =
1√
N !

det |φ1(r1)φ2(r2)...φN(rN)| (2.38)

where the orbitals φi satisfy the Kohn-Sham equations. This construction ensures that the
total electron density n(r) is obtained by summing over the squared moduli of the orbitals,
thereby preserving the correct ground-state density:

n(r) =
N∑
i=1

|φi(r)|2 (2.39)

Equations 2.33-2.39 form a set of self-consistent equations, which must be solved iteratively
until convergence is reached [6]. However, since the exact form of VXC(r, [n]) is unknown, it
is typically approximated using density functional approximations, such as the local density
approximation (LDA) or generalized gradient approximation (GGA).

2.2 Density-Functional Perturbation Theory

DFPT is a powerful formalism that extends ground-state DFT to compute the linear response
of a system to small perturbations, such as atomic displacements. In the context of phonon
calculations, DFPT enables the evaluation of vibrational properties without the need for finite
displacements or large supercells [7].

By considering a small perturbation parameter λ the external potential modifies as Ven →
V

(0)
en + λV

(1)
en . The Kohn–Sham orbitals φi, eigenvalues εi, and electron density n are then

expanded in powers of λ.

φi = φ
(0)
i + λφ

(1)
i +O(λ2), εi = ε

(0)
i + λε

(1)
i +O(λ2),

n(r) = n(0)(r) + λn(1)(r) +O(λ2).

Substituting into the Kohn–Sham equations and keeping only linear terms in λ, we obtain
the linearized Kohn–Sham equation for the first-order correction to the orbitals φ(1)

i [8]:(
Ĥ(0) − ε

(0)
i

)
φ
(1)
i = −

(
V

(1)
KS − ε

(1)
i

)
φ
(0)
i .

Here, the perturbation to the Kohn-Sham potential V (1)
KS contains contributions from the first-

order changes in the external potential, Hartree potential, and exchange-correlation potential.
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These in turn depend on the first-order variation in the electron density:

n(1)(r) = 2
∑
i

Re
[
φ
(0)∗
i (r)φ

(1)
i (r)

]
.

Solving the linearized Kohn–Sham equations self-consistently provides access to the first-
order density response n(1), from which the variation of the total energy due to atomic dis-
placements can be determined. The second-order derivative of the total energy defines the
interatomic force constants, which describe the local curvature of the potential energy sur-
face [8]:

CIJ
αβ =

∂2E

∂uIα ∂u
J
β

,

where uIα denotes the displacement of atom I in Cartesian direction α.

In periodic crystals, atomic displacements are treated as collective perturbations with well-
defined crystal momentum q. The corresponding dynamical matrix in reciprocal space is
given by the mass-weighted Fourier transform of the real-space force constants:

DIJ
αβ(q) =

1√
MIMJ

∑
R

CIJ
αβ(R) eiq·R,

where R runs over lattice vectors connecting periodic images of atoms I and J [9].

Alternatively, within the DFPT formalism, the dynamical matrix can be computed directly
in reciprocal space via the second derivative of the total energy with respect to q-modulated
atomic displacements:

DIJ
αβ(q) =

1√
MIMJ

∂2E

∂uIα(q) ∂u
J
β(−q)

,

where uIα(q) is the displacement of atom I in direction α with wavevector q.

Diagonalizing the dynamical matrix yields the phonon frequencies ων(q) and eigenvectors
eνIα(q) according to the eigenvalue equation:∑

Jβ

DIJ
αβ(q)e

ν
Jβ(q) = ω2

ν(q)e
ν
Iα(q).

2.3 Bloch’s Theorem and Electronic Structure

So far we managed to reduce the complexity by isolating the electronic system and paving the
way for it to be expressed in terms of the ground state density. But for a macroscopic crystal
the number of electrons and nuclei is in rough estimation of the magnitude of the Avogadro
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number (∼ 1023) causing calculations to remain impractical. Since the Avogadro number
out-ways the number of different nuclei the lattice and therefore the electronic structure
crystallizes in a periodic pattern. It is this periodicity that allows for the drastic reduction of
complexity and computation load by exploiting its translational symmetry using the Bloch’s
Theorem.

In terms of the previously derived Kohn-Sham potential this periodicity will manifest itself
in the potentials invariance under shifts by the lattice vector R:

VKS(r) = VKS(r+R). (2.40)

According to Bloch’s theorem, the eigenfunctions solving these single-particle Schrödinger
equations involving a potential with periodic properties such as 2.40 are given by Bloch
wavefunctions of the form [10]:

ψn,k(r) =
1√
Np

un,k(r)e
ik·r, (2.41)

where n denotes the band index, k the momentum within the first Brillouin Zone (BZ), Np

the number of unit cells, and un,k(r) a function with the same periodic symmetry as the
crystal lattice. Due to this periodicity, it is sufficient to study the most compact primitive
cell of the lattice and the corresponding first BZ, using Born–von-Kármán (BVK) boundary
conditions. These allow the treatment of an extended periodic system by constructing a BVK
supercell out of multiple unit cells (see Figure 3.7), with the reciprocal volume of the system
given by Ω = NpΩp. Since periodic functions can be represented as Fourier series, the
eigenfunction for a given band n and wavevector k is written as:

