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Abstract

The Solow residual, often used to measure technological progress, also re�ects �uctuations

in input utilization and related factors. We develop a multisector model decomposing capacity

utilization into shopping-e�ort and variable capital intensity components, attributing sectoral

Solow residual variation to utilization, technology, and input share mismeasurement. Using

Bayesian estimation with capacity utilization data from nondurable and durable goods sectors,

we identify key parameters governing goods market frictions. We �nd that search demand

shocks explain most forecast error variance in the Solow residual, output, and utilization.

Together with matching frictions, these shocks are essential for replicating observed sectoral

dynamics, including volatility, correlations, and autocorrelations of utilization rates. Impulse

response analysis reveals that demand shocks uniquely generate three-way comovement among

utilization rates and the Solow residual.

Keywords: identifying goods market frictions, capacity utilization, sectoral comovement,

endogeneity of Solow residual, Bayesian estimation, identi�cationmand shocks
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1. Introduction

Macroeconometric research shows that the Solow residual does not purely measure tech-

nology. Evans (1992) �nds that variables like money, interest rates, and government spending

Granger-cause movements in the Solow residual, with demand �uctuations accounting for up
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to half of its variance. Similarly, Basu, Fernald, and Kimball (2006) use structural estimation

to impute technological change and �nd it behaves quite di�erently from the measured Solow

residual.

Goods market frictions, as introduced by Diamond (1982), o�er a clear explanation for

this endogeneity. Imagine a traditional pizzeria. In a neoclassical model, output depends

only on inputs�sta�, tables, wood �re ovens�regardless of demand, because prices adjust to

clear markets. In practice, however, production ramps up when customers arrive; sales spike

at meal times and inputs are more greatly utilized. This means that higher search e�ort by

consumers in�uences output even if inputs are held �xed, thereby raising TFP. While �rms

eventually adjust inputs or capacity in response to sustained demand, such adjustments are

absent during short-run cyclical �uctuations.2

Our research problem is to quantify the extent to which movements in TFP are driven by

demand-side economic �uctuations rather than purely technological innovations. To do this,

we build a multisector model with goods market frictions, where consumers' shopping behavior

in�uences aggregate demand and, in turn, �rms' capacity utilization. Capacity utilization then

a�ects both the measurement of the Solow residual and the dynamics of the business cycle,

allowing demand shocks to directly impact measured productivity. This logic re�ects Keynes'

idea that demand shocks drive business cycles, but di�ers from the New Keynesian literature

by not relying on nominal rigidity.3

We estimate the model using Bayesian methods and �nd that search demand shocks ex-

plain nearly two-thirds of the variation in output, as well as a majority of the variation in

the Solow residual and capacity utilization. These shocks also have signi�cant e�ects on labor

supply and the relative price of investment. The key parameters governing the transmis-

sion mechanism are well identi�ed. Moreover, the model �ts major sectoral data reasonably

well. Importantly, search demand shocks uniquely generate the observed comovement between

utilization measures and the Solow residual.

Our work addresses a central question in macroeconomics: What fundamentally drives

business cycles? The ongoing debate over the roles of technology and demand shocks is

closely linked to capacity utilization�or economic slack. For example, King and Rebelo (1999)

2A simple static version of our model in Section 4 illustrates both the immediate impact of increased search
e�ort on utilization and the subsequent adjustment of �rm capacity.

3The requirement that goods are found by a shopper creates a wedge between actual and potential output.
The gap stems from omitting consumer search e�ort as an input. In contrast, �rms' search e�ort (i.e.,
advertising) would not contribute to this mismeasurement since these inputs appear in output measures.
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argue that variable factor utilization allows modest technology shocks to produce realistic

cycles, while Hall (1997) emphasizes preference shocks, particularly for explaining labor under-

utilization in recessions. Wen (2006) shows that demand shocks can generate procyclical

investment, and that variable capital utilization reduces the degree of persistence required

for such shocks. More recent studies, such as Sun (2024) and Borys, Doligalski, and Kopiec

(2021), incorporate capacity constraints and frictions in goods and labor markets, �nding that

demand shocks are the primary drivers of business cycles.

Despite the fundamental role of capacity utilization in transmitting shopping e�ort to

observed productivity, its value for identi�cation has been largely overlooked. We address

this by decomposing the growth rate of the Solow residual into contributions from capacity

utilization, technology, and mismeasurement of input shares.4 Speci�cally, the growth rate of

capacity utilization is a weighted sum of the growth rates of shopping e�ort and variable capital

utilization. Incorporating capacity utilization data enables us to identify novel parameters

related to goods market frictions�such as matching technology and the disutility of shopping

e�ort�as well as shocks to shopping disutility.

Following Qiu and Ríos-Rull (2022), we de�ne sectoral capacity utilization in our model

as the ratio of an output index to a capacity index, mirroring the Federal Reserve Board's

empirical approach. This sectoral de�nition is necessary, as capacity utilization is not de�ned

economy-wide�particularly for services. Accordingly, we develop a multisector model in which

the consumption sector comprises nondurable goods and services, while the investment sec-

tor consists of durables. We then map capacity utilization from the model's nondurable and

durable sectors to empirical data, which further disciplines the model with sectoral informa-

tion. The strong comovement in these two utilization series provides a stringent test, akin to

the comovement of labor hours across sectors. Sectoral comovement�a stylized fact under-

pinning the NBER's business cycle de�nition�persists even at a �ne sectoral level (Christiano

and Fitzgerald (1998)), posing a challenge that many models fail to meet. Our framework,

however, successfully captures the volatility, cross-correlation, and autocorrelation of capacity

utilization.

Search-based demand shocks are essential for matching these empirical moments. To our

knowledge, no other dynamic general equilibrium model has disaggregated capacity utilization

4The analytic expression for the Solow residual and its relationship to utilization appears in equation (26) in
Section 5.4. The mismeasurement term arises from incorrectly imposing constant returns to scale and perfectly
competitive labor markets; it vanishes if the production technology is speci�ed correctly. This section also
derives the analytic link between capacity utilization and search e�ort.
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and matched these sectoral patterns. Existing research typically treats capacity utilization as

an aggregate measure and struggles to capture its volatility (e.g., Christiano, Eichenbaum,

and Trabandt (2016); Qiu and Ríos-Rull (2022)).

Our formulation closely follows Bai, Rios-Rull, and Storesletten (2025) (hereafter BRS),

where output depends on �rms' technology, inputs, and their e�ciency in matching with

customers. However, our identi�cation strategy di�ers from that of BRS. For clarity, let ϕ

denote the elasticity of the matching function, and η the elasticity of disutility. BRS calibrate

ϕ and η using cross-sectional price dispersion for identical goods and the elasticity of shopping

time with respect to expenditure, treating shopping time as a proxy for e�ort. They employ

two sets of observables: one uses shopping time from the American Time Use Survey as a

proxy for e�ort, while the other relies on the relative price of investment. Both approaches

also use data on output, investment, and labor productivity.

While leveraging identi�ed micro moments to estimate ϕ and η is generally appealing, using

shopping time as a proxy for e�ort raises two key concerns. First, as BRS note, �uctuations in

shopping e�ort should be interpreted broadly to include changes in match e�ciency, not just

time spent shopping. Second, shopping time may be contaminated by leisure activities�time

spent browsing could re�ect window shopping rather than genuine e�ort. For example, a

stronger desire to �nd a speci�c item may shift behavior from casual browsing to active

searching. Thus, changes in shopping time may re�ect multiple factors. Moreover, even if

these measurement issues could be managed, shopping time data from the American Time

Use Survey are available only annually since 2003.

The model incorporates several features to better match business cycle moments and the

role of demand shocks. First, variable capital intensity with endogenous depreciation sepa-

rates goods market frictions from intensive margin adjustments. Investment adjustment costs

further moderate investment volatility and generate hump-shaped impulse responses. Second,

external habits and limited factor mobility improve persistence and allow technology shocks

to generate positive labor comovement. Third, �xed costs o�er an alternative explanation

for output�productivity comovement and shape the link between capital intensity and ca-

pacity utilization. Finally, we introduce new stochastic processes�wage-markup shocks and

investment-speci�c shopping disutility�which help the model �t sectoral data on hours, uti-

lization, and the relative price of investment. Despite these additions, search-based demand

shocks remain central in the variance decomposition.

The model is speci�ed to avoid favoring demand or technology shocks a priori. The addi-
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tional components help match second moments and allow technology shocks to more �exibly

account for comovement patterns. For example, incorporating external habits and limited

factor mobility into a standard RBC framework enables technology shocks to generate labor

comovement. This addresses the sectoral comovement puzzle of Christiano and Fitzgerald

(1998). Similarly, demand shocks help explain capacity utilization and the Solow residual.

Omitting variable capital utilization would bias results toward search e�ort as the main driver

of capacity utilization �uctuations.

The observables used for Bayesian estimation are demeaned growth rates of consumption,

investment, labor hours in consumption, labor hours in investment, utilization in nondurable

goods, utilization in durable goods, and the relative price of investment to consumption.5

This set extends Katayama and Kim (2018) with the utilization measures but drops aggregate

wages.

Along with standard macroeconomic series and capacity utilization, we include sectoral

labor hours and the relative price of investment to help identify shock transmission. Specif-

ically, we show that the ratio of labor inputs across sectors is closely related to the ratio of

shopping e�ort across sectors.6 In addition, combining sectoral labor hours with output data

requires the model to match sectoral labor productivity. The relative price of investment is

also a key target in a multisector model. In this context, it provides information about capital

intensity through Tobin's Q.

