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SUMMARY5

We model elastic wave propagation in time-varying media with a focus on wave6

behavior at a time interface and an instantaneous time mirror (ITM) using analyt-7

ical solutions and numerical experiments. We develop an eigenvector-based ana-8

lytical solution for time interfaces for general linear hyperbolic wave systems and9

apply it to analyze the energy balance at time boundaries and ITMs. The energy10

increases for all intermittent medium changes, for all impedance scaling factors11

smaller and larger than unity. The analytical solutions provide a reference for our12

numerical convergence tests that show a high order convergence which demon-13

strates the effectiveness of the employed SeisSol ADER-DG numerical solution.14

Its accuracy is corroborated by estimates of reflection and transmission coefficients15

and observed frequency shifts across time boundaries, and by acoustic wave speed16

estimates obtained from focal spots associated with ITM generated converging17

P waves that are consistent with theoretical predictions and ground truth values,18

respectively. We use the new SeisSol ITM feature to simulate the partitioning of19

seismic body waves excited by a point force in a spatially homogeneous elastic full20

space. The response to an intermittent short change in the elastic parameters yields21

a diverging and converging P and S wavefield. A systematic scaling of the elastic22

parameters is then used to steer independent ITM reflections of either P or S wave23

components. Numerical ITM solutions as developed here can be used to synthesize24

converging wavefields in seismic imaging applications, and more generally to an-25

alyze the behavior and manipulation of seismic wavefields in space-time varying26

media.27

Key words: Seismic Waves; Elastic Waves; Body Waves; Acoustic Waves; Time-28

Reversal; Spacetime Transformation; Instantaneous Time Mirror; Refocusing; Impedance29

Contrast; ADER-DG30

1 INTRODUCTION31

Space and time play equivalently important roles in wave propagation (Wapenaar et al., 2024). Thus, understanding the effects32

of space-varying and time-varying material properties on the wavefield is essential for many applications. For seismic waves33

propagating in Earth, the impedance contrasts associated with layer boundaries and material changes (Fig. 1a) lead to well-34

studied phenomena that are important for our understanding of Earth structure. The space-time analogy (Fig. 1b) implies that35

reflections can also be caused by an interface or a disruption of material properties in time (Wapenaar et al., 2024). Intermittent,36

short-duration changes of the impedance-governing medium properties can lead to an instantaneous time mirror (ITM) (Bacot37

et al., 2016; Fink & Fort, 2017), which creates time-boundary reflections by activating “sources” everywhere in space (Fig. 1c).38

Understanding the complex effects of space-time wavefield variations is essential for the manipulation of wavefields. ITM39

sources localized in time excite divergent and convergent waves just as material contrasts in space act as localized sources for40
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Figure 1. Space-time representations of simulated acoustic wavefields. All panels show the normal stress or pressure along the x-axis in
response to a pressure impulse moment tensor point source. In each panel the source and receiver configuration is adapted to demonstrate the
responses. The dashed lines indicate the space and time interfaces. (a) Reflection and transmission at an impedance contrast or interface in
space. (b) Reflection and transmission at a single impedance contrast or interface in time. (c) Reflection and transmission at an instantaneous
time mirror ITM. The ITM consists of two time interfaces separated by a very short interval τ .

transmitted and reflected waves (Fig. 1). Convergent waves excited by the ITM and by a classic time-reversal mirror (Fink,41

1997) demonstrate the time-reversal invariance property of the wave equation. However, in contrast to the functioning of a42

time-reversal mirror (Fink & Fort, 2017) that records, stores, time-reverses, and re-transmits a wave signal, the ITM does not43

involve an antenna of receiver-transmitter elements.44

Bacot et al. (2016) developed a framework for explaining ITM effects that are based on the wave speed-dependent cou-45

pling of the wavefield amplitude to its time derivative. A temporal wave speed disruption decouples the amplitude and its46

derivative and forms a new set of initial conditions that are controlled by the wavefield state in the entire medium at the instant47

of the mirror activation. This leads to a superposition of two decomposed states corresponding to the forward-propagating and48

backward-propagating waves. This manipulation retains a first in-last out symmetry (Fig. 1c) and thus differs from the reflec-49

tions at boundaries in space (Fig. 1a) and at a time-reversal mirror with their first-in-first-out sequence. Bacot et al. (2016) first50

demonstrated the wave speed-dependent ITM principle experimentally by disrupting the propagation of gravity water waves51

through an instantaneous acceleration, which intermittently changes the wave propagation speed in the medium due to its de-52

pendence on gravitational acceleration. Since then, time-dependent properties of various materials in different spectral bands53

have been manipulated to focus, shape, and control the propagation of electromagnetic (Pacheco-Peña & Engheta, 2020; Wu54

et al., 2022; Tirole et al., 2023; Galiffi et al., 2023), acoustic (Gérardin et al., 2019), and elastic waves (Innanen, 2018).55

The seismic wavefield anatomy can be controlled by manipulating active source properties, and specific source-receiver56

configurations can enhance target signals. In contrast, seismic metamaterials (Colombi et al., 2016; Mu et al., 2020) can57

passively influence the properties of an incident wavefield. A regular spatial configuration of resonators, including buildings58

(Guéguen et al., 2002), pile walls (Dijckmans et al., 2016), trenches (Pu & Shi, 2020), inclusions (Castanheira-Pinto et al.,59

2018), wind turbines (Pilz et al., 2024), and trees (Roux et al., 2018) can control the local wavefield, which has important60

implications for structural engineering, urban planning, seismic safety, and hazard mitigation. Simulated time-reversed seismic61

wavefields are used for earthquake source characterization (Rietbrock & Scherbaum, 1994; Larmat et al., 2006), and simula-62

tions are an essential element in adjoint imaging techniques for solving tomographic inverse problems (Tromp et al., 2005).63

The analogy between time-reversal and cross-correlation (Derode et al., 2003) explains the reconstruction of converging and64

diverging waves (Shapiro et al., 2005; Lin et al., 2009; Gallot et al., 2011) and of spatial autocorrelation fields (Ekström et al.,65

2009; Hillers et al., 2016) from correlations of continuous seismic dense array records for passive surface wave imaging.66

Reflectors in space and mirrors in time have been studied for wavefields in a range of materials (Catheline et al., 2008).67

The water wave example demonstrated by Peng et al. (2020) showed that a change in the parameters that control the wave68

speed creates a time slab or ITM. The properties of the propagation media in the solid Earth and its envelopes, including69

the hydrosphere, cryosphere, and atmosphere, can experience sudden changes associated with natural and anthropogenic phe-70

nomena such as earthquakes, eruptions, collapses, explosions, and injections. However, except for the numerical study of71

propagation in a 2D elastic medium by Innanen (2018), the ITM response of a 3D elastic or seismic wavefield is not analyzed72

comprehensively.73

In this work, we extend the numerical wave propagation code SeisSol (Käser et al., 2010; Käser & Dumbser, 2006;74
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Dumbser & Käser, 2006; Dumbser et al., 2007a; Krenz et al., 2023; Gabriel et al., 2025) with an implementation of ITM physics75

in elastic media to study the effects of spacetime transformation on seismic wavefields. SeisSol has demonstrated its utility and76

performance in modeling earthquake scenarios with several billion degrees of freedom while achieving a significant fraction77

of the theoretical peak performance (Heinecke et al., 2014; Uphoff et al., 2017; Krenz et al., 2021). Our ITM implementation78

extends SeisSol’s versatility to analyze a broader range of acoustic and elastic wave propagation phenomena (Fig. 1). We use79