ψn,k(r) =
1√
NpΩp

∑
G

cn,k(G)ei(k+G)·r

where G are reciprocal lattice vectors and cn,k(G) are plane-wave coefficients. Note that this
eigenfunction is specific to a given band n and momentum k. In computations, these states
ψn,k(r) are evaluated at a finite number of k-points, yielding a discrete set of eigenstates.
Physical properties of the periodic lattice, are averaged over the sum of k divided by the
number of k-points. In the limit of an infinitely dense k-point grid, the eigenvalues εn,k form
continuous energy bands. The Kohn-Sham equation in reciprocal space becomes:

∑
G′

[
|k+G|2

2
δG,G′ + VKS[n](G−G′)

]
cn,k(G

′) = εn,kcn,k(G)
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For practical computations, a kinetic energy cutoff is introduced to truncate the plane-wave
expansion. Only reciprocal lattice vectors G satisfying the condition

|k+G|2

2
≤ Ecut

are included. This limits the number of plane waves, reducing computational cost. Both
the kinetic energy cutoff and the density of the k-point grid require careful consideration to
ensure a well-converged and accurate description of the electronic structure.

2.4 Electronic Temperature - Fermi-Dirac smearing

In electronic structure calculations especially for systems with partially filled bands, achiev-
ing convergence with respect to k-point sampling can be challenging due to the sharp discon-
tinuity of the occupation function at zero temperature. This issue is particularly pronounced
in metallic systems, where the Fermi surface introduces numerical instabilities.

To address this, a finite electronic temperature is introduced via the Fermi–Dirac distribution,
which smooths the occupation of electronic states:

fnk =
1

e(εnk−µ)/kBT + 1

Here, fnk denotes the occupation of the electronic state with band index n and wavevector k,
εnk is the Kohn–Sham eigenvalue, µ is the chemical potential, kB is the Boltzmann constant,
and T is the electronic temperature. This technique is commonly referred to as Fermi-Dirac
smearing, and it allows for improved numerical stability and better convergence behavior
[11, 12].

Beyond numerical benefits, thermal occupations are physically meaningful when studying
finite-temperature effects such as phase transitions. This finite-temperature formulation
allows for the simulation of systems under thermal excitation by smearing the electronic
occupations. It provides a way to explore how structural and electronic properties evolve
with temperature. In particular, it enables the study of temperature-driven phase transitions,
changes in band structure, or the stabilization of thermodynamically favorable phases that
would not appear at zero temperature. By varying the electronic temperature, one can track
the evolution of the system’s potential energy landscape, offering insights into thermal sta-
bility and the mechanisms driving phase changes.
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2.5 Charge Density Wave

A CDW is a collective electronic phenomenon observed in certain low-dimensional mate-
rials. The CDW represents a spontaneous modulation of the electron density in a periodic
crystal structure. This phenomenon arises due to the interplay of electron-phonon interac-
tions and Fermi surface nesting, leading to a spontaneous breaking of translational symmetry
[13, 14]. The Peierls instability offers a fundamental explanation for the formation of these
waves in one-dimensional systems, while excitonic effects can influence or even drive the
development of CDWs in certain materials [15].

Peierls Instability

The concept of the CDW is intricately linked to the Peierls instability, a mechanism that
explains the formation of a CDW in one-dimensional systems. This instability is caused by
the coupling between the electronic states and the lattice phonons, which are responsible for
the periodic distortion of the lattice structure.

In a one-dimensional electron system with half-filled bands, the Fermi surface can be per-
fectly nested, making the system particularly susceptible to perturbations. When electrons
couple to lattice vibrations (phonons), this interaction induces a periodic lattice distortion
(Periodic lattice distortion (PLD)) with a wavevector of 2kF , where kF is the Fermi wavevec-
tor. This means that the periodicity of the distortion corresponds to twice the Fermi wave-
length. The resulting modulation opens a gap at the Fermi level, reducing the electronic
energy and stabilizing the distorted phase. This marks a phase transition from a high-
temperature metallic phase to a low-temperature semiconducting or insulating phase [16].
Figure 2.1 illustrates this process, showing the periodic charge modulation, the associated
lattice distortion, and the formation of a band gap at the Fermi level.

Phonons, representing the quantized lattice vibrations, mediate this instability by allowing
the electronic system to lower its energy through coupling with specific vibrational modes.
The resulting periodic modulation in both the electronic charge density and the atomic po-
sitions characterizes the CDW/PLD state. This electron-phonon interaction is central to the
Peierls mechanism and is responsible for the energetic favorability and formation of a low
temperature phase.
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FIGURE 2.1: Peierls mechanism leading to PLD/CDW phase [17].

Excitonic Insulator

In certain low-dimensional materials, charge density wave (CDW) formation is not exclu-
sively governed by electron–phonon interactions, as described by the Peierls instability. In-
stead, it may also originate from electron–electron correlations. A key mechanism in this
context involves the formation of bound electron–hole pairs, known as excitons. When the
exciton binding energy exceeds the electronic band gap or the overlap between conduction
and valence bands, a phase transition into an excitonic insulator state can occur [18].

This scenario is particularly relevant for materials with small indirect band gaps or semimetal-
lic band structures, such as TiSe2. In these systems, excitonic condensation can lead to a
spontaneous modulation of the charge density, resulting in a charge modulated ground state.
Both experimental and theoretical studies suggest that the CDW in TiSe2 involves a cooper-
ative effect between lattice distortions and excitonic correlations [19, 20].