The stochastic processes encompass shocks to the trend in technology, stationary neutral

technology, investment-speci�c technology, neutral shopping e�ort cost, investment-speci�c

shopping e�ort cost, discount-factor, and wage markups.7 The wage markup shocks capture

unexpected spreads between the marginal product of labor and the wage paid by �rms, serving

as a proxy for changes in labor market conditions and bargaining power. The model's compo-

nents and shock structure build on the framework introduced by BRS, while integrating key

elements from Schmitt-Grohé and Uribe (2012) and Katayama and Kim (2018).

While our work is most closely related to Bai, Rios-Rull, and Storesletten (2025), it is also

inspired by Michaillat and Saez (2015), who highlight the impact of aggregate demand on

unemployment and idle time through goods market frictions. Like our approach, they treat

5BRS also estimate an extension with variable capital intensity using the same series as the baseline. By
contrast, we incorporate data on sectoral capacity utilization.

6The precise relationship is given by Equation (20).
7The discount-factor shock a�ects the consumption Euler equation, similarly to the risk-premium shock in

Smets and Wouters (2007). However, unlike the latter, it does not mechanically help explain the comovement
of consumption and investment.
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economic operation rates and their business cycle comovement as fundamental outcomes,

though they model matching costs as expenditures rather than e�ort. In Online Appendix

G, we compare both speci�cations. Although the core transmission mechanism is unchanged,

the labor share of income�which is key for the Solow residual�di�ers between them. Ghas-

sibe and Zanetti (2022) apply this framework to show that the e�ectiveness of �scal policy

depends on whether �uctuations are supply- or demand-driven. Borys, Doligalski, and Kopiec

(2021) extend the model to a dynamic, stochastic setting, estimating demand and technology

shocks using unemployment and labor productivity data; they �nd demand shocks explain

most data variability, especially with endogenous job separation. While their model allows

capacity utilization to vary only under �xed prices, ours produces signi�cant variation in ca-

pacity utilization under competitive search. Additionally, we estimate a richer model with

endogenous capital intensity and investment, disciplined by a broader dataset that includes

capacity utilization.

Section 2 reviews key facts on capacity utilization and sectoral comovement, placing it in

the context of related empirical measures. Section 3 presents the model. Section 4 illustrates

the impact of demand shocks on utilization and the Solow residual in a static setting. Section 5

characterizes equilibrium and decomposes Solow residual growth. Section 6 estimates the full

model and highlights the role of goods market frictions and shocks. This section also presents

the variance decomposition, investigates the contribution of di�erent ingredients, and plots

impulse responses. Section 7 concludes. The appendices detail data, derivations, calibration,

identi�cation, and supporting estimation exercises. Time indices are sometimes omitted for

clarity.

2. Background and stylized facts on utilization and sectoral comovement

The Federal Reserve Board constructs total capacity utilization as the ratio of an output

index to a capacity index for manufacturing, mining, and electric and gas utilities. This

measure of capacity aims to quantify a plant's maximum sustainable output given its resource

constraints. Here, 'sustainable output' refers to the greatest level of output each plant can

maintain, given a realistic work schedule and normal downtime. Though subject to some

de�nitional ambiguity, capacity utilization has, in practice, performed well as a measure of

economic slack and as a predictor of short-to-medium-term in�ation (Corrado and Mattey,

1997).

This measure covers 89 detailed industries (71 in manufacturing, 16 in mining, and 2 in
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utilities).8 These industries primarily correspond to the 3- or 4-digit North American Industry

Classi�cation System (NAICS) codes. Importantly, estimates are available for both durable

and nondurable goods. In manufacturing, most capacity indices are based on responses to

the Census Bureau's Quarterly Survey of Plant Capacity. The survey is conducted quarterly

at the establishment level. Prior to 2007, it was conducted annually, so it was necessary

to interpolate measures of capacity. The probability that each establishment is selected is

proportional to the value of shipments within each industry.

An alternative measure of capacity utilization can be derived using the utilization-adjusted

Solow residual developed by Fernald (2014). However, unlike Fernald's measure, the total

capacity utilization metric accommodates non-constant returns to scale, pro�ts, and �xed

costs. This �exibility is advantageous, as goods market frictions and competitive search models

typically imply decreasing returns to scale, and �xed costs provide a realistic link between

output and productivity.

We decompose total capacity utilization into subcomponents for nondurables and durables.

Figure 1 compares cyclical capacity utilization in durables and nondurables alongside real

output and a Fernald-based utilization measure, which we construct as the di�erence between

cyclical TFP and the utilization-adjusted counterpart from Fernald (2014). The capacity

utilization series comove closely with each other and with the Fernald measure, and all are

procyclical. Notably, total capacity utilization in durables exhibits greater volatility.

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

20

10

0

10

%

Total capacity utilization: durables
Total capacity utilization: nondurables
Fernald utilization measure
Real output (consumption plus investment)

Figure 1: Total capacity utilization in non-durable and durable goods and output, here de�ned as consumption
plus investment. Each underlying series is detrended via the Hamilton regression �lter with the four most
recent observations 8 quarters in the past (p = 4, h = 8).

Lastly, we examine business cycle statistics of the sectoral and utilization data. Table 1

8The methodology underlying the Survey of Plant Capacity is available from https://www.census.gov/

programs-surveys/qpc/technical-documentation/methodology.html.
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presents the second moments of the series expressed in growth rates from 1964Q1-2019Q4. The

use of growth rates aligns with the treatment of data in estimation, a standard practice since

Smets and Wouters (2007), and eases comparison with other studies. Hours are constructed

using the BLS Current Employment Statistics, following Katayama and Kim (2018). The

data appendix provides details, and Figure B.10 shows the detrended time series of hours

in each sector alongside the aggregate measure. Following BRS, we de�ne output as the

sum of consumption and investment, consistent with our model framework. The �ndings

indicate a strong correlation of 0.87 between labor hours across sectors, and a moderate

correlation of 0.54 between consumption and investment. Each utilization measure also has

robust comovement with investment and labor hours in investment. Additionally, all series

exhibit signi�cant autocorrelation, except for labor productivity. Notably, investment, labor

hours in investment, and utilization in durables display substantial volatility compared to

consumption, labor hours in consumption, and utilization in nondurables.

SD(x) STD(x)/STD(Y ) Cor(x, I) Cor(x, ni) Cor(x, x−1)

Y 0.87 1.00 0.94 0.70 0.47

C 0.44 0.51 0.54 0.44 0.48

I 2.14 2.46 1.00 0.73 0.41

nc 0.57 0.66 0.66 0.87 0.67

ni 1.94 2.23 0.73 1.00 0.64

Y/n 0.64 0.73 0.36 -0.28 0.10

pi 0.51 0.58 -0.28 -0.22 0.44

utilD 2.27 2.61 0.69 0.84 0.55

utilND 1.26 1.45 0.61 0.65 0.51

Table 1: Time range: 1964Q1− 2019Q4. Each underlying series is expressed in 100 quarterly log deviations.
Here output is de�ned as the sum of consumption and investment. We use the symbols Y for output, C for
consumption, I for investment, nc for labor supply, in consumption, ni for labor supply in investment, Y/n for
labor productivity, pi for the relative price of investment, and utilD and utilND for the utilization of durables
and nondurables, respectively. Appendix B describes the construction of variables in detail.

Researchers have used various methods to measure capacity utilization across countries.

Online Appendix H summarizes indicators conceptually aligned with the Federal Reserve

Board's measure for several economies, though alternative approaches are also common. For

example, Tang andWang (2023), following Fernald (2014), uses a cost-minimization framework

with both variable and quasi-�xed inputs to construct a utilization measure for Canada�an
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approach that also extends to the service sector.9 The World Bank's Enterprise Surveys

provide another resource, compiling data from over 135,000 �rms in 111 mostly emerging

economies, based on interviews with business owners and managers. Using this dataset, Goel

and Nelson (2021) show that factors such as water shortages, severe electricity constraints, and

corruption signi�cantly limit �rms' capacity utilization, with notable variation by �rm size,

age, ownership, and managerial experience. While valuable for cross-country comparisons,

this dataset generally lacks the time series dimension needed for analyzing business cycle

�uctuations.

3. Model environment

3.1. Technology and markets

There is a unit mass of households and a unit mass of �rms in each production sector. There

are three sectors: two for consumption (goods mc and services sc), and one for investment

(i). Each sector j produces output using capital and labor, with capital utilized at a rate

hj. Production in each sector involves a �xed cost νj, which is proportional to the stochastic

trend X to ensure that the �xed cost share of output remains stationary along the balanced

growth path.10

The economy grows with a stochastic trend X such that its growth rate gt = Xt/Xt−1 is

a stationary process with steady state g. The production technology in sector j is given by

Fj = zjf(hjkj, nj)− νjX, j ∈ {mc, sc, i} (1)

f(hk, n) = (hk)αknαnX1−αk

Formulation (1) says that Fj is the remaining output available to be sold after taking into

account dissipation from �xed costs. Higher utilization of capital raises depreciation according

to an increasing and convex function δ(·). We assume the form

δj(h) = δK + σb(h− 1) +
σajσb

2
(h− 1)2, j ∈ {mc, sc, i}, σac ≡ σamc = σasc

where δK is an exogenous depreciation rate, σb is the marginal cost of utilization at h = 1, and

σaj = (1)δjhh(1)/δ
j
h(1) is the elasticity of the marginal utilization cost at the steady state. As

9However, our method does not assume price-taking in input and output markets�an important distinction
given the competitive search environment�and explicitly incorporates goods market frictions.