SeisSol to manipulate the propagation of P waves and S waves simultaneously or separately, providing a tool and a basis for80

further investigations of seismic ITM effects.81

In the next Section 2 we discuss the general wave equation and plane wave solutions using eigenvectors, introduce an82

analytical solution for the ITM disruption of an acoustic wave, and discuss ITM physics for the elastic wave equation. We83

demonstrate the ITM implementation for the elastic case in SeisSol and perform a numerical convergence test in Section 3. In84

Section 4 we report the results from point source simulations for the acoustic case and the elastic case, before we discuss the85

implications for applications in Section 5.86

2 PLANE WAVE SOLUTIONS IN RESPONSE TO TIME INTERFACES87

2.1 Plane wave solution for the general wave equation with a time interface88

In this work, a time interface activated at tint shall be a step-function change in the material properties with respect to the89

previous state, and the intermittently activated instantaneous time mirror discussed in Sections 2.2 to 4 is a short sequence of90

two opposite step-function changes. This excludes more general time variations such as continuous, periodic, or other transient91

components (Wapenaar et al., 2024). We consider a general linear hyperbolic wave equation expressed in the first-order form92

∂q

∂t
+A

∂q

∂x
+B

∂q

∂y
+C

∂q

∂z
= 0, (1)

where the state vector q depends on time t and spatial directions x, y, z. The flux matrices in x, y, z are given by A,B,C.93

Solutions to this system of constant-coefficient linear partial different equations (PDEs) can be expressed as a linear summation94

of planar waves, similar to a Fourier basis decomposition (Sec. 4.2.1 in Evans, 2010). Using complex numbers, a plane wave95

with angular frequency ω and wavenumber k propagating in direction n can be written as96

q (x, t) = r ei(ωt−kn·x), (2)

with x = (x, y, z) and n = (n1, n2, n3) the unit vector that denotes the direction of propagation. Inserting eq. (2) into eq. (1),97

we obtain that the state vector q (x, t) solves eq. (1) if98

(An1 +Bn2 +Cn3)︸ ︷︷ ︸
Â

r =
ω

k
r. (3)

Thus, r needs to be an eigenvector of the plane wave operator Â, where the wave speed c = ω/k is the corresponding99

eigenvalue. To formulate general solutions of the PDE system in eq. (1), we express the initial condition q (x, 0) as a linear100

sum of eigenvectors with space-dependent functions, setting t = 0 in eq. (2)101

q (x, 0) =
∑
j

rjfj (n · x) =
∑
j

rje
i(−kjn·x), fj (n · x) := ei(−kjn·x), (4)

where rj is the jth eigenvector and fj is the component of the jth eigenvector in the linear split (LeVeque, 2002, Sec. 18.5).102

The plane wave solution of the PDE system in eq. (1) is then103

q (x, t) =
∑
j

rjfj (n · x− cjt) =
∑
j

rje
i(ωjt−kjn·x), (5)

where cj is the jth eigenvalue, corresponding to the wave velocity.104

The following discussion examines the plane wave solution with a single time-interface. We distinguish two cases asso-105

ciated with constant and with changing eigenvectors, respectively. This can be related to the acoustic scenarios discussed in106

Sections 9.7 and 9.8 in LeVeque (2002), where an invariant or a changing impedance between two domains with different wave107

speed and density are associated with a constant or varying eigenvector interface, respectively. The first invariant impedance108

interface is associated with a tuned scenario where the wave speeds and densities differ but their product does not.109
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2.1.1 Eigenvectors do not change at the time interface110

If the eigenvectors do not change at the time interface tint, the new set of initial conditions is111

q (x, tint) =
∑
j

rjfj (n · x− cjtint) =
∑
j

rje
i(ωjtint−kjn·x), (6)

which evolves in time according to112

q (x, t) =
∑
j

rjfj (n · x− cjtint − ĉj(t− tint)) =
∑
j

rje
i(ω̂j(t−tint)+ωjtint−kn·x). (7)

Here, rj is the jth eigenvector, fj is the component of the jth eigenvector in the linear split, and cj is the jth eigenvalue.113

Correspondingly, ĉj and ω̂j = kj ĉj are the jth eigenvalue and the jth angular frequency after the material change, respectively.114

In this scenario, the wave components associated with different eigenvectors propagate without creating new components.115

However, their velocities can change if the eigenvalues vary, which results in a phase shift.116

2.1.2 Eigenvectors change at the time interface117

If, on the other hand, the eigenvectors change in response to the material change at the time interface tint, we split the new118

initial conditions119

q (x, tint) =
∑
j

rjfj (n · x− cjtint) =
∑
i

r̂jf̂j (n · x) , (8)

which evolves in time as120

q (x, t) =
∑
j

r̂jf̂j (n · x− ĉj(t− tint)) , (9)

where r̂j denotes the jth eigenvector after the material change, f̂j denotes the space-dependent component of the jth eigen-121

vector, and ĉj denotes the jth eigenvalue.122

This shows that there can be components of different eigenvectors and eigenvalue pairs associated with the time interface.123

If, after the time interface, the decomposition of the new initial conditions creates eigenvectors that have eigenvalues such124

that they exist in ± pairs, it results in a reflected component in time. Hence if eigenvalues exist only in pairs of negative and125

positive values, reflections can be caused with a time interface. This is the case for the set of elastic wave equations analyzed126

in Section 2.3.127

If we consider a system with eigenvalues c and −c and eigenvectors r1 and r2, the solution after the time interface, i.e.,128

the forward component, even if we begin with only one component, is129

q (x, tint) = r1f1 (n · x− ctint) = r̂1f̂1 (n · x) + r̂2f̂2 (n · x) , (10)

which evolves in time as130

q (x, t) = r̂1f̂1 (n · x− ĉ (t− tint)) + r̂2f̂2 (n · x+ ĉ (t− tint)) , (11)

i.e., a single component creates its reflection. Here r̂i is the eigenvector after the time interface, f̂i is the component of the131

eigenvector r̂i, and ĉ is the eigenvalue of the solution after the time interface. In a scenario where the eigenvectors can be132

manipulated to affect only one component of the solution without modifying the other, only one component of the wavefield is133

reflected. This scenario is explored here by manipulating elastic P waves and S waves independently.134

If the initial eigenvalues are c1 and c2 with the corresponding eigenvalues ĉ1 and ĉ2 we obtain a solution that is similar to135

the result associated with a single initial eigenvector136

q (x, tint) = r1f1 (n · x− c1tint) = r̂1f̂i (n · x) + r̂2f̂2 (n · x) , (12)
137

q (x, t) = r̂1f̂i (n · x− ĉ1 (t− tint)) + r̂2f̂2 (n · x− ĉ2 (t− tint)) . (13)

This result demonstrates that this combination of eigenvalues does not necessarily create a reflected component. In our analysis,138

we focus on scenarios where the eigenvectors do change, since we are interested in obtaining reflections and in time reversing.139
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2.2 Analytical solution for an acoustic plane wave in response to time interfaces and the energy balance140

Next, we discuss the analytical solution for an acoustic planar wavefield in response to a single time interface and an instan-141

taneous time mirror (ITM). Bacot et al. (2016) defines an ITM as a sequence of time interfaces where the wave properties are142

changed intermittently for a very short duration τ . A corresponding analytical development for the elastic case is beyond the143

scope of this paper. As in Section 2.1, we work with a sinusoidal plane wave model. The set of acoustic wave equations in144

first-order hyperbolic form are defined as145

∂p

∂t
+ λ

∂vi
∂xi

= 0

ρ
∂vi
∂t

+
∂p

∂xi
= 0,

(14)

where p is the pressure fluctuation, vi are the particle velocities in the three directions, λ is the bulk modulus, and ρ is the146

density. The sound wave speed in the acoustic medium is c =
√

λ/ρ. We next describe ITM-generated converging wavefield147

components in an acoustic 1D system. We formulate eq. (14) in 1D and analogous to eq. (1) as148