This interplay complicates the interpretation of the CDW origin, since both electron–phonon
and electron–electron interactions contribute to the stabilization of the ordered phase. The
relative importance of these interactions can be tuned by external parameters such as temper-
ature, doping, or pressure, which may induce transitions between a metallic state, a Peierls-
type CDW, and an excitonic insulator [21].
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2.6 Transition Metal Dichalcogenides

TMDCs form a class of layered materials with the chemical composition MX2, where M
represents a transition metal and X denotes a chalcogen [22]. TMDCs exhibit strong in-
plane covalent bonding within each layer and weak van der Waals interactions between lay-
ers. These anisotropic bonding characteristics reflect in the exfoliation into atomically thin
sheets [23].

The vibrational properties such as intralayer and interlayer modes, are key indicators of
structural integrity and stacking order. TMDCs exhibit diverse electronic properties, span-
ning metallic, semiconducting, and superconducting phases. Their structural polymorphism
includes the 1T (trigonal) and 2H (hexagonal) phases, influencing their electronic and optical
properties [24].

These materials also exhibit strong many-body interactions, including excitonic effects and
electron-phonon coupling, which influence their optical and transport properties and can
drive collective phenomena such as CDWs [15, 25].

The tunability of TMDC properties through external stimuli such as strain, electric fields,
temperature and intercalation enables their use in next-generation electronic, sensing, and
energy storage applications [26].
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Chapter 3

CDW phase transition in TiSe2

3.1 Crystal Structure of Titanium diselenide

Titanium diselenide (TiSe2) belongs to the family of TMDCs and consists of one titanium
atom (group 4) and two selenium atoms (group 16). Under normal conditions TiSe2 crystal-
lizes in a 1T-phase corresponding to a hexagonal layer of Ti atoms that is embedded between
two hexagonal layers of Se atoms. In this configuration it adopts a trigonal structure belong-
ing to the P3̄m1 space group, where titanium atoms are octahedrally coordinated by selenium
atoms (Figure 3.1). Adjacent (Se-Ti-Se) monolayers are bound by weak van der Waals inter-
actions, allowing exfoliation into atomically thin sheets, down to a single monolayer, through
mechanical or chemical methods.

FIGURE 3.1: Monolayer TiSe2 from different angles. [27]
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The experimental lattice parameters of TiSe2 are a = b = 3.540 (3.538) Å in-plane and c =
6.008 Å out-of-plane for bulk (monolayer), with α = β = 90◦ and γ = 120◦ [28, 29]. It is
important to note that the out-of-plane lattice parameter c is not well-defined for monolay-
ers, as their intrinsic nature involves a two-dimensional structure without periodicity in the
vertical direction. It is therefore a reasonable approach to assume that the unit cell extents
infinitely far in the out of plane direction. This results in a 2D hexagonal BZ characterized
by distinct high-symmetry points (Γ,M and K) 3.2.

FIGURE 3.2: Two dimensional hexagonal BZ.

At approximately 200 K (230 K) TiSe2 undergoes a CDW-phase transition, characterized
by a PLD accompanied by a commensurate 2 × 2 × 2 (2 × 2) superlattice modulation in
bulk and monolayer respectively [30]. This transition has been attributed to a combination
of electron-phonon interactions and excitonic correlations, leading to partial gap opening at
the Fermi level [15]. This work specifically investigates the CDW-phase transition in the
monolayer structure.

3.2 Computational Details

The computational framework employed in this work is the open-source materials model-
ing suite Quantum ESPRESSO (v.7.0). DFT calculations were performed using the self-
consistent plane-wave pseudopotential method (PWscf). The exchange–correlation func-
tional was treated within the Generalized Gradient Approximation (GGA), using fully rela-
tivistic ultrasoft PBEsol pseudopotentials [31]. Spin–orbit coupling was included in all cal-
culations to account for the relativistic effects arising from the heavier elements in TiSe2. For
phonon calculations, DFPT, based on the linear-response formalism, was employed through
the PHonon package of Quantum ESPRESSO [7]. Based on preliminary convergence tests,
the plane-wave kinetic energy cutoff was set to 80 Ry, and a 18×18×1 Monkhorst–Pack grid
was used for Brillouin zone sampling. Phonon calculations were performed on a 6 × 6 × 1

grid of q-points.
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3.3 Preliminary Analysis

Ensuring the accuracy of first-principles calculations requires a careful evaluation of numer-
ical stability with respect to computational parameters. Before proceeding with a detailed
investigation, an initial analysis is conducted to determine the optimal settings for study-
ing the electronic and vibrational properties of TiSe2 monolayer. This process focuses on
achieving convergence in total energy, stress, and forces, ensuring a well-defined and stable
ground-state configuration of the system.

3.3.1 Convergence Tests

In Section 2.3, the plane wave kinetic energy cutoff was introduced as the parameter that
truncates the number of G-vectors used to expand the Kohn–Sham orbitals and charge den-
sity. This value was systematically converged to ensure an optimal balance between com-
putational efficiency and total energy accuracy. As a result, a cutoff energy of 80 Ry was
chosen for all subsequent calculations.

Another critical parameter is the k-point mesh used to sample the first BZ. Quantum ESPRESSO
employs the Monkhorst–Pack scheme [32] to construct a uniform grid in reciprocal space.
For a monolayer material, a two-dimensional k-point grid is sufficient due to the negligi-
ble interaction in the out-of-plane direction, which is effectively decoupled by introducing a
vacuum layer. This results in an out-of-plane reciprocal lattice vector approaching zero. The
total energy was converged with respect to the number of reducible k-points, leading to the
choice of an 18 × 18 × 1 mesh. Due to the hexagonal symmetry of the crystal, symmetry
operations reduce the number of unique k-points sampled in practice.