10By `�xed' we mean that the cost does not vary with the choices of inputs.
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δj(1) = δK , δK is the economy-wide steady-state depreciation rate of capital. Alternatively,

1/σaj is the sector j elasticity of capital utilization with respect to the rental rate. The

parameterization of σb ensures that the capital utilization rate is unity (h = 1) in all sectors.

For parsimony, we also restrict the depreciation function to be the same within each subsector

of consumption.

Investment is sector-speci�c and subject to both endogenous depreciation and quadratic

adjustment costs as in Christiano, Eichenbaum, and Evans (2005):

k′
j = (1− δj(hj))kj + [1− S(ij/ij,−1)]ij, j ∈ {mc, sc, i}

S(x) =
ΨK

2
(x− 1)2

so that aggregate investment is i = imc + isc + ii. We also use a common adjustment term ΨK

for parsimony.11

In the spirit of Moen (1997), there is a competitive search protocol in which each submarket

is indexed by price, market tightness, and potential output (p, q, F ). The measure of matches

in each submarket is given by a constant returns to scale matching function

Mj(D,T ) = AjD
ϕT 1−ϕ, 0 < ϕ < 1, j ∈ {mc, sc, i} (2)

where D is aggregate shopping (search) e�ort, T is the measure of �rms, and Aj is sector-

speci�c matching e�ciency. Market tightness is de�ned as search e�ort per �rm location,

q = D/T . We set T = 1, so that D measures market tightness. The probability that a unit

of shopping e�ort is matched with a �rm is Ψjd = AjD
ϕ−1 and the probability that a �rm

location matches with a customer is ΨjT = AjD
ϕ.

Once a match is formed, goods are traded at the posted price pj. A household exerting

search dj purchases a real quantity of goods given by

yj = djΨjd(D)Fj, j ∈ {mc, sc, i}

3.2. Households and �rms

Households have preferences over search e�ort, consumption, and a labor composite fol-

lowing Bai, Rios-Rull, and Storesletten (2025). However, we also accommodate external habit

11We have also estimated the model with sector-speci�c investment adjustment cost functions and have not
found signi�cant di�erences in the results.
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formation, which is important to �t the data. Letting θ = (θd, θn, θi) be a vector of preference

shifters, household utility is given by

u(c, d, na,θ) =
Γ1−σ − 1

1− σ
(3)

where Γ is a composite variable

Γ = c− haC−1 − θd
d1+1/η

1 + 1/η
− θn

(na)1+1/ζ

1 + 1/ζ

where C is aggregate consumption, ha is habit stock, and d = dmc + dsc + θidi is total

search e�ort. Thus, θi is an exogenous wedge in the search cost of investment goods relative

to consumption goods. The parameter η is the elasticity of shopping e�ort, and ζ is the Frisch

elasticity of labor supply.

Household consumption is a constant-elasticity-of-substitution aggregator of a bundle of

goods ymc and services ysc with the associated price index:

c = [ω1−ρc
mc yρcmc + ω1−ρc

sc yρcsc ]
1/ρc (4)

pc =
(
ωmcp

−ρc/(1−ρc)
mc + ωscp

−ρc/(1−ρc)
sc

)− 1−ρc
ρc

such that ωmc + ωsc = 1 and the elasticity of substitution is given by ξ = 1/(1 − ρc). Thus,

pmc/pc and psc/pc are the relative prices of nondurables and services to consumption overall.

Households have preferences over the composition of labor they supply across sectors,

following Horvath (2000) and Katayama and Kim (2018). Speci�cally, the labor composite na

is

na =
[
ω−εn1+ε

c + (1− ω)−εn1+ε
i

] 1
1+ε (5)

where elasticity of substitution 1/ε measures intersectoral labor mobility. In the limiting case

as ε → 0, the marginal rate of substitution becomes in�nite and labor is perfectly mobile:

na = nc + ni = n.

A representative �rm in sector j ∈ {mc, sc, i} o�ers market bundle (pj, Dj, Fj) and employs

capital at rental rate Rj and labor at wageWj in competitive spot markets to maximize pro�ts.

We introduce exogenous time-varying wage markups following the approach by Schmitt-Grohé

and Uribe (2012), where a continuum of monopolistically competitive labor unions in each

sector sell di�erentiated labor services.
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Figure 2 summarizes the timing of the economy. First, aggregate shocks occur at the

beginning of each period. Second, in each sector j, �rms post submarket o�ers (pj, Dj, Fj).

Third, given the submarket choices, households choose shopping e�ort, consumption, labor

supply, and capital utilization. Firms simultaneously hire labor in a competitive spot market,

which determines the wage. Fourth, matching takes place, and matched �rms produce and

sell. Fifth, the capital stock is updated in each sector, re�ecting investment adjustment costs

and endogenous depreciation.

Aggregate shocks occur

Firms post submarkets

(pj, Dj, Fj)

HH choose shopping, consumption

labor supply, capital, utilization

Firms hire labor/capital

Wage/Rental rate determined

Matching

Matched �rms produce and sell

Capital stock is updated

t t+ 1

Figure 2: Timing

4. Demand shocks and the role of capacity utilization in a static setting

We �rst highlight the productive role of demand and show that capacity utilization data

can be used to discipline the key parameters underlying transmission. Consider the baseline

model by Bai, Rios-Rull, and Storesletten (2025). This formulation is a special case of our

general environment without habit formation (ha = 0); perfectly mobile labor (ε = 0); a

single consumption sector (ρc → 1); no �xed costs in production (νj = 0 for all j); �xed

capital intensity (σb → ∞); and no investment adjustment costs (ΨK = 0). In addition to

demonstrating the importance of using capacity utilization data, we also show that sectoral

comovement patterns, besides being important business cycle moments in their own right,

inform the transmission of demand shocks in our environment.

To show how demand shocks can in�uence measured productivity, �rst consider a static

version of BRS. The consumption good is produced using only labor (αk → 0), so that (3.1)

is simply f(n) = nαn . A household who shops in submarket (p,D, F ) chooses consumption,

search e�ort, and labor supply in order to maximize their period utility:

V̂ (p,D, F ) = max
d,c,n

u(c, d, n,θ)

s.t. c ≤ dΨd(D)F

pc ≤ nW
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Let V = maxp,D,F V̂ (p,D, F ) be the value of the best submarket. Firms must provide

households with value V to ensure their participation. The value V is an equilibrium object

but is taken as given by �rms. A �rm chooses which market bundle (p,D, F ) to o�er and the

amount of labor n to employ to maximize period pro�ts:

max
p,D,F,n

pΨT (D)F −Wn

s.t. V̂ (p,D, F ) ≥ V

znαn ≥ F

Applying matching function (2), preferences (3), and aggregating shows that an equilibrium

can be characterized as a tuple (C,D,W, n) satisfying optimal shopping, consistency of output,

labor supply, and labor demand:

θdD
1
η = ϕ

C

D
(6)

C = ADϕznαn (7)

(1− ϕ)W = αn
C

n
(8)

θnN
1
ζ = (1− ϕ)W (9)

The GHH structure of preferences between consumption and shopping e�ort in (3) implies that

the marginal rate of substitution is an increasing function of shopping e�ort: −ud/uc = θdd
1/η.

Equation (6) equates this marginal rate of substitution to the new matches induced by greater

shopping e�ort�the product of ∂M/∂D = ϕΨd and �rm capacity F , which simpli�es to

ϕC/D. Equation (8) is a standard labor demand condition which equates the cost of labor

to its value marginal product. Here the marginal product includes the probability of a �rm

�nding a customer, ΨT zf
′(n) = zαnn

αn−1ADϕ, so that labor demand is increasing in aggregate

search e�ort. Equation (9) is a GHH labor supply condition: the marginal rate of substitution

between consumption and labor, −un/ud = θnn
1/ζ equals the wage rate scaled by (1 − ϕ).

Moreover, the cost of labor is scaled by (1− ϕ). This feature arises from competitive search:

increased output relaxes the household's participation constraint and thereby e�ectively lowers

the input cost for the �rm.

The labor share of income is τ ≡ Wn/C = αn/(1−ϕ) using (8). Hence, the Solow residual

is

SR ≡ C/nτ = ADϕznαn−τ = ADϕzn−αnϕ/(1−ϕ)
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Total factor productivity thus depends on technology, shopping e�ort, and mismeasurement of

labor component. Capacity utilization is de�ned as the ratio of actual output (7) to capacity

F :

util ≡ C/F = ADϕ (10)

Capacity utilization (10) measures how far realized output is from potential output. In the

absence of any shocks to matching e�ciency, the growth rate of capacity utilization is simply

shopping e�ort scaled by the matching elasticity ϕ.

Figure 3 depicts the equilibrium using two graphs. The �gure on the right shows the deter-

mination of search e�ort and consumption, for a given level of capacity F , as the intersection

between (6) and (7). The �gure on the left illustrates the determination of hours and wages,

given consumption C, as the intersection between (8) and (9).