∂q

∂t
+A

∂q

∂x
= 0 or

∂

∂t

p

v

+

0 λ

1
ρ

0

 ∂

∂x

p

u

 = 0. (15)

The eigenvalues for this system c = ±
√

λ/ρ exist in pairs and the eigenmatrix149

R =

−
√
ρλ

√
ρλ

1 1

 (16)

depends only on the material parameters λ and ρ. In the following discussion, subscripts I, II, and III denote the three phases150

of the ITM system. Phase I denotes the time before the first time interface, phase II refers to the interval between the first and151

the second time interface, and phase III indicates the state after the second time interface.152

2.2.1 Phase I153

The expression of the forward propagating wave154

pI (x, t) = ρc cos (k (x− ct)) ,

vI (x, t) = cos (k (x− ct)) ,
(17)

solves the 1D acoustic wave equation (eq. 15), where pI and vI denote the pressure and velocity evolution before the first time155

interface. Again, k is the wavenumber of the propagating wave, the sound speed is c =
√

λ/ρ and the wave propagates in a156

medium with an initial impedance ZI = ρc. The energy of the system is defined in a periodic domain following Kopriva et al.157

(2021):158

E =

∫ π
k

−π
k

(
1

2λ
p2 +

1

2
ρv2
)
dx. (18)

For the initial conditions we obtain159

EI =
πρ

k
, (19)

where EI is again the energy of the system before the activation of the time interface. Energy as defined in eq. (18) is conserved160

for a system of conserved hyperbolic equations, if no external energy or force acts on it. For our analysis, this energy remains161

constant until the system properties change at a time interface, and the energy remains constant between time interfaces.162

2.2.2 Phase II163

An impedance contrast or interface in space causes a reflection of the wave (Sec. 9.2 in LeVeque, 2002) (Fig. 1a). To create a164

time interface, we scale the wave impedance by a factor of n when the ITM is activated. At t = t−ITM the Lamé parameter is165

changed to λ2 = n2λ, which changes the impedance to Z2 = nZ1. The solution to the correspondingly updated eq. (15) is166
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(LeVeque, 2002, Sec. 2.8)167

2pII (x, t)

cρ
= − (n− 1) cos

(
kx+ cknt− (ckn+ ck) t−ITM

)
+ (n+ 1) cos

(
kx− cknt+ (ckn− ck) t−ITM

)
,

2vII (x, t) = (n− 1) cos
(
kx+ cknt− (ckn+ ck) t−ITM

)
+ (n+ 1) cos

(
kx− cknt+ (ckn− ck) t−ITM

)
,

(20)

where pII and vII are the pressure and velocity for t > t−ITM. In each of the two pressure and velocity components, the first and168

second term correspond to a converging and diverging part of the solution, respectively. For this choice of material change, the169

forward and backward propagating waves travel with a speed of nc, i.e., the wave speed is multiplied by n. These solutions170

also indicate a phase shift of (ckn∓ ck) t−ITM for a wave propagating forward and backward in response to the time interface,171

respectively, which is consistent with the observations and conclusions of Bacot et al. (2016). Using eq. (18) we can evaluate172

the system energy at t > t−ITM to173

EII =
1

2

(
1 + n2

)
πρ

kn2
. (21)

Fig. 2(a) evaluates the energy ratio EII/EI for different values of the time impedance factor n. Compared to the EI reference174

state, the relative energy in the jolted system EII decreases from large values at small n < 1 towards the asymptotic value of175

0.5 for n > 1.176

2.2.3 Phase III177

At t = t+ITM we change the material properties back to their initial state and solve eq. (15) again, which yields178

−4npIII (x, t)

cρ
=
(
−n2 + 1

)
cos
(
kx+ ckt− 2 ckt−ITM − (ckn+ ck)τ

)
+
(
n2 − 1

)
cos
(
kx+ ckt− 2 ckt−ITM + (ckn− ck)τ

)
+
(
n2 − 2n+ 1

)
cos (kx− ckt+ (ckn+ ck)τ)

+
(
−n2 − 2n− 1

)
cos (kx− ckt− (ckn− ck)τ) ,

−4nvIII (x, t) =
(
n2 − 1

)
cos
(
kx+ ckt− 2 ckt−ITM − (ckn+ ck)τ

)
+
(
−n2 + 1

)
cos
(
kx+ ckt− 2 ckt−ITM + (ckn− ck)τ

)
+
(
n2 − 2n+ 1

)
cos (kx− ckt+ (ckn+ ck)τ)

+
(
−n2 − 2n− 1

)
cos (kx− ckt− (ckn− ck)τ) ,

(22)

where τ = t+ITM − t−ITM, and pIII and vIII are pressure and velocity for t > t+ITM, respectively. Eq. (22) consists of four179

components, two components each traveling in the forward and reverse directions. This shows that an impedance discontinuity180

in time or an ITM generates a time-reversed wave component. The wave components exhibit a phase shift that depends on the181

ITM parameters. The final energy EIII depends on the parameters k, n, and τ and is constrained by182

πρ

k
≤ EIII ≤

πρ

2k

(
n2 +

1

n2

)
. (23)

This demonstrates that the application of an ITM leads to a change in the system energy. We can compare the maximum energy183

increase after the ITM to the initial state. We take the upper limit expression and plot the ratio EIII/EI as a function of n. The184

minimum neutral value EIII/EI = 1 is obtained at n = 1, and the system behavior is therefore consistent with the observation185

by Bacot et al. (2016) that “a temporal discontinuity in a homogeneous medium conserves momentum but not energy”.186

2.3 The elastic wave equation187

In Section 2.1, we have established the association between paired positive and negative eigenvalues and a time-reflected188

propagating plane wave in the presence of time interfaces using a general solution of a first-order wave equation. Next, we189

demonstrate this principle for an elastic medium to provide a basis for evaluating our numerical results that involve manipula-190
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Figure 2. Energy ratios associated with time interfaces. The subscript I refers to the original state before the activation of a time interface,
and states II and III are associated with the first and second time interface, respectively. The corresponding equations for EI, EII, and EIII

are eqs (19), (21), and (23), respectively, and n is the wave impedance factor. The ratio (a) EII/EI. The dashed line indicates the asymptotic
value of 0.5. (b) The ratio EIII/EI. The star indicates the neutral state associated with n = 1.

tion of P waves and S waves. To model the 3D seismic wavefield, we use the velocity-stress formulation of the elastic wave191

equation. Using Einstein notation to indicate summation over repeated indices, these equations are192

∂σij

∂t
− λδij

∂vk
∂xk

− µ

(
∂vi
∂xj

+
∂vj
∂xi

)
= 0,

ρ
∂vi
∂t

− ∂σij

∂xj
= 0,

(24)

where σ is the stress tensor, and consistent with eq. (14) the v1, v2, and v3 are again the particle velocities in the x, y, and193

z directions, respectively, λ and µ are the material dependent Lamé parameters, and ρ is density. The acoustic wave equation194

(eq. 14) emerges as a special case of eq. (24) for µ = 0. In this case, all shear stresses σij = 0 vanish, and all normal stresses195

are equal and equivalent to the pressure fluctuation p = −σii. Eq. (24) matches the general linear PDE system eq. (1)196

∂q

∂t
+A

∂q

∂x
+B

∂q

∂y
+C

∂q

∂z
= 0

for the state vector197

q = (σ11, σ22, σ33, σ12, σ23, σ31, v1, v2, v3)
T . (25)

The flux matrices A, B, and C are 9×9 matrices, e.g.,198

A =



0 0 0 0 0 0 − (λ+ 2µ) 0 0

0 0 0 0 0 0 −λ 0 0

0 0 0 0 0 0 −λ 0 0

0 0 0 0 0 0 0 −µ 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −µ

− 1
ρ

0 0 0 0 0 0 0 0

0 0 0 − 1
ρ

0 0 0 0 0

0 0 0 0 0 − 1
ρ

0 0 0



. (26)