A summary of the converged parameters used in all calculation is provided in Table 3.1.
Detailed convergence plots are provided in Appendix A.1.

Ecut 80 Ry
Reducible k-point mesh 18× 18× 1
Pseudo potential Fully relativistic, ultrasoft
XC-functional PBEsol [33]

TABLE 3.1: Converged parameters used in further calculations.

As previously discussed, the out-of-plane lattice parameter c is not well-defined for mono-
layer materials. To model the two-dimensional nature of the system, a vacuum region is
introduced between adjacent layers, effectively decoupling their interaction. The size of this
vacuum was determined by converging the total energy with respect to the out-of-plane lat-
tice parameter. Based on this analysis, a value of c = 15 Å was selected, ensuring negligible
interlayer interaction.
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After fixing the out-of-plane lattice parameter, the remaining structural parameters were de-
termined through a full relaxation of the system. This includes the in-plane lattice constant a

as well as the atomic positions within the unit cell. The relaxation was carried out by mini-
mizing both the atomic forces and the stress tensor using the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm [34]. The resulting lattice parameters and relaxed atomic positions are
summarized in Table 3.2.

Lattice Vectors (Å) Atomic Positions (crystal)
DFT Experiment [29] Ti 0.0 0.0 0.50
a = 3.462 a = 3.538 Se 0.6 0.3 0.??
c = 15 c = (undefined) Se 0.3 0.6 0.??

TABLE 3.2: Ab-initio crystal structure parameters of TiSe2 monolayer. The
atomic positions are given in units of the crystal lattice vectors.

3.3.2 Revealing the CDW Phase Instability

This section presents the band structure and phonon dispersion of the TiSe2 monolayer in a
single unit cell in the High symmetry (HS) phase. The band structure provides insights into
the conduction properties, while the phonon dispersion indicates a dynamical instability,
suggesting a tendency toward symmetry breaking. This broken symmetry arises from the
PLD associated with the CDW.

Band structure

The band structure of a single unit cell of TiSe2 monolayer, calculated along the high-
symmetry path (Γ–M–K–Γ, see 3.2), is shown in 3.3b. At the M point, the Ti 3d band
lies just below the Fermi energy, while at the Γ point, the Se 4p band rises slightly above it.
Consistent with previous PBE-based studies, these features result in an indirect band gap of
approximately −0.45 eV giving TiSe2 a semimetallic nature. A comparison between calcu-
lations using the PBE and HSE06 functionals reveals significant differences at both the M
and Γ points, highlighting the impact of exchange–correlation treatment on the electronic
structure. The indirect band gap of about 92meV calculated using the HSE06 functional is
in better aggreement with ARPES measurements 3.3d showing a bandgap of 98meV [30,
35].
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a b

c d

FIGURE 3.3: a:Se 4p and Ti 3d bands bandgap between Γ and M [36].
b: Calculated band structure along (Γ,M ,K,Γ) using PBEsol.

c: Comparison of PBE and HSE06 calculations [35].
d: ARPES measurement at Γ and M (room temperature) [30]

Phonon Dispersion

The breaking of symmetry is indicated by instabilities that arise due to perturbations. The
phonon dispersion provides insight into the nature of these instabilities. At a given wave
vector q, the phonon modes are obtained by diagonalizing the dynamical matrixD(q), which
yields the eigenfrequencies ωqν and the corresponding polarization vectors (eigenvectors)
eκqν , where ν is the mode index and κ labels the atom in the unit cell. For modes with
ω2
qν < 0, the corresponding imaginary frequencies reflect structural instabilities. Calculated

along the same high-symmetry path as the band structure, the phonon dispersion is shown in
3.4. The electronic temperature, introduced via Fermi-Dirac smearing, was set to 1meV. A
prominent Kohn anomaly at the M -point, with a frequency of ω = −94, cm−1 (indicating an
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imaginary mode) with A1g symmetry, suggests a significant instability, pointing to the onset
of a phase transition (see section2.2).

In addition to the expected instability associated with the CDW instability at M -point, an
additional soft mode is observed near Γ. Similar spurious instabilities have been reported in
the phonon dispersions of low-dimensional materials and are often attributed to broken rota-
tional or translational invariance in the interatomic force constants. These issues may arise
due to incomplete basis sets, residual stresses, or insufficient convergence in first-principles
calculations. As such, the presence of this mode is likely a numerical artifact and does not
impact the conclusions drawn regarding the phase transition [37].

FIGURE 3.4: Phonon dispersion at 1meV electron temperature

3.4 CDW-phase transition in DFPT

Section 3.3.2 presented the phonon dispersion of the HS structure at low electronic tem-
perature (1meV), revealing a pronounced instability at the M -point in the form of a Kohn
anomaly. This behavior suggests the presence of a competing low-temperature phase. In
this section, the temperature dependence of the instability is analyzed to explore the associ-
ated phase transition. As the electronic temperature increases, the soft mode at the M -point
gradually hardens, eventually acquiring a positive real frequency, thereby stabilizing the HS
structure. Figure 3.5 shows the phonon dispersion for different electronic temperatures.
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FIGURE 3.5: Temperature-dependent phonon dispersion curves, illustrating
the evolution of the soft mode (colored) at the M -point.

Since the instability is localized at the M -point, it is sufficient to track the phonon frequency
at this point via single q-point calculations. Figure 3.6 shows the evolution of the M -point
frequency as a function of electronic temperature. The zero-crossing of the frequency marks
the critical temperature at which the phase transition takes place, occurring at approximately
63 meV.