Figure 3: Equilibrium of static model

Now, let us consider a negative shock to the shopping disutility θd (Figure 4). The marginal

cost of exerting shopping e�ort falls, inducing households to shop more intensely, represented

by the shopping curve shifting rightward. More shopping e�ort increases �rms' matching rate

and therefore boosts total production. This e�ect constitutes movement along the consump-

tion curve from point 1 to point 2. To satisfy higher production levels, �rms demand more

workers, shifting the labor demand curve rightward and boosting labor hours and wages. Fi-

nally, more labor hours expands the productive capacity of �rms, so the consumption curve

shifts upward. This higher capacity further spurs shopping e�ort, represented by movement

along the shopping curve from point 2 to point 3. The Solow residual therefore re�ects both

the initial increase in shopping e�ort from the demand shock followed by a further increase

in shopping e�ort as households respond to increased capacity of �rms. However, the rise of

the Solow residual is slightly dampened by the mismeasurement of input shares. Notice that
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the demand shock to θd induces positive comovement across all variables in the economy and

therefore resembles a standard technology shock to z.

1

1

2 3

3

Figure 4: Reduction of shopping disutility in static model

Similarly, we examine the impact of a fall in labor disutility θn. This shocks shifts the

labor supply curve rightward and increases capacity. The consumption curve shifts rightward

and triggers a movement along the shopping curve, as before.12

Appendix C builds on this simple setting by estimating a dynamic version with capital

accumulation. The exercise follows Guerron-Quintana (2010), who investigates how observable

variable selection a�ects estimated parameters in a rich New Keynesian model. We use the

same dataset as BRS, other than shopping time, and estimate ϕ and η directly. We �nd

that the posterior 90% probability band of ϕ ranges from 0.00 to 0.21, and the importance of

shopping-disutility shocks in the variance decomposition drops signi�cantly relative to BRS.

Next, we estimate the same model but include capacity utilization as an observable series.

Remarkably, the posterior probability band of ϕ changes to (0.86, 0.91), and the contribution

of demand shocks to the variance decomposition rises dramatically. Additionally, the stan-

dard deviation of capacity utilization increases ten-fold in this case compared to the former,

aligning with empirical values. Second, we show that the estimated model generates sectoral

comovement of labor and output consistent with the data, in contrast to a standard two-sector

RBC model driven solely by technology shocks.

12In Online Appendix G, we also examine equilibrium in a static setting in which matching costs arise
from expenditure à la Michaillat and Saez (2015). The causal e�ect of demand on output and productivity is
essentially the same, but the labor share of income is αn. Hence, there is no input share mismeasurement in
the Solow residual.
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5. Equilibrium

5.1. Households

Let (p,D, F ) = {(pj, Dj, Fj)|j ∈ {mc, sc, i}} be the set of submarkets available to a house-

hold. Let Λ be the aggregate state and let V̂ (Λ, kmc, ksc, ki, p,D, F ) be the value of the house-

hold conditional on these submarkets. Letting Φ be the set of available submarkets, then

the value function is determined by the best combination of submarkets: V (Λ, kmc, ksc, ki) =

max{p,D,F}∈Φ V̂ (Λ, kmc, ksc, ki, p,D, F ). The household chooses search e�ort, labor hours, con-

sumption, future capital, and utilization rates to solve:

V̂ (Λ, kmc, ksc, ki, p,D, F ) = max
dj ,nc,ni,yj ,ij ,k′j ,h

′
j

u(ymc, ysc, d, n
a,θ) + βθbE{V (Λ′, k′

mc, k
′
sc, k

′
i)|Λ}

s.t. yj = djAjD
ϕ−1
j Fj, j ∈ {mc, sc, i}∑

j

yjpj = π +
∑

j∈{mc,sc,i}

kjhjRj + ncW
∗
c + niW

∗
i

k′
j = (1− δj(hj))kj + [1− S(ij/ij,−1)]ij, j ∈ {mc, sc, i}

and the consumption and labor aggregators (4) and (5).

Appendix D derives each step of the household and �rm problem. Here we focus on central

and innovative features of equilibrium. Under goods market frictions, households trade o� the

marginal disutility of shopping with the marginal bene�t of consumption and investment:

−ud = ujϕAjD
ϕ−1
j Fj j ∈ {mc, sc} (11)

−udθi =
umcpi
pmc

ϕAiD
ϕ−1
i Fi (12)

Equation(11) gives optimal shopping in each consumption subsector. The friction creates a

wedge between marginal utility and price, which depends only on ϕ:

uj

λpj
=

1

1− ϕ
⇒ umc

pmc

=
usc

psc
(13)

where λ is the marginal utility of wealth. Multiplying the price by λ converts it into units of

utility. Equivalently, ϕ = (uj − λpj)/uj.

Recall from GHH preferences that −ud/uj = θdd
1/η is an increasing function of shopping

e�ort alone. Combining this with equation (11), we conclude that households increase their

shopping e�ort in response to higher �rm capacity and matching probability, as well as a

lower disutility of shopping e�ort. The condition for investment goods in equation (12) is
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similar, but with the marginal disutility adjusted by θi and the value of output computed in

consumption units, accounting for the relative price.

Given (5), households optimally divide their labor hours between consumption and invest-

ment sectors:

nc

ni

=
ω

1− ω

(
W ∗

c

W ∗
i

)1/ε

so that 1/ε is the elasticity of substitution.

Taking the �rst order condition with respect to ymc and ysc and combining it with (4), we

derive the demand curves for nondurables and services

yj = p−ξ
j ωjC j ∈ {mc, sc} (14)

where ξ = 1/(1−ρc) represents the elasticity of substitution. By using (14) together with (13),

we �nd that λ = Γ−σ(1−ϕ). Here, the term Γ−σ captures the direct in�uence from the marginal

utility of consumption, while the goods market frictions introduce a wedge represented by ϕ.

Furthermore, the ratio of (11) and (12) provides insight into the relative price of investment:

pi
pj

= θi
Aj

Ai

(
Dj

Di

)ϕ−1
zj
zi

f(hjkj, nj)− νjX

f(hiki, ni)− νiX
(15)

If the price pi increases compared to pj, with capacity held constant, it implies that invest-

ment goods become more valuable in terms of consumption, leading to an increase in Di/Dj.

Additionally, equation (15) re�ects the typical mechanism where an increase in investment

capacity results in a decrease in the relative price pi/pj.

5.2. Firms and labor unions

A representative �rm in sector j ∈ {mc, sc, i} rents capital and hires labor in spot markets.

We introduce exogenous time-varying wage markups following the approach by Schmitt-Grohé

and Uribe (2012). A continuum of monopolistically competitive labor unions in sector j

sell di�erentiated services, indexed by type s. The �rm chooses inputs and market bundle

(pj, Dj, Fj) to maximize pro�ts given the household participation constraint, technology, and

di�erentiated labor. The problem is

max
kj ,nj ,pj ,Dj ,Fj

pjAjD
ϕ
j Fj −

∫ 1

0

Wj(s)nj(s)ds−Rjhjkj
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s.t. V̂ (Λ, kmc, ksc, ki, pj, Dj, Fj) ≥ V (Λ, kmc, ksc, ki)

zjf(hjkj, nj)− νjX ≥ Fj

nj =

(∫ 1

0

nj(s)
1/µjds

)µj

The conditional demand for labor type s in sector j and corresponding wage index are

nj(s) =

(
Wj(s)

Wj

)−
µj

µj−1

nj, Wj =

[∫ 1

0

wj(s)
1/(1−µj)ds

]1−µj

The labor union charges the �rm a wage Wj(s) and pays W ∗
j to its members. It maximizes

earnings subject to the conditional labor demand of the �rm. The problem of the union is

thus

max
Wj(s)

(Wj(s)−W ∗
j )

(
Wj(s)

Wj

)−
µj

µj−1

nj (16)

The solution to (16) is Wj(s) = µjW
∗
j . Within sector j, labor unions pay the same wage and

�rms choose identical quantities of labor within j: Wj(s) = Wj, nj(s) = nj for all s. Labor

unions provide additional earnings to households in the form of a wage rebate. Consequently,

Wj(s)−W ∗
j = (µj − 1)W ∗

j represents a �xed component of the wage from the perspective of

workers.13

The factor demand curves for the �rm are

(1− ϕ)
Wj

pj
= αn

AjD
ϕ
j zjf(hjkj, nj)

nj

j ∈ {mc, sc, i} Wmc = Wsc (17)

(1− ϕ)
Rj

pj
= αk

AjD
ϕ
j zjf(hjkj, nj)

hjkj
j ∈ {mc, sc, i} (18)

To provide an alternative characterization of the relative price of investment, we take the

ratio of (17) for sectors i and j ∈ {mc, sc}:

pi
pj

=
niWi

njWj

Aj

Ai

(
Dj

Di

)ϕ
zjf(hjkj, nj)

zif(hiki, ni)
(19)

When Dj/Di increases, while holding inputs and technology constant, it becomes easier

13Labor unions here are a mechanism here designed entirely for the bene�t of workers. Thus, the earnings
rebated to the workers count as labor income, which matters for the mapping between model and data. Note
that wages remain �exible even though there is market power in wage setting.
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to sell nondurables or services to customers, resulting in an increase in pi/pj. Equation (19)

also takes into account the standard relationship where pi/pj decreases as investment-speci�c

technology zi/zj rises.

Relationships (15) and (19) represent distinct curves that connect the relative price of in-

vestment pi/pj to relative shopping e�ort Di/Dj. However, a direct comparison is complicated

by the fact that �xed costs are present in (15) but not in (19). In the case of zero �xed costs,

mutual consistency requires the following relationship:

Di

Dj

=
1

θi

niWi

njWj

(20)

Relative shopping e�ort is determined by relative labor income and the variation in shop-

ping disutility. Over the business cycle, the degree of sectoral comovement in�uences ni/nj

and thus provides information about relative shopping e�ort. However, compared with (C.1),

in which the ratios of shopping e�ort and labor supply perfectly coincide, (20) is signi�cantly

more �exible. Limited factor mobility and wage markup shocks allow for additional �uctua-

tions in relative wages, and the exogenous wedge θi also helps explain �uctuations in relative

shopping e�ort.