We refer to Dumbser & Käser (2006) for the organization of these elements in the flux matrices, and for B and C. The199

eigenvalues of this system (−cp,−cs,−cs, 0, 0, 0, cs, cs, cp) determine the propagation velocities of P waves and S waves,200
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cp =
√

(λ+ 2µ)/ρ and cs =
√

µ/ρ, respectively. The corresponding eigenvector matrix is (Dumbser & Käser, 2006)201

R =



ρcp 0 0 0 0 0 0 0 ρcp
λ
cp

0 0 0 1 0 0 0 λ
cp

λ
cp

0 0 0 0 1 0 0 λ
cp

0 ρcs 0 0 0 0 0 ρcs 0

0 0 0 1 0 0 0 0 0

0 0 ρcs 0 0 0 ρcs 0 0

1 0 0 0 0 0 0 0 −1

0 1 0 0 0 0 0 −1 0

0 0 1 0 0 0 −1 0 0



. (27)

The eigenvector matrix depends on the elastic material parameters ρ, λ, and µ. This means that a material change at a time202

interface can create a situation in which the new eigenvectors differ compared to the eigenvectors before the time interface.203

Following the discussion in Section 2.1.2 we infer that the eigenvalues occur in pairs ±cp, ±cs, ±cs, and the zero eigenval-204

ues do not contribute to propagating waves. Hence a material interface that leads to a change in the eigenvectors leads to a205

corresponding reflected wavefield component.206

This interaction of waves with material interfaces is a fundamental and well-studied aspect of wave propagation in gen-207

eral and seismic responses in particular (LeVeque, 2002, Sec. 9.2). These findings can be generalized to understand the wave-208

field response to time interfaces, which also exhibits splitting the propagation into time-reflected and transmitted components209

(Fig. 1b). As said, extending the single time interface to a time slab or instantaneous time mirror involves the restoration to the210

original medium parameters, i.e., the phase I and phase III medium properties are the same (Section 2.2), which leads to the211

same wave speeds before and after the ITM as in the water tank experiment by Bacot et al. (2016). The development of the 3D212

analytical ITM solutions for elastic waves excited by point or seismic sources is an interesting problem that we do not pursue.213

3 WAVEFIELD SIMULATIONS AND ITM IMPLEMENTATION IN SEISSOL214

In this section, we summarize the implementation details of wavefield simulations with SeisSol and highlight the necessary215

modifications associated with the physics of time interfaces.216

3.1 Overview of ADER-DG in SeisSol217

SeisSol implements the ADER-DG method for elastic (Dumbser & Käser, 2006), viscoelastic (Dumbser et al., 2007b; Uphoff218

& Bader, 2016), anisotropic (de la Puente et al., 2007; Wolf et al., 2020b) and poroelastic (de la Puente et al., 2008; Wolf219

et al., 2022) materials. In addition, it supports the coupling of acoustic and elastic domains (Krenz et al., 2023) along with a220

gravity boundary condition to model tsunami waves (Krenz et al., 2021). SeisSol uses a hybrid parallelization approach using221

Message Passing Interface (MPI) for multi-node parallelization, and OpenMP. These features allow for the computationally222

efficient exploration of space-time phenomena in complex wave propagation problems.223

SeisSol solves the elastic wave equations written in first-order form as a linear hyperbolic PDE system, as given in eq. (1)224

∂q

∂t
+A

∂q

∂x
+B

∂q

∂y
+C

∂q

∂z
= S. (28)

An additional source term is indicated by S. The PDE system is solved using a high-order Discontinuous Galerkin (DG)225

method, which discretises the domain into unstructured tetrahedral elements. In each element, the numerical solution is rep-226

resented by space-dependent, orthogonal polynomial basis functions. The Arbitrary high-order DERivatives (ADER) method227

(Titarev & Toro, 2002; Dumbser et al., 2008) is used for time integration. The resulting ADER-DG scheme combines a high-228

order element-local predictor with a corrector step that considers how the local solution depends on neighbor elements by229

solving Riemann problems. We refer to Dumbser & Käser (2006) and Dumbser et al. (2007b) for details of the ADER-DG230

method, and to Uphoff et al. (2017) and Uphoff & Bader (2020) for details of the ADER-DG implementation in SeisSol.231

In each element k, the numerical solution for the nth timestep is stored as a matrix Qn
k of polynomial coefficients, with232
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the quantities and polynomial basis functions as row and column dimensions of the matrix. The DG discretization in space233

turns eq. (28) into this equation for each element of the grid234

D1 = M−1
((

Kξ)TQnA∗ +
(
Kη)TQnB∗ +

(
Kζ)TQnC∗

)
, (29)

where the mass matrix M and the stiffness matrices Kξ, Kη , and Kζ result from the choice of the element-local basis235

functions. As we use orthogonal basis functions, M becomes diagonal. The matrices A∗, B∗, and C∗ are linear combinations236

of the matrices A, B, and C from eq. (28), depending on the orientation of the element.237

The first step in the ADER-DG scheme is a Taylor series expansion of the element-local space-time solution I, for which238

we iterate over eq. (29) to compute the δth derivatives Dδ for 0 ≤ δ ≤ O, with O the discretization order239

D0 := Q, Dδ+1 := M−1
((

Kξ)TDδA∗ +
(
Kη)TDδB∗ +

(
Kζ)TDδC∗

)
(30)

and then compute the space-time predictor as240

I =

O∑
δ=0

∆tδ+1

(δ + 1)!
Dδ, (31)

which is referred to as the so-called Cauchy-Kovalevskaya procedure (Dumbser & Käser, 2006). From these space-time pre-241

dictions I, an explicit update scheme for a time step can be derived242

Qn+1,∗ =Qn + Ivol (I)− Ilocal
surf (I)− Isurf

neigh
(
I(i)
)
+ Isrc, (32)

where the terms Ivol correspond to the volume discretization, the terms Ilocal
surf and Iglobal

surf to the numerical fluxes on the element243

surfaces, and Isrc to the discretization of source terms. The volume term is computed as244

Ivol (I) = M−1
(
KξIA∗ +KηIB∗ +KζIC∗

)
, (33)

with all terms known from eq. (29). The surface contributions Ilocal
surf and Ineigh

surf are computed from contributions from all four245

faces of the tetrahedral cell246

Ilocal
surf (I) =

1

|J |M
−1

(
4∑

i=1

|Si|F−,iIÂ+

)
,

Ineigh
surf

(
I(i)
)
=

1

|J |M
−1

(
4∑

i=1

|Si|F+,i,j,hI(i)Â
−
(i)

)
,

(34)

where |J | is the volume of the element and |Si| is the surface area of the ith face. The flux matrices F−,i and F+,i,jk,hk247

for each element k and for each face i depend on the choice of the basis functions and the relative position of the element248

with the respective neighbor (Dumbser & Käser, 2006).Â+
k , Â−

k(i) are defined as Â+
k = 1

2

(
Âk +

∣∣Âk

∣∣), and Â−
k(i) =249

1
2

(
Âk(i) −

∣∣Âk(i)

∣∣), where the notation of the absolute value of the Jacobian matrix has the meaning of applying the absolute250

value operator to the given eigenvalues (Dumbser & Käser, 2006, eq. 15 in).251

We can write the source term Isrc associated with a single point source252

Isrc = |J |

(
O∑

j=1

ωjsps (τj)