FIGURE 3.6: Temperature-induced softening of the A1u mode at the M -point..
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3.5 Condensation of the low temperature phase

The identification of a soft phonon mode with imaginary frequency at the M -point in the
phonon dispersion indicates a structural instability. To investigate the corresponding PLD,
the atomic displacement pattern associated with this unstable mode must be extracted from
the phonon eigenvectors.

3.5.1 Periodic lattice distortion

To map the phonon eigenvector onto real-space atomic displacements, a BVK supercell (see
Figure 3.7) commensurate with the modulation wave vector q is constructed. In this case,
q =M lies at the Brillouin zone boundary, requiring a supercell with lattice vectors that are
integer multiples of the primitive cell to accommodate the modulation periodicity and thus a
2×2 BVK supercell is constructed. The distorted structure representing the PLD is then built
by displacing each atom in the supercell according to its contribution from the eigenvector
of the soft mode. This static displacement pattern reflects the structural manifestation of the
CDW phase.

FIGURE 3.7: Schematic illustration of the BVK supercell and of the notation
adopted to denote the nuclear displacements from equilibrium[38]

The coordinate of an displaced atom in this Supercell is then given by the position operator
τ κp = Rp+τ κ+∆τ̂ κp, where Rp is a crystal lattice vector, τ κ is the equilibrium coordinate
of the κth nucleus in the unit cell. The displacement ∆τ̂ κp of the κth nucleus in the pth unit
cell is given by:

∆τ̂ κp = (NpMκ)
−1/2

∑
qν

eiq·Rp eκqν Ûqν (3.1)

Here, Np is the number of unit cells in the BVK supercell and Mκ is the mass of the κth
nucleus. The operator Ûqν has units of length times

√
mass, and characterizes the coherent

displacement amplitude of the lattice along the normal mode (q, ν).
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Due to the threefold rotational symmetry of the hexagonal lattice, there are three symmetry-
equivalent M -points in the Brillouin zone, corresponding to distinct wavevectors q1, q2, and
q3 (see Fig. 3.3a). These wavevectors are related by crystal symmetry operations, and as a
result, the phonon dispersion must yield identical frequencies ω at each of them. By diag-
onalizing the dynamical matrix at q1, q2, and q3, we obtain the corresponding (degenerate)
phonon frequencies and their eigenvectors: eκq1ν

, eκq2ν
, and eκq3ν

(compare 2.2). Figure 3.8
shows the resulting PLD patterns computed using Equation 3.1, illustrating the effect of
including one, two, or all three symmetry-equivalent modes.

a One mode b Two modes c Three modes

FIGURE 3.8: Illustration of PLDs for including one, two and all three modes.

3.5.2 Potential energy Surface

For each point in the configuration space defined by the triplet (Uq1 , Uq2 , Uq3), the corre-
sponding total Energy value is obtained from a DFT-calculation for the associated atomic
configuration. Together the configuration space and total Energy values form the PES. For
a single mode, the PES takes the form of a one-dimensional double-well potential, as shown
in Figure 3.9c. When two modes are involved, it extends to a two-dimensional "Mexican
hat" potential, exhibiting four equivalent global minima (see Figure 3.9b). In this case, the
one-mode PESs correspond to cuts through the two-dimensional surface along Uq2 = 0 or
Uq1 = 0, respectively. Likewise, the two-mode PES can be viewed as a slice of the full
three-mode subspace surface at Uq3 = 0 as visualized by the red plain in 3.9a. The global
minimum corresponds to the energetically most favorable configuration and is interpreted as
the equilibrium structure in the classical limit.
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a 3D PES

b 2D PES c 1D PES

FIGURE 3.9: Visualization of the full 3D PES and a 2D slice at U3 = 0 and the
three 1D slices corresponding to the configuration pathways given by the PLDs
visualized in Figure 3.8. The color bar reflects the rescaling to a maximum of

1 for better visualization.
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3.6 CDW-phase transition in DFT

In Section 3.5.2, the concept of the PES was introduced. The PLD associated with the
global minima of the PES corresponds to the equilibrium atomic configuration in the low-
temperature phase. By evaluating the PES at various temperatures, it becomes possible to
identify the transition temperature at which the global minimum shifts to that of the HS, or
high-temperature, phase.

Since this procedure only requires knowledge of the global minima and the HS structure, it
is not necessary to compute the entire PES at this stage. The method employed involves dis-
placing the atoms slightly from their equilibrium HS positions along specific phonon mode
directions, as described in Section 3.5.1, thereby inducing the lower-symmetry distortions
illustrated in Figure 3.8. A subsequent structural relaxation is performed, during which the
atomic positions are optimized by following the force and stress vectors until convergence is
reached. The relaxed configuration obtained in this manner corresponds to a local or global
minimum of the PES. By comparing its total energy with that of the HS structure at the same
electronic temperatures, the transition temperature can be estimated.

It is worth noting that initiating the relaxation from a displacement along a single mode or
a pair of modes leads to a minimum corresponding to a double-well or a Mexican-hat type
potential, respectively. Since the BFGS algorithm follows the gradient of the energy land-
scape, it naturally drives the system toward the nearest energy minimum, thereby revealing
the symmetry-breaking pathway associated with the underlying phonon instability.