The �nal three equilibrium conditions encompass Tobin's Q, optimal capital utilization,

and Euler equations pertaining to the selection of future capital. These conditions incorporate

investment adjustment costs and depreciation resulting from capital utilization:

pi
1− ϕ

= Qj[1− S ′(xj)xj − S(xj)] + βθbE
λ′

λ
Q′

jS
′(x′

j)(x
′
j)

2 j ∈ {mc, sc, i}

δjh(hj)Qj = Rj j ∈ {mc, sc, i}

Qj = βθbE
λ′

λ

[
(1− δj(h′

j))Q
′
j +R′

jh
′
j

]
j ∈ {mc, sc, i}

The variable Qj represents the relative price of capital in sector j in terms of consumption.

The presence of investment adjustment costs introduces a disparity between Qj and pi/(1 −
ϕ). Households determine the level of utilization such that the value of depreciated capital,

δh(hj)Qj, is equal to the marginal product of capital, Rj. Finally, households choose the

capital level that equates the marginal cost of foregone consumption Qj to the anticipated

discounted return. The expected return comprises the marginal product of capital in addition

to the value of undepreciated capital, and the stochastic discount factor βθbEλ′/λ transforms

returns into current marginal utility.
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5.3. Inducing stationarity

The speci�cation of technology (1) implies that output, consumption, wages, and capital

have the same stochastic trend as technology Xt, characterized by the gross growth rate

gt = Xt/Xt−1. The next section shows that the trend growth rate of the Solow residual is gτt ,

given labor share τ . Preferences regarding labor supply imply zero long-run wealth e�ects and

hence ensure its stationarity. We also adjust GHH preference weights to ensure stationarity

of shopping e�ort. To analyze �uctuations around trend, we detrend all variables (except the

Solow residual and capital) by dividing by Xt. Capital is instead divided by Xt−1 to preserve

its predetermined status, while the Solow residual is detrended by Xτ
t .

5.4. The sector-speci�c Solow residual and capacity utilization

We construct the Solow residual for a speci�c sector in the model and relate it to capacity

utilization and other structurally interesting components. Begin by expressing sectoral output

as follows:

Yjt = AjD
ϕ
jt(zjth

αk
jt X

1−αk
t kαk

jt n
αn
jt − νjXt)

Let νR
j = νjX/Fj be the �xed cost share of capacity. Then note that νjX/(zjf(hjkj, nj)) =

νR
j /(1 + νR

j ), so that

Yjt =
AjD

ϕ
j (zjth

αk
jt X

1−αk
t kαk

jt n
αn
jt )

1 + νR
jt

Fernald (2014) constructs the sectoral Solow residual under the assumptions of constant re-

turns to scale Cobb-Douglas technology in capital and labor, no �xed costs, and perfectly

competitive factor markets. Analogously, de�ne the Solow residual in sector j as

SRjt ≡
Yjt

k1−τ
jt nτ

jt

=
AjD

ϕ
jt(zjth

αk
jt X

1−αk
t kαk−1+τ

jt nαn−τ
jt )

1 + νR
jt

(21)

where τ represents the steady-state labor income share. To express (21) in terms of growth

rates, we introduce the symbol dxt = ∆ log xt and rewrite as

dSRjt = ϕdDjt + dzjt + αkdhjt + (1− αk)dXt + (αk − 1 + τ)dkjt (22)

+ (αn − τ)dnjt − d(1 + νR
jt)
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From (22) we note that the trend net growth rate of the Solow residual is

(1− αk)dXt + (αk − 1 + τ)dXt = τ log gt

which implies that the Solow residual grows at the rate of output multiplied by the labor share

of income τ . By introducing the log deviation ν̃R
j = log(νR

j /ν
R
ss), we can rewrite (22) as14:

dSRjt = ϕdDjt + dzjt + αkdhjt + (1− αk)dXt + (αk − 1 + τ)dkjt + (αn − τ)dnjt −
νR
ss

1 + νR
ss

∆ν̃R
jt

(23)

Expression (23) decomposes the growth rate of the Solow residual into structural forces. It

comprises a demand component ϕdDjt, a capital utilization component αkdhjt, a technology

component dzjt + (1−αk)dXt, an input share mismeasurement component (αk − 1+ τ)dkjt +

(αn − τ)dnjt, and a change in the �xed cost share component [νR
ss/(1 + νR

ss)]∆ν̃R
jt. The �rst

component re�ects the direct e�ect of goods market frictions, and there is also a general

equilibrium feedback between higher shopping e�ort and the other components. Additionally,

the calibration strategy establishes a relationship between the coe�cients αk and αn in relation

to ϕ. It is worth noting that the growth rate of cyclical labor productivity d(Yjt/njt) has the

same expression as (23), except that τ is replaced by 1. Therefore, d(Yjt/njt) = dSRjt + (1−
τ)(dkjt − dnjt). In general, we �nd that the Solow residual and labor productivity behave

similarly in cyclical terms, and choose to emphasize the former because of its signi�cance in

the literature.

We next turn to capacity utilization and relate it to the Solow residual. Following Qiu and

Ríos-Rull (2022), we de�ne capacity in sector j as

capj = zjk
αk
j nαn

j X1−αk − νjX

Consistent with the de�nition from the Federal Reserve Board, capacity utilization in sector

14Calculate

log(1 + νRj ) ≈ log(1 + νRss) +
1

1 + νRss
(νRjt − νRss) ≈ log(1 + νRss) +

νRss
1 + νRss

ν̃Rjt

Hence, d(1 + νRjt) = ∆ log(1 + νRjt) ≈
νR
ss

1+νR
ss
∆ν̃Rjt
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j is the ratio of output to capacity:

utiljt ≡
Yjt

capjt
=

AjD
ϕ
jt(zjth

αk
jt X

1−αk
t kαk

jt n
αn
jt − νjtXt)

zjtk
αk
jt n

αn
jt X

1−αk
t − νjtXt

(24)

=
AjD

ϕ
jt(zjth

αk
jt (kjt/Xt)

αknαn
jt − νjt)

zjt(kjt/Xt)αknαn
jt − νjt

Capacity utilization is stationary since kj grows at the same rate g as X on the balanced

growth path. Expressing (24) in growth rates yields

dutiljt = ϕdDjt + (1 + νR
ss)αkdhjt (25)

The growth rate of utilization equals that of shopping e�ort scaled by ϕ and capital uti-

lization scaled by (1 + νR
ss)αk. Therefore, higher �xed costs amplify the weight of capital

utilization relative to shopping e�ort.

By comparing (25) and (23), we see that shopping e�ort enters with the same weight ϕ but

that the weight of capital utilization di�ers due to the presence of �xed costs. In the special

case of zero �xed costs, the Solow residual growth rate simpli�es to the sum of growth rates

of utilization, technology, and mismeasurement of input shares:

dSRjt|νj=0 = dutiljt + dzjt + (1− αk)dXt + (αk − 1 + τ)dkjt + (αn − τ)dnjt (26)

Our sectoral de�nition of the Solow residual, following the methodology outlined by Fernald

(2014), mitigates composition bias that may arise from employing an aggregate production

technology. Furthermore, it aligns sensibly with the FRB measure of capacity utilization,

which applies to speci�c industries.

We de�ne the aggregate Solow residual and capacity utilization as the output-weighted

average of sectoral values:

SR =
∏
j

SR

(
Yj
Y

)
j , util =

∏
j

util

(
Yj
Y

)
j (27)

Applying logs and �rst di�erencing to (27) immediately implies

dSR =
∑
j

Yj

Y
dSRj, dutil =

∑
j

Yj

Y
dutilj
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Using the geometric average in (27) enables us to express the average growth rate as the

weighted average of sectoral growth rates exactly, whereas it is an approximation in the case

of the arithmetic average. Hence, we can quantify the proportion of Solow residual variance

explained by the utilization component, V ar(dutil)/V ar(dSR).

We have discussed the Solow residual and capacity utilization in terms of growth rates to

facilitate comparison with empirical practice (e.g., Fernald (2014)) and to maintain consistency

with the form of variables used in the observation equations and for business cycle statistics.

In Appendix F, we provide a similar comparison between the cyclical deviations of the Solow

residual and capacity utilization.

6. Main quantitative analysis

We now describe the stochastic processes of the model and estimate it using Bayesian

techniques.

6.1. Stochastic processes

The growth rate of the stochastic trend gt = Xt/Xt−1 follows an AR(1) process in logs, as

in Bai, Rios-Rull, and Storesletten (2025):

log gt = (1− ρg) log g + ρg log gt−1 + eg,t

where eg,t ∼ N(0, σg). Here, logXt.

We also consider a stationary neutral shock zc and an investment-speci�c shock zi. We let

zi ≡ zczI where zI is independent of zc. Finally, there are disturbances to general shopping

disutility θd, investment-speci�c shopping disutility θi, the discount factor θb, labor supply θn,

and wage markups µc and µi. We do not include consumption preference shocks because they

can be replicated by sequences of labor supply, shopping disutility, and discount-factor shocks.

Note that nondurables and services are subject to the same technology shocks.