)
Ψ(ξs) , (35)

where ωj are integration weights, sps is the time-dependent component of the source term inside a mesh element, Ψk are253

space-dependent basis functions on the reference element, and ξs is the location of the point source in the reference coordinate254

system. In this work we consider only point source simulations, but our SeisSol ITM can be generally applied to wavefields255

excited by extended finite sources. As none of the components required for the calculation of Isrc depend on material properties,256

these do not need to be revised for the ITM implementation.257

3.2 ITM wavefield manipulations in SeisSol258

We implement an ITM for elastic waves by modifying the material properties to λ̂, µ̂, and ρ̂ for t−ITM ≤ t ≤ t+ITM. Elastic body259

waves propagate as a P wave or S wave, hence it is possible to reverse both waves together by changing the impedance or just260

one of the wave types without affecting the other. Here we analyze P wave and S wave scenarios, which significantly extends261

previous work on ITM effects on elastic waves (Innanen, 2018; Wapenaar et al., 2024). To change the impedance contrast we262
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can modify the density and keep the Lamé parameters constant or scale them in different proportions. In the following Eqs (36)263

to (38), n denotes the impedance scaling factor.264

3.2.1 Manipulating P waves and S waves265

To reflect both waves, we modify the material parameters for the duration of the ITM from t−ITM to t+ITM as266

λ̂ = n2λ,

µ̂ = n2µ,

ρ̂ = ρ.

(36)

3.2.2 Manipulating P waves only267

To reflect only P waves, we modify the material parameters such that only the P wave impedance changes without affecting268

the S wave impedance. We change the Lamé parameter λ and keep µ constant:269

λ̂ = n2λ,

µ̂ = µ,

ρ̂ = ρ.

(37)

3.2.3 Manipulating S waves only270

Correspondingly, to reflect only S waves, we modify the material parameters such that only the S wave impedance is changed271

without affecting the impedance of P waves. This is achieved by changing the density and the Lamé parameters:272

λ̂ =
λ+ 2µ

n
− 2nµ,

µ̂ = nµ,

ρ̂ = nρ.

(38)

3.2.4 ITM implementation273

The ADER-DG update scheme, as summarized in section 3.1, is formulated as a sequence of element-local matrix operations.274

As all matrices – with the exception of the quantities Q – normally remain constant throughout a simulation, SeisSol precom-275

putes and stores all involved matrices during its setup phase. While Kξ, Kη , Kζ , and M, as well as the flux matrices F−,i and276

F+,i,jk,hk depend on the discretization and on the geometry of the mesh elements, the matrices A∗, B∗, C∗ depend directly277

on A, B, C, which are again sensitive to the material parameters. Similarly, Â+ and Â−
(i) contribute to the Riemann solution,278

which also depends on the local material parameters. Therefore, when the medium parameters change at a time interface, we279

recompute all matrices A∗, B∗ and C∗, as well as Â+ and Â−
(i), for all DG elements.280

As an explicit scheme, ADER time stepping must obey a Courant–Friedrichs–Lewy (CFL) condition (Lewy et al., 1928).281

For the elastic wave equation, the allowed time step size is inversely proportional to the largest wave speed cp. SeisSol employs282

clustered local time stepping (LTS) (Dumbser & Käser, 2006; Breuer et al., 2016), which groups elements with similar time283

step sizes into clusters and enforces the CFL condition per LTS cluster. Temporally changing material parameters for ITM284

requires that we also update the time step sizes, to match the changed wave speeds. Since ITM scaling keeps the ratios between285

time step sizes of elements and clusters identical, LTS clusters can stay unchanged, and only the time steps for each LTS cluster286

need to be updated. ITM is thus compatible with utilizing LTS.287

3.3 Numerical convergence test288

We perform numerical convergence analysis to verify our implementation. We compare SeisSol synthetics of instantaneous289

time-mirrored acoustic waves to the analytical solution of a propagating planar acoustic wave discussed in Section 2.2. To290
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Figure 3. Convergence of the numerical SeisSol response to an instantaneous time mirror and the corresponding analytical plane wave solution
for an acoustic medium (eq. 17). The grid size dependent L2 norm of the differences in the v1 velocity shows a positive dependence on the
polynomial order p. The dashed lines show the theoretical convergence of p+ 1 for polynomial order p.

quantify convergence, we compute the L2 norm of the error of the v1 velocity component of our numerical solution in response291

to a sinusoidal plane wave excitation with eq. (22) in Section 2.2. For this experiment we use τ = 0.01 s and n = 2. We use292

a series of meshes consisting of uniformly-sized tetrahedral elements in an 8 m3 cubic domain. We increase the number of293

elements in each direction as 4, 8, 16, 32, 64, 128 and examine the error for polynomial orders p ∈ {1, 2, 3, 4, 5}. We expect294

a convergence order of p+1 for a polynomial order p used in the DG scheme (Käser & Dumbser, 2006). The results are295

summarized in the decimal log-log plot in Fig. 3. The slope of the obtained relationships increases as expected with the296

polynomial order. For order p = 5, we observe an increase in error for the smallest grid size with 128 elements, which is due297

to reaching the limit of floating-point accuracy. We perform a linear fit of the error decimal logarithm and the grid size decimal298

logarithm to estimate the approximate convergence order obtained with our implementation. From the results in Table 1 we299

can conclude that our numerical discretization of the ITM converges with the expected order.300

Table 1. Convergence order vs polynomial order obtained from the convergence study of acoustic traveling wave with ITM.

Polynomial Order 1 2 3 4 5

Convergence Order 2.13 3.15 4.00 5.03 5.77
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4 RESULTS FROM POINT SOURCE SIMULATIONS301

We simulate the response of propagating wavefields that are excited by an impulse point source to time boundaries, first for302

an acoustic medium (Section 4.1) and then for an elastic case (Section 4.2). We use the half-space material parameters of the303

SISMOWINE WP2 LOH1 code validation benchmark (Moczo et al., 2006) that has been used to evaluate and compare the304

accuracy and performance of different wave propagation solvers. This benchmark scenario provides a reference for validating305

free-surface and internal interface wavefield responses. For the acoustic material we set µ = 0 and adapt λ to yield the same306

P wave speed as in the elastic case. We apply a standard seismic source time function at the center of the domain. The source307

time function Ṡ is a Brune source time function (Fig. 4) that approximates an impulse force308

Ṡ =
1

T 2
te−

t
T , (39)

where t denotes time and T controls the width of the pulse approximating the duration of the source. This function is scaled309

by a seismic moment tensor that parameterizes a pressure source and a double couple source, or by a point force applied in310

the vertical direction. We use a conservatively large computational domain to avoid spurious reflections from non-perfectly311

absorbing boundaries. All 2D wavefield images (Figs 5 to 10) are generated using the higher-order output feature of SeisSol312

and are post-processed using the in-house ‘light-quake-visualizer’ tool.313

4.1 The simulated response of an acoustic wavefield to time interfaces314

We focus on the acoustic solution in response to a permanent change associated with a single time interface and compare key315

characteristics to theoretical predictions collected by Wapenaar et al. (2024) to corroborate our results. Then we discuss the316

refocusing behavior associated with an ITM and connect the results to observations from established time reversal applications.317

We first apply time interfaces to a P wave generated by a pressure impulse point source in an acoustic material. The initial318

material properties are319

ρ = 2700
kg
m3

,

µ = 0 Pa,

λ = 9.72 · 1010 Pa,

(40)

which lead to a P wave speed of cp = 6000 m/s. The mesh used in this scenario resolves frequencies up to 10 Hz with these320

material properties (Käser et al., 2008). In the scenario where there is only one time interface, we resolve a higher frequency321
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Figure 4. The source time function (eq. 39) used for the velocity impulse point source. The inset shows the normalized spectral amplitude of
the source time function.
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range due to the modified material parameters. The time interface parameters are322