Figure 3.10a shows the total energy of the HS phase and of the equilibrium structures cor-
responding to PLDs involving one, two, and three phonon modes, plotted as a function of
the electronic temperature. The energy difference between a given PLD phase and the HS
structure plotted in 3.10b directly reflects the depth of the associated PES minimum (com-
pare Figure 3.9c). The temperature at which the PES depth vanishes indicates the onset of
symmetry breaking associated with the phase transition and is found to be approximately
65 meV.
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a b

FIGURE 3.10: Total energy of Equilibrium structure for displacements along
no HS, one (1M), two (2M) and all three modes (3M) a and the corresponding

PES-depth b.

3.7 High and low temperature phase

Up to this point, the electronic transition temperature has been determined using both the
DFPT approach (Section 3.4) and the DFT-based PES analysis (Section 3.6), yielding val-
ues of 63meV and 65meV, respectively. Additionally, equilibrium atomic configurations
have been obtained for a range of electronic temperatures, spanning from below the phase
transition (T < TCDW ) to above it (T > TCDW ). The following analysis focuses on the
vibrational and electronic characteristics of the corresponding high- and low-temperature
phases. To make the properties comparable calculations for both the HS and CDW phase
were performed in a 2×2 BVK supercell. Due to the supercell formation the M -point of the
primitive unit cell folds onto the zone center Γ of the supercell as visualized in Figure 3.11.
The phonon dispersion relations in this chapter were calculated and generously provided by
Christoph Emeis.

FIGURE 3.11: Zone folding due to 2× 2 supercell formation [39].
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3.7.1 Vibrational Properties

For T > TCDW , the equilibrium structure corresponds to the HS atomic configuration. As
discussed in Section 3.4, the A1u mode at the M -point of the primitive unit cell is real under
these conditions, indicating dynamical stability. Calculations in the 2×2 BVK supercell con-
firm this behavior. Unfortunately the corresponding phonon dispersion (see Appendix A.2)
exhibits stronger numerical instabilities at Γ. To avoid artificially altering the spectrum, the
acoustic sum rule was not enforced. Despite these instabilities, the A1u mode remains real in
the supercell, consistent with the behavior observed in the primitive cell.

In contrast, for T < TCDW , the supercell calculation reveals that the A1u mode at the Γ-
point becomes imaginary, signaling the onset of the dynamical instability. This is again
consistent with the behavior seen in Section 3.3.2. The corresponding phonon dispersion is
also provided in Appendix A.2.

For the phonon dispersion of the PLD/CDW phase at T < TCDW , shown in Figure 3.12,
the A1u mode remains real, indicating that this distorted structure represents a dynamically
stable phase below the transition temperature. In this case, the numerical instabilities were
less pronounced, allowing for the application of the acoustic sum rule without introducing
nonphysical distortions into the phonon spectrum.

FIGURE 3.12: Phonon dispersion of the PLD/CDW phase at T < TCDW .This
calculation was performed and kindly provided by Christoph Emeis.
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3.7.2 Electronic Properties

The electronic properties of monolayer TiSe2 are strongly affected by the CDW phase tran-
sition. In the high-temperature phase (T > TCDW), the material is expected to exhibit
semimetallic behavior due to a slight overlap between the Se 4p valence band at Γ and the Ti
3d conduction band at M (compare 3.3). Upon entering the CDW phase, a bandgap opens
at the Fermi level, marking a transition towards a semiconducting or even insulating state.

Figure 3.13 displays the band structure of the (HS) phase in the 2 × 2 supercell. Due to
Brillouin zone folding, the M -point of the primitive cell is mapped onto the Γ-point of the
supercell (see 3.11). In this representation, the Se 4p and Ti 3d orbitals appear at Γ, showing
a band overlap of approximately 0.6 eV.

FIGURE 3.13: Band structure of the HS phase in the 2× 2 supercell.

The band structure of the distorted CDW phase is shown in Figure 3.14. A small negative
indirect bandgap on the order of a few meV is observed. While the gap is not yet fully open, a
clear trend toward gap formation is evident, indicating the onset of semiconducting behavior.
The incomplete gap opening may be attributed to limitations of the exchange-correlation
functional. As monolayer TiSe2 is considered a candidate for an excitonic insulator, a larger
bandgap may be expected when many electron interactions are properly included.
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FIGURE 3.14: Band structure of the PLD/CDW phase in the 2× 2 supercell.

3.8 CDW-phase transition with Quantum nuclear effects

One of the main goals of this thesis is to investigate the influence of QNE on the phase
transition. The standard DFT and DFPT formalisms introduced in Chapter 2 do not account
for the quantum nature of the nuclei that make up the lattice. One way to incorporate their
quantum nature introduced by Esswein and Spaldin [1] is based on solving the Schrödinger
equation exlicitly for the nuclear configuration space using the PES calculated with DFT.
This is achieved by mapping the multi-nuclei and three dimensional tunneling problem onto
a single-particle, one-dimensional one.

At this point, the approach taken in this thesis deviates from that of Esswein and Spaldin. In
their work, the PES was approximated using a fourth-order polynomial to construct a one-
dimensional double-well potential along a generalized symmetry-breaking coordinate. This
reduced potential represents the transition pathway to the lowest-energy (polarized) state and
is particularly useful when the distorted phase involves multiple unstable modes, rendering
the full configuration space unmanageably high-dimensional. However, this method inher-
ently limits the description to a single reaction coordinate, offering no information about the
surrounding potential landscape. Such an approach neglects alternative configurations that
the abstract multi-particle quantum object could, in principle, explore. In contrast, the PLDs
underlying the CDW in this system involve only three soft phonon modes at the M points,
yielding a three-dimensional subspace that is still tractable and thus allows for an explicit
treatment of the potential landscape.
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It is also worth noting that Esswein and Spaldins approach to construct the double-well po-
tential from the PES depth and halfwidth strongly relies on the accuracy of the imaginary
(negative) phonon modes. Given the steep slope of the frequency versus electronic tempera-
ture for the A1u mode at M near the transition temperature (see Figure 3.5), the applicability
of Esswein and Spaldin’s method for accurately calculating the PES in this regime may be
limited.