Each stationary shock in the set v = {θb, θd, θn, θi, zc, zI , µc, µi} follows an AR(1) process:

log vt = ρv log vt−1 + ev,t, ev,t ∼ N(0, σv)

6.2. Bayesian estimation

The Bayesian framework enables us to incorporate prior information�such as microeco-

nomic evidence�quantify parameter uncertainty, decompose the forecast error variance at-

tributable to each shock, and compare model �t through the marginal likelihood. Notably,
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the marginal likelihood automatically penalizes unnecessary parameter complexity: expand-

ing the parameter space without improving model �t dilutes the prior probability assigned to

e�ective parameter values, thereby reducing the marginal likelihood.

Along these lines, we estimate the general model using Bayesian techniques with quarterly

data from 1964Q1 to 2019Q4. The likelihood of the data sample Y given the estimated

parameters Θ is denoted as L(Y|Θ). By incorporating the prior parameter distribution P (Θ),

the posterior density is proportional to L(Y|Θ)P (Θ). We employ the random walk Metropolis-

Hastings algorithm, which is standard practice for drawing from the posterior distribution of

Θ. To sample the posterior distribution, we draw more than 1 million parameter sets and

discard the �rst 30% as burn-in. We use the mode of the posterior distribution as the initial

value for the chain and the Hessian as the proposal covariance matrix.

We use the following observables expressed in growth rates: consumption C, investment

I, labor hours nc and ni, sectoral utilization utilND and utilD, and the relative price of

investment pi. This dataset is similar to Katayama and Kim (2018), but we include the

utilization variables and exclude wages. Formally, the vector of observables Yt is

Yt =
[
dCt dIt dnct dnit dutilND,t dutilD,t dpit

]′
The vector of estimated parameters Θ consists of the persistence and conditional standard

deviations for shocks, the risk aversion parameter σ, the habit formation parameter ha, the

parameter ζ (closely related to the Frisch elasticity of labor supply), the �xed cost share pa-

rameter of potential output νR, the elasticity of depreciation with respect to capital utilization

(σac and σai), the investment adjustment cost parameter ΨK , the inverse of the intersectoral

elasticity of labor supply ε, and the elasticity of substitution between nondurables and services

ξ. Our primary focus is on the elasticity of the matching function with respect to shopping

e�ort ϕ and the shopping disutility parameter η.

To calibrate the remaining parameters, we use long-run targets, normalizations, and a

subset ΘR of the estimated parameters. Table 2 presents the results. The �xed exogenous

parameters include the discount factor β, average growth rate g, gross wage markup µ, the

share ω of labor hours in consumption, and the share of services in consumption. Following

the approach of Katayama and Kim (2018) and standard practice, we set β = 0.99, g = 0.45%,

µ = 1.15, and ω = 0.8. We pin down the weight of services ωsc in the consumption aggregator

as the average share of services in consumption, ωsc = pscysc/C = 0.65 over the sample.

Consequently, the share of services in output is 0.65 × 0.80 = 0.52, implying that capacity

24



utilization is unobserved for about half of the economy.

The second set of parameters ΘR is estimated and used to calibrate other parameters.

These are the parameters of risk aversion σ, labor supply ζ, elasticity of the matching function

ϕ, elasticity of shopping e�ort cost η, �xed cost share νR, and habit persistence ha.

The third set of parameters determines the choice of units but does not impact the cycli-

cal behavior of the economy. We normalize output and the relative price of services and

investment to unity, e�ectively determining the level parameters of technology for each sector.

Additionally, we set the fraction of time allocated to work as 30%, which, in conjunction with

other parameters, speci�es the value of θn. To achieve a target capacity utilization of 81% in

each sector, we adjust the level parameters Aj of the matching function accordingly. Finally,

by setting the capital intensity to 1, we obtain the value for σb.

The fourth set of parameters are determined through long-run targets and the estimated

parameters in the second group. The long-run targets include those chosen by Bai, Rios-

Rull, and Storesletten (2025). These are an investment share of output of 20%, an annual

capital-to-output ratio of 2.75, and a labor share of income of 67%. These in turn pin down

the parameters δ, αk and αn. Appendix E discusses the calibration in detail. Note that,

at the posterior mean, ϕ = 0.92, νR = 0.094, and αk = 0.31. Hence, from (25), dutilt ≈
0.92dDt + 0.34dht.
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Targets Target value Parameter Calibrated value/posterior mean

First group: parameters set exogenously

Discount factor 0.99 β 0.99

Average growth rate 1.8% g 0.45%

Gross wage markup 1.15 µ 1.15

Labor share in consumption 0.8 ω 0.8

Share of services in consumption 0.65 ωsc 0.65

Second group: estimated parameters used for calibration

Risk aversion − σ 1.58

Frisch elasticity − ζ 1.24

Elasticity of matching function − ϕ 0.92

Elasticity of shopping e�ort cost − η 0.22

Fixed cost share of capacity − νR 0.094

Habit persistence − ha 0.74

Third group: normalizations

SS output 1 zmc 0.30

Relative price of services 1 zsc 0.45

Relative price of investment 1 zi 0.25

Fraction time spent working 0.30 θn 0.45

Capacity utilization of nondurables 0.81 Amc 2.6

Capacity utilization of services 0.81 Asc 1.5

Capacity utilization of investment sector 0.81 Ai 3.6

Capital utilization rate 1 σb 0.031

Fourth group: standard targets

Investment share of output 0.20 δ 1.37%

Physical capital to output ratio 2.75 αk 0.31

Labor share of income 0.67 αn 0.053

Table 2: Calibration targets and parameter values. Here we calibrate a subset of parameters using long-run
targets and the posterior mean of the estimated parameters σ, ζ, ϕ, η, νR and ha.
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Table 3 presents the posterior estimates alongside their prior distributions. The param-

eters ϕ and η are fundamental to the transmission mechanism and uncommon in the DSGE

literature, so it is especially important to assess their identi�cation. Figure 5 plots the densi-

ties of the posterior and prior distributions for these two parameters, as well as for the �xed

cost share νR, which provides an alternative channel through which the model can generate

procyclical productivity.
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Figure 5: Posterior and prior distributions for matching function elasticity ϕ, the shopping disutility parameter
η, and the �xed cost share νR.

The posterior mean of the matching function elasticity ϕ is estimated to be 0.92, suggesting

that the search-based demand channel plays a signi�cant role in the model. Moreover, the

in�uence of the data on updating ϕ is especially stark: at the posterior mean of 0.92, the

prior density is minimal, underscoring how the likelihood dominates the shape of the posterior

distribution. This sharp divergence indicates that ϕ is well identi�ed, and the narrow HPD

interval further suggests that the data provide precise information about its value. Although

the posterior mean of η is estimated to be 0.22�close to its prior mean of 0.2�the posterior

distribution is markedly tighter than the prior. The 95% HPD interval of [0.16, 0.28], compared

to the prior's di�use distribution, re�ects a signi�cant gain in precision. This tightening

suggests that while the data largely con�rm prior beliefs about the magnitude of η, they also

provide informative evidence that sharply reduces uncertainty about its true value.

Unlike the search-based demand channel�captured by ϕ and η��xed costs can generate

procyclical productivity by a�ecting average production e�ciency over the business cycle. The

posterior mean of νR is 0.09, substantially lower than the prior mean of 0.20, suggesting that

the data favor a very limited role for �xed costs. Moreover, νR is well identi�ed: the posterior

distribution has a single, well-de�ned peak that diverges noticeably from the more di�use

prior. The joint posterior estimates thus support the search-based demand channel as a key

driver of procyclical productivity.
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We turn to the other parameters. The posterior mean values of σ (1.59) and ha (0.74) are

consistent with previous �ndings in the literature. The inverse of the elasticity of substitution

of labor, ε, has a posterior mean of 1.46, substantially less than the value 2.57 estimated by

Katayama and Kim (2018). This di�erence can be attributed to the use of search demand

shocks and absence of wealth e�ects, which naturally induce complementarity. The elasticity

of substitution ξ between nondurables and services has a posterior mean of 0.88, which is

fairly close to the prior mean, and is somewhat more concentrated compared to the prior

distribution.

We estimate a high posterior mean of 12.6 for the investment adjustment cost parameter

ΨK . Intuitively, large investment adjustment costs are necessary to permit a high volatility of

utilization without triggering excessively high volatility of investment. The estimated elastici-

ties of the marginal cost of capital utilization are higher for consumption than for investment,

which aligns with the greater volatility of investment and capacity utilization in durable goods.

However, the estimated values are lower than those reported in Katayama and Kim (2018),

in order to �t the volatility of the utilization series.