τ = 0.001 s,

n = 10,

t−ITM = 5.0 s,

(41)

where τ is the duration of the ITM, and n is the impedance scaling factor from eq. (36). These parameters result in the clean323

responses shown in Figs 1(b) and (c), 5, and 6 obtained with the SeisSol time interface implementation.324

4.1.1 Reflection and transmission coefficients and frequency shift at a single time boundary325

We first neglect phase III and the associated τ parameter in eq. (41) to compare features of our simulated single time interface326

responses to theoretical results. For a 1D space boundary it is well known that the wavenumber of a planar wave changes327

according to kII = kIcI/cII and the frequency is invariant, ωII = ωI. Correspondingly, for a time boundary, the wavenumber is328

invariant, kII = kI, but the frequency changes, ωII = ωIcI/cII (Wapenaar et al., 2024). This means that for our time impedance329

factor n = 10, which yields a ten-fold increase in the pressure wave speed, the frequencies of the reflected and transmit-330

ted waves are also expected to increase significantly. Similar to the established 1D planar wave reflection and transmission331

coefficients Rx and Tx for a space boundary, Wapenaar et al. (2024) developed Rt and Tt expressions for a time boundary332

Rt =
1

2

(
λI

λII
− cII

cI

)
,

Tt =
1

2

(
λI

λII
+

cII

cI

)
,

(42)

where λ is the bulk modulus, c = cp, and the subscripts I and II refer again to the two phases before and after the time333

boundary, respectively, equivalent to the λ and λ̂ notation in Section 3.2. This behavior is illustrated in Fig. 1(b), where we334

can observe the incident 6 km/s wave speed up to t < 5 s (eq. 41), and then a ten-fold increase in the reflected and transmitted335

wave speeds for t > 5 s.336

To analyze the frequency content we compute the Fourier amplitude spectra of 2 s long zero-padded waveforms of the337

incident, reflected, and transmitted waves. The spectrum of the comparatively broad incident waveform (Fig. 1b) shows energy338

in the 0−10 Hz range and a peak around 1.5−2 Hz. The spectra associated with the significantly more narrow reflected and339

transmitted wavelets is correspondingly broader, with an observed peak around 15 Hz. This shift in the peak energy is thus in340

good agreement with the predicted shift of the central frequency by a factor of ωII/ωI≈cII/cI = 10.341

The theoretical reflection and transmission coefficients (eq. 42) for our material values (eq. 40) and n = 10 are Rt =342

−4.995 and Tt = 5.005, respectively. When we scale these values by the simulated incident amplitude of about −0.4, ne-343

glecting the order of magnitude of the considered normal stress values, we obtain estimates around +2.0 and −2.0, which344

are in good agreement with the simulated reflected and transmitted amplitudes of +1.9 and −1.8, respectively. These values345

are obtained for the broadband signals but also for narrowband filtered waveforms using a Gaussian filter with 1.5 Hz and346

15 Hz central frequency. The shift to higher frequencies and the Rt and Tt coefficient results demonstrate that our SeisSol347

simulations of the response to a single time boundary are consistent with analytical results of a plane wave model. We attribute348

the residuals to the differences between the model assumptions and the 3D numerical solution.349

4.1.2 Acoustic ITM refocusing and focal spot properties350

The next step is the application of a second time boundary (Fig. 1c) after τ s that completes a time slab or the ITM. We use a351

first example to demonstrate again the SeisSol effectiveness by connecting the properties of the simulated refocusing pattern352

or focal spot to results in the literature. The acoustic medium properties and time boundary values (eqs 40, 41) result in the353

10 s long clean response obtained with the SeisSol ITM implementation illustrated in Fig. 5, where the visualization plane354

intersects the source location, and the indicated times are relative to t−ITM. The top five panels show the diverging P+ wave that355

interacts with the ITM at t = 0 s. The t = 0.3 s panel shows the P+ wave together with the new converging P− wave that356



14 Kurapati, Hillers, Krenz, Gabriel, Bader

Figure 5. The response of an acoustic wavefield to an instantaneous time mirror activated at t = 0.0 s. The labels P+ and P− indicate the
diverging and converging wave, respectively. The panels show a 2D section of the spherical wavefield in the y-z plane through the location of
the pressure impulse moment tensor point source. The colorrange is clipped.

refocuses at t = 5 s. Note that the red-blue amplitude pattern of the P+ and P− waves illustrates the first in-last out symmetry357

associated with the ITM response (Bacot et al., 2016).358

The spatiotemporal pressure field σxx is shown in an alternative illustration in Fig. 6(b). In the left part of the main panel359

it shows the converging wave that has been reflected by the ITM at t = 5 s before it refocuses at t = 10 s around the source360

position at 3 km and then diverges again in the right part. The slopes indicate the 6 km/s propagation speed. The corresponding361

cross sections show the normal stress amplitude distributions along x = 3 km (Fig. 6a) and at t = 10 s (Fig. 6c). The large362

amplitude feature around the origin at the refocusing time is referred to as focal spot. The finite width of the focal spot is a363

consequence of the interacting converging and diverging parts of the wavefield. For seismic surface waves the focal spot is the364

time domain equivalent of the well known spatial autocorrelation (Aki, 1957; Hillers et al., 2016; Giammarinaro et al., 2022;365

Tsarsitalidou et al., 2024). For a monochromatic body wave the focal spot shape is described by a sinc function, and its half-366

width or tip-curvature are a proxy for the local wavelength, and these relationships have been extensively utilized in acoustics367

and medical imaging applications (Fink, 1997, 2006; Catheline et al., 2008; Gallot et al., 2011). The half-width is the width368

of the spot measured at half the peak amplitude, and it is an estimate of half a wavelength. In Fig. 6, the indicated half-width369

at the refocusing time t = 10 s is approximately 625 m. The ∼5 Hz central frequency of the wave after refocusing and the370

6 km/s local wave speed yield a wavelength of 1200 m, which agrees with our half-wavelength estimate. These results from371

the acoustic case relate our ITM response analysis to established time reversal observations and corroborate the effectiveness372

and accuracy of our SeisSol simulations.373

4.2 The simulated ITM response in an elastic medium374

We extend the discussion from an acoustic to an elastic ITM response. We illustrate the general behavior of 3D elastic waves375

and discuss the three different possibilities of manipulating P waves and S waves, i.e., we mirror the full body wavefield,376

and the P wave and the S wave separately. We first discuss the evanescent near-field component of the point source solution377

for moment tensor sources in elastic media. The non-propagating near-field term results from a moment tensor rate with a378

non-zero integral over the source duration (Secs. 4.2.3 and 2.6.2 in Aki & Richards, 2002; Igel, 2016). An example of this379

static near-field component is illustrated in the center of the panels in Fig. 7 that show again the σxx component. The near-field380

lobes as well as the amplitude distribution of the propagating P wave and S wave are controlled by the radiation pattern of the381

shear dislocation point source. As in Fig. 5 the visualization plane in Fig. 7 intersects the source location. Hence we can not382

reconstruct clean focal spots at the source location from the mirrored, converging wavefield as in Fig. 6. Instead, Figs 8 to 10383

show the v3 component of the simulated wavefields in the y-z plane at x = 2 km, which better illustrates the ITM response384

away from the source location at the origin and hence away from the large amplitudes in the near-field.385

We apply an ITM to waves excited by point sources. We use the halfspace material parameters of the LOH1 benchmark386
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Figure 6. (a) Space-time representation of the time-reversal collapse on the source location for an acoustic pressure wavefield excited by a
pressure impulse moment tensor in response to an instantaneous time mirror activated at t = 5 s. The spatial and temporal refocusing occurs
at x = 3 km and t = 10 s. The colorrange is clipped. (b) Cross section through the wavefield in panel (a) along the time axis at the location
x = 3 km. (c) Cross section through the wavefield in panel (a) along the space axis at the refocusing time t = 10 s.

scenario387

ρ = 2700
kg
m3

,

µ = 3.24 · 1010 Pa,

λ = 3.24 · 1010 Pa,

(43)

which lead to P wave and S wave speeds of388

cp = 6000
m
s
,

cs = 3464
m
s
,

(44)

respectively. With these material parameters, the meshes we used can resolve up to 5 Hz in the domain of interest. The ITM389

parameters are390

τ = 0.01 s,

n = 10,

t−ITM = 9 s.