This work employs a direct numerical evaluation of the full three-dimensional, manually
calculated PES, introduced in Section 3.5.2, enabling a comprehensive study of the wave-
function behavior, including quantum delocalization effects beyond the single-coordinate
description. The shape and localization of the resulting wavefunction provide insight into
the quantum mechanical behavior of the system across different regimes.

3.8.1 Mass-weighted single-particle Schrödinger Equation

In order to describe the quantum dynamics of lattice distortions within the PES, it is essential
to formulate the Schrödinger equation using mass-weighted coordinates. This is necessary
because phonon eigenmodes do not have a well-defined physical mass. By transforming to
mass-weighted coordinates, the kinetic energy operator assumes a standard form, and the
phonon displacements Uqi

acquire consistent physical units. This allows for a meaningful
and tractable quantum mechanical treatment of the collective lattice degrees of freedom.

The time-independent Schrödinger equation for a system with coordinates x = (x1, x2, . . . , xi)

and corresponding individual masses mj is given by:

[
−

i∑
j=1

1

2mj

∂2

∂x2j
+ Ṽ (x)

]
ψ̃(x) = Eψ̃(x) (3.2)

Since neither the mass nor the displacement of a phonon is well defined the approach by Es-
swein and Spaldin combines the masses and displacements into mass-weighted coordinates
Uqj

=
√
mjxj , which are rigorously defined and avoid an arbitrary choice for the phonon

mass and displacement. By applying the chain rule, the second derivative transforms as
follows:

∂2

∂x2j
= mj

∂2

∂U2
qj

Substituting this into the original equation cancels out the mass terms, resulting in a simpli-
fied form of the Schrödinger equation:[

−1

2

i∑
j=1

∂2

∂U2
qj

+ V (Uq)

]
ψ(Uq) = Eψ(Uq) (3.3)
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Here, Uq = (Uq1 , Uq2 , . . . , Uqi
) defines a point in the mass-weighted configuration space,

and V (Uq) represents the corresponding potential energy. This potential forms the PES,
which was computed as outlined in Section 3.5.2. The mass-weighted Schrödinger equation
was then solved numerically using a second-order central finite-difference method to approx-
imate the second derivative, in combination with the sparse eigenvalue solver provided by
the scipy Python package.

3.8.2 Light-driven CDW transition

The temperature introduced by Fermi–Dirac smearing, as described in Setion 2.4, pertains
exclusively to the electronic subsystem. This approach is particularly relevant for modeling
ultrafast pump–probe experiments, in which short laser pulses excite the electronic structure
and rapidly raise the electronic temperature, while the lattice remains effectively at 0K due
to the ultrafast timescales involved [40]. In this idealized scenario, the ionic system remains
in the lowest-energy eigenstate, the ground state.

To investigate the quantum mechanical evolution of the CDW with respect to the electronic
temperature, the wavefunction corresponding to the ground state of the ionic subsystem is
analyzed. The resulting probability density |ψ0|2 shown in Figure 3.15a reveals partial lo-
calization at the potential minima corresponding to the 3M configuration. However, the
amplitude remains non-negligible around the HS configuration, reflecting quantum delocal-
ization effects.

This indicates that even at electronic temperatures as low as 1meV, the system is not fully
localized in a single distorted configuration, but instead exhibits a fluctuating character across
the PES. As the electronic temperature increases, the delocalization becomes progressively
more pronounced. Figure 3.15b shows the probability density at an electronic temperature
where the localization is almost vanished while 3.15c shows the probability density well
above the transition point. The probability density at high temperature undoubtedly reflects
the localization in the HS phase.
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a 1meV.

b 25meV.

c 60meV.

FIGURE 3.15: Evolution of the Ground state probability density normalized
to the range [0, 1] to enhance visual clarity.
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Due to the difficulty of visualizing full three-dimensional data, selected high-symmetry slices
in higher temperature resolution are considered, corresponding to the PLD pathways intro-
duced in Section 3.5.1 and illustrated in Figure 3.9a. These symmetry-restricted cuts of the
full three-dimensional wavefunction allow for interpretation of how quantum fluctuations
modulate the probability distribution along physically relevant PLD directions and how the
underlying PES shape influences the localization behavior.

To determine the electronic transition temperature, defined here as the point where localiza-
tion fully vanishes, the evolution of the probability density along these pathways is tracked
and visualized in Figure 3.16. The color labels the temperature while the opacity indicates
the different paths (lowest to highest). It is found that the peaks of the probability density be-
come comparable to that at the HS point at approximately 35 meV, suggesting a lower transi-
tion temperature than the ≈ 65meV predicted by the classical approaches using DFT/DFPT
in Section 3.6 and 3.4. In this temperature regime the CDW phase, stable in the classical lat-
tice picture, is melted by quantum fluctuations, manifesting the profound influence of QNEs
on the phase transition.

FIGURE 3.16: Slices of the Wavefunction along the symmetry paths (Opacity)
for different electronic temperatures (colour).