We estimate generally high values for the persistence parameters. This is notably the case

for the shopping-e�ort shocks, with posterior means of 0.90 and 0.98, respectively. The mean

persistence of the neutral shopping-e�ort is very close to the value of 0.928 obtained in Section

4 and BRS's own estimate in Table 3. The posterior mean of ρg is 0.51, which indicative of

moderate peristence of shocks to the stochastic trend, is moderately lower than the value

0.60 reported by BRS in Table 3. We also �nd greater persistence of wage markup shocks in

investment (0.98) compared to consumption (0.74), a feature which seems necessary to �t the

utilization data in conjunction with hours and the relative price of investment. The investment

wage markup shock also has a far greater conditional standard deviation. Online Appendix

F assesses the identi�ability of these parameters by estimating the model on arti�cial data

generated from the model evaluated at the posterior mean. Most parameters, in particular

ϕ, η, νR, and most of the shock parameters are well-identi�ed.15

15In the main text we focus on the standard criterion for identi�cation that the observed data update the
prior beliefs to yield a di�erent posterior distribution. The test using arti�cial data in the Online Appendix
instead focuses on the model structure rather than the actual data.
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Table 3: Bayesian estimation of baseline model

Prior Posterior

Dist. Mean Stdev. Mean Stdev. 5% HPD 95%

σ Beta 1.50 0.250 1.59 0.240 1.23 1.98

ha Beta 0.500 0.200 0.739 0.0322 0.692 0.792

ζ Gamma 0.720 0.250 1.26 0.215 0.947 1.60

ϕ Beta 0.320 0.200 0.917 0.0531 0.834 0.991

η Gamma 0.200 0.150 0.221 0.0388 0.159 0.277

ξ Gamma 0.850 0.100 0.880 0.0826 0.753 1.02

νR Beta 0.200 0.100 0.090 0.0400 0.028 0.152

σac Inv Gamma 1.00 1.00 1.74 0.328 1.20 2.23

σai Inv Gamma 1.00 1.00 0.440 0.0893 0.298 0.580

ΨK Gamma 4.00 1.00 12.6 1.60 10.5 15.5

ε Gamma 1.00 0.500 1.46 0.218 1.10 1.82

ρg Beta 0.100 0.0500 0.507 0.0722 0.385 0.617

ρz Beta 0.600 0.200 0.794 0.0376 0.735 0.856

ρzI Beta 0.600 0.200 0.847 0.0300 0.797 0.896

ρn Beta 0.600 0.200 0.989 0.0079 0.977 1.00

ρd Beta 0.600 0.200 0.904 0.0257 0.863 0.947

ρdi Beta 0.600 0.200 0.982 0.0084 0.969 0.996

ρb Beta 0.600 0.200 0.911 0.0234 0.873 0.949

ρµc Beta 0.600 0.200 0.743 0.277 0.267 0.998

ρµi Beta 0.600 0.200 0.977 0.0225 0.943 1.00

eg Gamma 0.010 0.010 0.004 0.0005 0.0037 0.0049

ez Gamma 0.010 0.010 0.009 0.0007 0.0083 0.0107

ezI Gamma 0.010 0.010 0.020 0.0021 0.0161 0.0230

en Gamma 0.010 0.010 0.006 0.0009 0.0046 0.0075

ed Gamma 0.010 0.010 0.138 0.0188 0.1097 0.1706

edi Gamma 0.010 0.010 0.015 0.0010 0.0135 0.0167

eb Gamma 0.010 0.010 0.015 0.0059 0.0056 0.0236

eµc Gamma 0.010 0.010 0.001 0.0006 0.0001 0.0015

eµi Gamma 0.010 0.010 0.027 0.0030 0.0226 0.0326

Table 3: Prior and posterior distribution.
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Table 4 documents the unconditional forecast error variance decomposition of the model.

Technology shocks and shopping-e�ort shocks are the primary drivers of forecast error variance

in output, the Solow residual, variable capital intensity, investment and its relative price, and

variable capital intensity. Shopping-e�ort shocks have a particularly signi�cant impact on

utilization and output. The only signi�cant contribution of discount-factor, wage markup,

and labor supply shocks lies in explaining portions of labor in consumption and investment.

However, the fraction of consumption-sector labor explained by labor supply shocks (27.2%)

is second only to shopping-e�ort shocks.

Table 4: Unconditional forecast error variance decomposition

Technology Labor Supply Shopping E�ort Discount Factor Wage Markup

Y 28.6 0.01 70.5 0.92 0.02

SR 44.3 5.23 46 0.57 3.9

I 31.2 0.01 64.1 4.69 0.01

pi 65 0.00 34.8 0.18 0.05

nc 7.78 27.2 58.4 4.42 2.19

ni 18.2 2.27 52.9 1.76 24.8

util 39.3 0.01 60.1 0.64 0.01

D 0.17 0 99.8 0.01 0

h 17.7 0.01 82.1 0.18 0

Table 4: Unconditional forecast error variance decomposition for variables in growth rates. Shocks are grouped
in respective categories.

Here our primary focus is on the Solow residual and utilization. Shopping-e�ort and

technology shocks play similarly important roles for the former, but the search demand shocks

explain over 60% of utilization. Hence, the evidence strongly supports a powerful causal

channel of demand shocks into productivity. It is sensible to compare our results to Table 3

in BRS, which consider an estimation of the model without shopping-time data. They �nd

that search demand shocks account for about 58% of the forecast error variance of the Solow

residual, compared to 46% in our speci�cation. However, this result relies on calibrating ϕ and

η using shopping time and price dispersion information, whereas we instead estimate these

parameters using capacity utilization data.

Our results also show that search demand shocks explain the majority of �uctuations in

output, investment, and sectoral labor. This suggests that demand shocks play a greater role
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than technology shocks in driving business cycles, consistent with Hall (1997) and subsequent

studies arguing that demand shocks are essential for generating strong comovement between

hours worked and consumption. The dominance of shopping e�ort shocks over discount factor

shocks supports a similar interpretation of business cycles as in Hall (1997): during recessions,

people spend less e�ort shopping for goods, consume fewer goods and services, and work fewer

hours.

Table 5 compares the log marginal likelihood, posterior mean of ϕ, variance decomposition,

and second moments for various speci�cations of the model. We calculate the log marginal data

density using the modi�ed harmonic mean estimator. The posterior mean of ϕ is signi�cant in

most speci�cations, but falls signi�cantly under perfect labor mobility or absence of variable

capital intensity. In the baseline model, search-based demand shocks account for nearly half

of the Solow residual. The relative variance of utilization to the Solow residual is 1.95, but

falls substantially under perfect labor mobility and the common wage markup.
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Table 5: Comparison of model speci�cation

Remove

Data Baseline Perfect
labor mobility

Common
wage markup

Fixed cost VCU SDS SDS and
utilization data

LML − 4570.7 4548.9 3136.5 4573.4 4,568.1 2564.9 −
∆ LML − 0 -21.9 -1434.2 2.71 -2.6 -2006 −
Posterior mean ϕ − 0.91 0.43 0.95 0.96 0.27 0.71 0.52

FEVD(SR, SDS) − 46.0 55.0 6.17 45.71 48.07 − −
Var(util)/Var(SR) − 1.95 1.21 0.40 2.36 0.56 2.21 0.19

std(Y ) 0.87 1.38 1.70 5.11 1.36 1.99 207.71 0.64

std(utilND) 1.26 1.21 1.30 3.88 1.22 1.21 161.65 0.35

std(utilD) 2.27 3.65 2.60 9.72 3.90 2.37 266.65 1.14

std(nc) 0.57 0.66 0.68 2.27 0.68 0.69 71.31 0.56

std(ni) 1.94 2.35 3.33 8.99 2.36 1.80 344.8 1.87

Cor(C, I) 0.54 0.53 0.67 0.05 0.50 0.53 0.999 0.24

Cor(utilND, utilD) 0.75 0.27 0.61 -0.31 0.26 0.60 0.999 -0.60

Cor(nc, ni) 0.87 0.67 0.24 -0.88 0.69 0.35 0.986 0.83

Cor(utilND, utilND,−1) 0.51 0.21 0.31 0.53 0.18 -0.02 0.999 0.27

Cor(utilD, utilD,−1) 0.55 0.48 0.52 0.51 0.48 0.03 0.999 0.26

Table 5: Comparison of log marginal likelihood, posterior mean of ϕ, variance decomposition, and second
moments for various speci�cations of the model. The log marginal likelihood (LML) is calculated using the
modi�ed harmonic mean. The �rst column describes relevant empirical moments, and the second column
corresponds to the baseline model. The third and fourth columns present estimates of the model with perfect
labor mobility (ε = 0) and only a common wage markup shock, respectively. The �fth and sixth columns
present estimates in which �xed costs and variable capital utilization are removed. The seventh column
removes search-based demand shocks, and the eighth column also removes the utilization series from the set
of observables.

We next provide more context and probe more deeply into model �t by examining the

second moments. The baseline model tends to overestimate the volatility of output but �ts the

volatility of the utilization series and labor hours quite well. It captures the correlation between

consumption and investment well and reasonably �ts the comovement of labor hours. It

qualitatively captures the comovement of the utilization series but undershoots the magnitude.

Finally, the model also matches the autocorrelation of the utilization series reasonably well,

especially for durables.

The third column shows the results after estimating the model with perfect labor mobility

(ε = 0). Even though the posterior mean of ϕ decreases to 0.43, search-based demand shocks

continue to have an outsized role in the variance decomposition. The model �ts data worse

overall but better captures the correlation of the utilization variables. The fourth column re-
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estimates the model under common wage-markup shocks. As expected from our discussion of

the shopping ratio (20), this omission dramatically worsens model �t. The reason is that the

shopping-e�ort ratio is now much more directly tied to the labor ratio, and it loses �exibility

in �tting the comovement of utilization. Consequently, at the posterior mean, the correlations

of utilization (−0.31) and especially labor hours (−0.88) become negative. The volatilities are

dramatically higher as well. The substantial reduction in model �t is re�ected in a 1,434.2

reduction in the log marginal likelihood compared to the baseline.

In the next two columns, we remove �xed costs and variable capital utilization, one-by-one.

Both of these ingredients can be considered important robustness checks on the search-based

demand channel. Removing �xed costs yields similar second moments as the baseline and

slightly raises the marginal likelihood. Removing variable capital utilization leads to a mild

reduction of the marginal likelihood (−2.6). Intuitively, the model loses �exibility in explaining

utilization, output, and labor variables. The implied autocorrelation of the utilization variables

collapses, and the comovement of labor inputs is too low (0.35). However, the comovement of

utilization is actually better than the baseline model, and it compares similarly among other

moments�hence the only mild reduction of the marginal likelihood.