(45)

for the cases where we reflect both P - and S- waves, for reflection of just the S-wave, we use a scaling factor of n = 0.1.391

To manipulate the wavefield for the three cases,, the value of the impedance scaling factor n is applied in the corresponding392

eqs (36), (37), or (38). As before, these parameters yield the clean responses exhibited in Figs 8 to 10.393

Figure 7. Illustration of an elastic wavefield in response to a moment tensor point source. The amplitudes of the propagating P waves and
S waves decay away from the seismic moment tensor source, in contrast to the comparatively large-amplitude static near-field component.
The colorrange is clipped.



16 Kurapati, Hillers, Krenz, Gabriel, Bader

Figure 8. The response of an elastic wavefield to an instantaneous time mirror activated at t = 0.0 s. The intermittent change in the elastic
parameters affects the P wave and the S wave. The superscripts + and − indicate the diverging and converging components, respectively.
The panels show a 2D section of the spherical wavefield in the x-y plane at z = 28 km in response to a vertical velocity impulse point force
located at the origin. The colorrange is clipped.

The panels in the top row in Fig. 8 show the diverging P+ and S+ waves in the visualization plane around t = −4 s394

and t = −0.7 s, respectively. At t = 0.3 s we can again discern the first in-last out symmetry of the amplitude pattern of395

the converging P− and S− waves that are created by the ITM at t = 0 s. All four waves continue to propagate, and around396

t = 0.7 s and t = 4 s the S− wave and the P− wave are about to ‘exit’ the visualization plane, respectively.397

Fig. 9 exhibits the same features at the same times, except that only a converging P− wave emerges at t = 0.3 s in398

response to the ITM that leaves the S wave propagation unaffected.399

The wavefields in the top row panels in Fig. 10 are again identical to the solutions in Figs 8 and 9, but now only the400

S− wave is jolted into existence and propagates back toward the center, where it would refocus and diverge again.401

The S wave manipulation is alternatively illustrated in the two representations of the wavefield in Fig. 11. Results in402

Fig. 11(a) show the space-time pattern along the x–axis at y = 12 km, z = 40 km, analogous to Fig. 3(a) in Bacot et al.403

(2016). The profile extends radially away from the source at (12, 12, 68) km. The P wave propagates undisturbed but the404

converging S− wave splits away from the diverging S+ wave at the ITM activation. This highlights again the first in-last out405

symmetry, e.g., at t = 0.2 s. The pattern also exhibits the ITM induced amplitude change of the transmitted S+ wave, and406

the change in frequency content. The results in Fig. 11(b) show results from the same simulation in an alternative time-space407

configuration, where the 20 km long profile ranges from (16, 12, 40) km to (36, 12, 40) km, i.e., from 4 to 24 km relative to408

Figure 9. The response of an elastic wavefield to an instantaneous time mirror activated at t = 0.0 s. The intermittent change in the elastic
parameters affects only the P wave. The superscripts + and − indicate the diverging and converging components, respectively. The panels
show a 2D section of the spherical wavefield in the x-y plane at z = 28 km in response to a vertical velocity impulse point force located at
the origin. The colorrange is clipped.
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Figure 10. The response of an elastic wavefield to an instantaneous time mirror activated at t = 0.0 s. The intermittent change in the elastic
parameters affects only the S wave. The superscripts + and − indicate the diverging and converging components, respectively. The panels
show a 2D section of the spherical wavefield in the x-y plane at z = 28 km in response to a vertical velocity impulse point force located at
the origin. The colorrange is clipped.

the source. This profile does not point radially away from the source at (12, 12, 68) km, which explains the different P+ wave409

to S+ wave amplitude ratio for t < t−ITM = 0 s, the curved wave fronts, and the amplitude decay with distance. The illustration410

shows the phase change of the ITM affected S waveform, e.g., by comparing the shapes of the S+ wave and S− wave at411

x = 8 km. These results together with the images in Figs 8 to 10 highlight the rich and complex space-time features associated412

with the sampling configuration of 3D elastic wavefields in response to an ITM.413

We observe a sensitivity in the simulated phase III amplitudes after t+ITM (Section 2.2), i.e., the amplitudes of the manip-414

ulated waves in the lower row panels in Figs 8 to 10 and in Fig. 11, to our choice of the time impedance scaling factor n.415

Simulations with n values that are lager than n = 10 (eq. 45), or with values that are small compared to unity, lead to signifi-416

cantly larger amplitudes. These observations are compatible with the asymptotic results in eq. (23) illustrated in Fig. 2(b) that417

show an energy increase with n and 1/n in response to the ITM.418

All results are obtained with empirically determined τ values in the range between 0.001 s and 0.01 s to provide clean419

ITM responses for our demonstration purpose. The associated testing results suggest a sensitivity of the amplitude to variations420

in τ . This cannot, however, be linked to the analytical results in Section 2.2 that exhibit a τ dependence only in the cosine421

function argument of the reflected and transmitted planar acoustic waves (eq. 22). Updated analytical results for the 3D elastic422

response to point sources are required for a comprehensive exploration of τ dependent energy scaling.423
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Figure 11. The response of an elastic wavefield to an instantaneous time mirror activated at t = 0.0 s using complementary space-time
sampling configurations. The intermittent change in the elastic parameters affects only the S wave. (a) The wavefield along a 58 km long
profile along the x-axis at y = 12 km, z = 40 km. The source is located at (12, 12, 68) km. (b) 13 s long seismograms along a 20 km section
along the x-axis.
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Together our results convincingly illustrate the application of the ITM concept in an elastic medium and show the in-424

teresting phenomena to reverse either the full wavefield or any one body wave component independently by intermittently425

changing the medium parameters. The simulated responses demonstrate the robust implementation of ITM physics in the Seis-426

Sol community solver, but also highlight the potential for analytical developments for a more complete ITM energy partitioning427

theory.428

5 DISCUSSION429

The space-time analogy in wave propagation (Fig. 1) has led to growing interest in time-dependent manipulation of material430

properties, where instantaneous changes in elastic properties act as temporal boundaries. Similarities and differences in the431

responses to space and time dependent changes are governed by the associated changes in boundary and initial conditions,432

respectively (Bacot et al., 2016; Fink & Fort, 2017; Wapenaar et al., 2024). Our analytical and numerical analyses of the433

response of a 3D elastic wavefield to a single time interface and to a time slab or instantaneous time mirror (ITM) in a 3D434

elastic wave propagation framework using the open source code SeisSol advances seismic wavefield manipulations.435

We focus on instantaneous changes of the elastic parameters, and thus wave speeds, governed by a scaling factor n at a436

time interface, in contrast to periodic or other transient temporal variations (Wapenaar et al., 2024). An ITM of duration τ is437

constructed as a quick succession of two time interfaces, briefly altering and then restoring the original material properties. To438

validate our simulated 3D responses we establish analytical models that are used to benchmark selected synthetic results and439

provide insight into the system energy. Using the properties of eigenvalues associated with the matrix structure of a general440

wave equation (Section 2) and of the 3D elastic wave equation (Section 2.3) we establish a forward and backward propagating441

plane wave solution in response to a time interface that leads to a permanent medium change.442