An additional question explored is whether the local maxima associated with symmetry-
equivalent 3M configurations become degenerate before their amplitudes equal that of the
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HS configuration, a condition that could be interpreted as a "Quantum CDW" phase. How-
ever, the analysis shows that these peaks merge at the same temperature where the HS con-
figuration becomes dominant. Figure 3.17 shows the amplitude of the peaks (color) and
the HS point (black). This implies that the partial localization due to the barrier between
symmetry-equivalent distorted states vanishes concurrently with the collapse of the entire
CDW phase.

FIGURE 3.17: Amplitude of the wavefunction peaks on the symmetry paths
(color) and the HS point (black) versus electronic temperature.

3.8.3 Finite temperature considerations

In contrast to the nonequilibrium, light-driven scenario, the temperature-driven CDW phase
transition involves raising both the electronic and lattice temperatures in equilibrium. In
such a regime, the lattice temperature governs the thermal occupation of eigenstates through
the Boltzmann distribution. As a result, the probability density reflects a mixed thermal
ensemble rather than a pure quantum ground state [41].

To explore whether stronger localization can be recovered by considering contributions from
low-lying excitations, a coherent superposition of the first four eigenstates is constructed.
These include the ground state and the first three degenerate excited states. The result-
ing probability density from this linear combination shows markedly stronger localization
than any individual eigenstate, reconstructing a sharply defined CDW state. This suggests
that coherent quantum interference between eigenstates can reinforce localization in regimes
where the ground state alone appears delocalized. Figure 3.18 shows the localization of the
wavepocket in one of the global minima corresponding to the 3M configuration. The other
coherent linear combinations of the first four eigenstates exhibits the same behavior.
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FIGURE 3.18: Coherent superposition of the first four eigenstates exhibiting
strong localization in one of the global minima. The amplitude is normalized

to lie in range [0, 1] to enhance visual clarity.

However, it is important to note that such coherent sums do not reflect a thermal ensemble.
In true thermal equilibrium, the state of the system would be governed by the density matrix
with Boltzmann weights, and not by a coherent superposition. Nonetheless, the qualitative
behavior observed in the coherent sum suggests that significant localization can persist in
the low-energy sector even when the ground state appears delocalized. As determining the
transition temperature in the context of a finite lattice temperature necessitates incorporating
Boltzmann statistics at finite lattice temperature, this work does not attempt to quantify or
characterize the transition any further.





39

Chapter 4

Conclusion and outlook

In this study, a first-principles approach was employed to characterize the CDW phase tran-
sition in a TiSe2 monolayer. Through the use of DFT and DFPT, the CDW phase was
successfully identified, with the symmetry breaking instability arising from the M points in
the phonon dispersion. The transition temperature was determined by analyzing the mode
softening at the M point, yielding a value of approximately 63 meV, which marks the onset
of the CDW transition.

Further investigation into the periodic lattice distortions, reconstructed from the phonon
eigenvectors and modeled in a 2× 2 BVK supercell, provided deeper insights into the nature
of the transition and allowed the calculation of the PES. The depth of the PES was com-
puted, and the transition temperature was determined to be 65 meV, based on the vanishing
potential depth.

The atomic CDW configurations associated with the minima of the PES at low temperatures
were found to be the stable equilibrium structure, as evidenced by phonon dispersion cal-
culations. The electronic properties also reflected the onset of the CDW phase, as indicated
by the formation of a band gap, though the gap did not fully open at the Fermi energy. This
suggests that more sophisticated exchange-correlation functionals might yield more accurate
results.

The influence of QNE on the CDW wave was explored by solving the Schrödinger equation
for a single particle-like quantum object within the previously calculated PES. The results
revealed that the wavefunction partially localized in the global minima. The delocalization,
however, persisted over the saddle points even at low temperatures, as low as 1 meV, sug-
gesting a fluctuating behaviour across the PES. This seems to apply in the theoretical picture
of a light-driven CDW phase transition, where the lattice temperature is assumed to be Tlat =
0 K, and the system is confined to its ground state.

The transition temperature, at which the localization of the wavefunction vanishes, was found
to be approximately 35 meV. In the temperature range of 35–65 meV, quantum fluctuations
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appear to suppress the formation of a stable CDW, preventing the localization of the wave-
function in the minima of the PES. Notably, the degeneracy of symmetry-equivalent config-
urations does not result in a "Quantum CDW"-like state as the evolution of the wavefunction
surface seems to favor the melting of localization in neither the direction of symmetry equiv-
alent points nor the HS point.

While the present study did not explicitly consider finite lattice temperatures, the coherent
superposition of the first four eigenstates, broadly simulating the effects of thermal occu-
pation, was found to lead to a more pronounced localization of the wavefunction. Future
studies that incorporate finite lattice temperatures using the Boltzmann distribution may pro-
vide further insights into the phase transition, particularly in relation to the effects of thermal
fluctuations on the CDW.

Finally, incorporating the influence of QNE on the phase transition into DFPTcalculations,
and utilizing more advanced exchange-correlation functionals, could offer more accurate
predictions of the transition temperature. This approach may bring theoretical results closer
to experimental measurements, helping to refine our understanding of the CDW phase in
TiSe2 and similar two-dimensional materials. This work thus provides a solid foundation
for future investigations into the interplay between quantum effects, lattice dynamics, and
electronic properties in low-dimensional systems.
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FIGURE A.1: Convergence studies.
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a T > TCDW

b T < TCDW

FIGURE A.2: Phonon dispersion of the HS phase in 2× 2 supercell. Calcula-
tions performed and kindly provided by Christoph Emeis.
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