The plane wave approach is used for an acoustic 1D case (Section 2.2) to build the diverging and converging solutions443

in response to an ITM, and these solutions yield expressions for the system energy budget that depend on n. It shows that444

the energy increases for all intermittent medium changes, for all n smaller and larger than unity (Fig. 2), which is compatible445

with non-steady-state energy considerations based on alternative formulations (Wapenaar et al., 2024) and thus corroborates446

the observation that a temporal discontinuity changes the energy in the system (Bacot et al., 2016). Importantly, the solutions447

for the forward and backward propagating plane waves provide the reference for benchmarking the ITM responses.448

We implement the time boundaries in the open source software SeisSol. It employs an ADER-DG scheme on unstruc-449

tured tetrahedral meshes that supports the simulation of dynamic rupture and seismic, acoustic and gravity wave propagation450

for complex geometries and heterogeneous material properties encountered in Earth Science applications (e.g., Taufiqurrah-451

man et al., 2023; Krenz et al., 2023; Palgunadi et al., 2024). The utilization of the open source code is supported by frequent452

training events and extensive tutorials (Denolle et al., 2025), which can now also include ITM applications. We use the ana-453

lytical solutions of the 1D acoustic plane wave propagation to demonstrate the good convergence properties of our numerical454

implementation (Fig. 3). For this demonstration we force a sinusoidal propagating plane wave. The convergence test estab-455

lishes the positive dependence of the L2 norm on the spatial discretization and on the polynomial order. We emphasize that456

the L2 norm measures the agreement of both diverging and converging wave components in response to the ITM activation.457

This corroborates the numerical ITM implementation for the manipulation of a 3D elastic wavefield excited by a point source,458

for which we do not derive a corresponding reference solution. These results also imply the accuracy of ITM manipulated459

wavefields excited by finite sources.460

A first key result from our 3D acoustic point source simulations involves refocusing in response to an ITM. The collapsing461

acoustic wavefield yields a large-amplitude feature at the source location (Fig. 6). The properties of this focal spot are controlled462

by the local medium properties, which supports a wide range of imaging approaches that are complementary to tomographic463

inversions (Catheline et al., 2008; Gallot et al., 2011; Catheline et al., 2013; Giammarinaro et al., 2022; Tsarsitalidou et al.,464

2024). Here the good agreement between our P wave speed estimates of cP = 6.25 km/s based on the narrow-band filtered465

focal spot width (Fig. 6) and the controlled velocity cP = 6.00 km/s supports again the notion of an accurate wave physics466

implementation in SeisSol. The validity of the implementation is further supported by our estimates of the reflected and trans-467

mitted wave amplitudes across a single time interface that are in good agreement with the plane wave predictions by Wapenaar468
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et al. (2024). This exercise also corroborates the scaling of the frequency content of the reflected and transmitted signals with469

the impedance scaling factor n, which differs fundamentally from the constant frequency content across an interface in space.470

In agreement with the water tank results by Bacot et al. (2016) the 2D slices of the ITM manipulated wavefield (Fig. 5) illus-471

trate the first in-last out symmetry of the amplitude pattern that differs from the first in-first out reflections at a space interface472

and at a time reversal mirror. For the elastic case the large-amplitude static near-field component (Fig. 7) prohibits the width473

measurements of P wave and S wave focal spots. This is inconvenient for numerical focal spot imaging studies (Giammarinaro474

et al., 2022, 2024), but it can be mitigated using appropriate filters. Another key result of our implementation is the independent475

manipulation of P waves and S waves by a selective ITM variation of the impedances (Figs. 9, 10). The intriguing possibility476

of separating converging P waves from S waves highlights the greater diversity of elastic wavefield phenomena compared to477

ITM responses for electromagnetic or acoustic propagation. This can support the development of efficient numerical strategies478

for synthetic wavefield manipulations.479

Electromagnetic fields are comparatively easy to manipulate by changing the admittance, in contrast to time dependent480

variations of Earth materials. Seismic wavefields can be engineered using resonator arrays that can lead to effective seismic481

metamaterials with the potential to reduce seismic hazard (Colombi et al., 2016; Mu et al., 2020). Backward propagation plays482

an important role in adjoint tomography solutions (Tromp et al., 2005) and to constrain source locations (McMechan, 1982;483

Rietbrock & Scherbaum, 1994; Gajewski & Tessmer, 2005; Larmat et al., 2006) and earthquake rupture processes (Krüger &484

Ohrnberger, 2005; Kiser & Ishii, 2017), which are suitable application cases for the SeisSol software. More generally, our ITM485

implementation extends the SeisSol computational framework to simulate and explore the effects of time varying properties486

of Earth materials at different scales. SeisSol has demonstrated its utility in challenging Earth Science multi-physics simula-487

tions involving rapid, spatially distributed material changes associated with large earthquakes or tsunamis (Krenz et al., 2021),488

and provides an integrated numerical environment to research wavefields in space- and time-varying media. As demonstrated,489

properties of the focal spot or the spatial autocorrelation field are indicators of the local wave speed. Numerical focal spot syn-490

theses based on analytical solutions (Catheline et al., 2008), time reversal mirrors (Giammarinaro et al., 2022), or correlations491

of scattered or diffuse wavefields (Catheline et al., 2013; Giammarinaro et al., 2024) are essential for method development492

including robustness and sensitivity analyses. The noise correlation and Green’s function analogy (Derode et al., 2003) sup-493

ports seismic dense array-based Rayleigh wave focal spot imaging (Hillers et al., 2016; Tsarsitalidou et al., 2024) that has not494

been explored systematically for anisotropic media except for initial observations of azimuthally variable surface wave speeds495

(Hillers et al., 2016). Focal spot synthesis by time reversal mirroring of Rayleigh wave Green’s functions in an azimuthally496

anisotropic medium (Hillers et al., 2023) is challenging because of the correct implementation of the boundary conditions.497

Together with the implementation of anisotropic elastic parameters in SeisSol (Wolf et al., 2020a; Hillers et al., 2023) the ITM498

engine can be used to synthesize focal spots in media with direction dependent properties, provided that the refocusing field is499

separated from the static near-field components.500

In this work we focus on body wave propagation in response to an intermittent change in the material properties of an501

homogeneous elastic full space. Additional physics and configurations leading to richer phenomena have been investigated in502

other domains and applications. These include ITM in inelastic, heterogeneous, and dissipating materials (Besten et al., 2021;503

Wu et al., 2022), time reflection and refraction (Mendonça & Shukla, 2002), incidence angle dependence of reflection and504

transmission (Pendry, 2008) and wave conversions associated with oblique reflections (Innanen, 2018). Future extensions of505

our work can explore these concepts and applications for seismic wavefields.506

6 CONCLUSIONS507

We analyze wavefield behavior in time-varying media that are spatially uniform. Our eigenvector-based analytical solutions508

model acoustic waves at time interfaces. These models provide a framework for energy balance estimates in jolted systems509

and are used as reference solutions for our numerical convergence tests. These tests illustrate the effectiveness of the employed510

SeisSol ADER-DG solution for the numerical simulation of wavefield phenomena in media that are heterogeneous in space and511

time. Our simulated 3D elastic wavefields in response to an instantaneous time mirror showcase the possibility to manipulate512
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the complete body wavefield but also to tune the propagation of the P wave and S wave components independently, which513

emphasizes the richness in seismic wave propagation compared to ITM responses for electromagnetic or acoustic waves.514
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Denolle, M. A., Tape, C., Bozdağ, E., Wang, Y., Waldhauser, F., Gabriel, A., Braunmiller, J., Chow, B., Ding, L., Feng, K.,558

Ghosh, A., Groebner, N., Gupta, A., Krauss, Z., McPherson, A. M., Nagaso, M., Niu, Z., Ni, Y., Örsvuran, R., Pavlis, G.,559
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