The penultimate (seventh) column removes search-based demand shock. This speci�cation

resembles Katayama and Kim (2018), but goods market frictions still operate through other

shocks. It is immediately evident that this change completely prevents the model from �tting

the data: the log marginal data density collapses by over 2, 000 points, the standard deviations

exceed those of the data by two orders of magnitude, and the correlations and autocorrelations

are nearly unity. Intuitively, the capacity utilization data roughly pins down the sectoral

shopping e�orts, and the model lacks freedom to �t sectoral labor and output and the relative

price of investment jointly. The appendix makes this statement more precise by showing that

the special case of a unitary consumption sector, no �xed costs, and no investment adjustment

costs gives rise to stochastic singularity.

The �nal column also removes utilization data, making the set of observables similar to

Katayama and Kim (2018). Estimating this speci�cation con�rms that the model can �t non-

utilization data reasonably well. The volatility of output (0.64) and labor hours (0.56, 1.87)

are close to the empirical values. The model also �ts the labor comovement well (0.83), though

the comovement of consumption and investment is too low (0.24). However, the volatility of

the utilization variables�especially nondurables�is far below the data, and their comovement is

sharply negative (−0.6). That is, absent search-based demand shocks, the model �ts standard
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macro series well at the expense of matching the volatility and comovement of utilization. A

corollary is that a multisector real business cycle model without the goods market frictions

would cannot �t the data.

To better understand the baseline result, we examine impulse responses of consumption,

investment, their respective labor inputs, utilization variables, and the relative price of in-

vestment from the baseline model. We set the parameters to the posterior mean and present

the impulse responses in growth rates for ease of comparison. The utilization variables con-

sist of the observable subcomponents, durables and nondurables, together with aggregate

utilization. A large fraction of aggregate utilization re�ects services and is thus unobserv-

able. We also include shopping e�ort D and capital intensity h in reference to Equation (25):

dutilt ≈ 0.91dDt + 0.34dht.

Figure 6 plots the impulse response to a unit standard deviation reduction in the shopping

e�ort ed. This shock prompts households to increase their shopping e�ort, leading to a boost

in matching and utilization. More matches raise demand for �rms' goods, prompting them

to expand production and hire additional workers. As a result, labor demand rises in both

sectors, generating positive comovement in the growth rates of output, inputs, and utilization

across durables and nondurables. As expected, the Solow residual rises on impact. Moreover,

the relative price of investment is countercyclical as in the data. Variable capital intensity

falls on impact, indicating that it is a substitute for higher shopping e�ort.
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Figure 6: A unit standard deviation negative shock ed to shopping e�ort in baseline model with parameters
set at the posterior mean. The outcome variables are presented in growth rates.

Figure 7 plots the impulse response to a positive unit standard deviation discount-factor
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shock eb. Households are more patient, which raises the desire to consume in the future rela-

tive to the present. As a result, consumption falls while investment rises. Overall, given the

predominant share of consumption in output, output falls, indicating a paradox of thrift. Ad-

ditionally, there is an increase in utilization in the durables sector but a decrease in utilization

in the nondurables sector. Limited factor mobility attenuates, but does not prevent, the fall

in labor in the consumption sector. Contrary to the data, there is positive comovement of

investment and its relative price.
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Figure 7: A unit standard positive shock eb to the discount factor in baseline model with parameters set at
the posterior mean. The outcome variables are presented in growth rates.

What about technology shocks? It may appear that technology shocks can generate all

the comovement properties as search demand shocks. To that end, Figure 8 plots the impulse

response to a positive standard deviation neutral stationary technology shock ez. The Solow

residual rises, but by a smaller amount than from the demand shock. The shock produces

positive comovement in consumption, investment, and labor across both sectors�consistent

with sectoral comovement in Christiano and Fitzgerald (1998) and Katayama and Kim (2018).

Limited factor mobility contributes to this feature. Moreover, the relative price of investment

falls. The technology boost increases the expected return on investment, thereby incentivizing

an immediate rise in utilization in the durable sector. Concurrently, utilization in nondurables

initially declines due to sectoral reallocation, rising only after several periods as the technology

shock subsides. Hence, search demand shocks are unique in producing positive comovement

in the growth rates of all series.

35



5 10 15 20
0.20%

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40% C
I

5 10 15 20

0.20%

0.00%

0.20%

0.40%

0.60%

0.80% N_C
N_I

5 10 15 20

0.40%

0.30%

0.20%

0.10%

0.00%

0.10%

0.20%

0.30%
util_ND
util_D
util

5 10 15 20

0.00%

0.10%

0.20%

0.30%

0.40%

0.50% SR

5 10 15 20

1.00%

0.50%

0.00%

0.50%

D
h
util

5 10 15 20
1.00%

0.80%

0.60%

0.40%

0.20%

0.00%

0.20%

0.40% p_I

A 1 standard-deviation shock to e_Z

Figure 8: A unit standard deviation positive shock ez to technology in the baseline model with parameters set
at the posterior mean. The outcome variables are presented in growth rates.

7. Conclusion

We investigate the contribution of demand shocks to business cycle �uctuations in a three-

sector model using Bayesian techniques. In our framework, actual output falls short of po-

tential output due to matching frictions. These frictions give rise to search-based demand

shocks, which in�uence capacity utilization and, in turn, the Solow residual. Our estimation

strategy is novel in its use of sectoral data, incorporating capacity utilization in both durable

and nondurable goods sectors alongside labor hours and output data from consumption and

investment sectors. This unique data combination incorporates information on sectoral pro-

ductivity while subjecting the model to a rigorous test. In particular, we require the model

to �t not only overall capacity utilization dynamics but also the volatility, comovement, and

persistence of its subcomponents.

Our �ndings are threefold. First, we estimate high and precise values for the matching

function elasticity ϕ and the shopping disutility η, indicating an important role for our search-

based demand channel. By testing the model on arti�cial data drawn at the posterior mean,

we demonstrate that parameter estimates cluster around true values, indicating robustness to

the data-generating process. Second, shocks to shopping e�ort account for a large part of the

forecast error variance of output, the Solow residual, the relative price of investment, hours,

and utilization. Third, the model provides good empirical �t, capturing the comovement

in labor input and output e�ectively, although it understates the comovement of utilization

series. Impulse responses reveal that search demand shocks uniquely generate the three-way
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comovemment of utilization series and TFP.

We examine in detail the contribution of di�erent model ingredients. Fixed costs are

inessential, and the model still provides a major productive role for demand and reasonable

empirical �t without them. Perfect labor mobility also retains demand as a key driver of

productivity, but sacri�ces overall empirical �t. Removing variable capital intensity reduces

�t by only a small amount, primarily driven by an inability to match the utilization autocorre-

lations and greater output volatility. Sector-speci�c wage markups and search-based demand

shocks, however, are crucial for accurately �tting sectoral data. Models with only common

wage markup shocks overestimate volatility and fail to capture labor-utilization comovement.

Without search-based demand shocks, shopping e�ort becomes overdetermined, constrained

by both output and relative price variables as well as utilization measures. Omitting search-

based demand shocks and utilization variables allows the model to �t standard macro series

but leads to a counterfactual negative correlation of utilization and understates its volatility.

Our broader argument leverages sectoral data to support a demand-based explanation of

the business cycle. Our demand shocks include a standard shock to the discount factor (θb)

and two novel shocks related to goods market frictions (θd and θi), with the latter proving

substantially more in�uential for business cycle �uctuations. We do not claim that these shocks

literally represent �uctuations in shopping disutility. Rather, our framework emphasizes the

unique ability of �uctuations in demand to replicate key empirical comovements�particularly

in capacity utilization�as a critical test of the model's validity.

A promising avenue for future research is to incorporate con�dence shocks�following An-

geletos, Collard, and Dellas (2018)�into a framework featuring goods market frictions and

endogenous shopping e�ort. Linking autonomous shifts in con�dence to shopping activity

resonates with the spirit of Keynes (1936), yet remains distinct from standard New Keynesian

approaches. A related fruitful application is by Ritto (2024), who demonstrates how a mon-

etary model with search-driven capacity utilization can �t data relatively well. Introducing

random search would naturally generate congestion ine�ciencies, highlighting new channels

for policy intervention. More broadly, macroeconomic models in which demand plays a pro-

ductive role�empirically disciplined by capacity utilization data�can shed light on the state

dependence of �scal multipliers.
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Appendix A. Background on endogeneity of TFP

The early real business cycle literature treated the Solow residual as a pure measure of

technology, but subsequent analysis found that it contained important components unrelated

to technology. To address this issue, Basu, Fernald, and Kimball (2006) purify the Solow resid-

ual by removing aggregation e�ects, variation in capital and labor utilization, non-constant

returns to scale, and imperfect competition. They �nd that the puri�ed technology process

is about half as volatile as TFP, appears to be permanent, and is generally uncorrelated with

output. Building on these �ndings, Fernald (2014) constructs a quarterly measure of TFP

adjusted for utilization. Figure A.9 plots detrended utilization-adjusted TFP alongside stan-

dard TFP. The Fernald series not only leads the Solow residual but also exhibits less volatility.

Moreover, these series occasionally diverge signi�cantly, most notably during the pandemic

shock in 2020Q1, the Great Recession, and the recession of the early 1980's. In the following,

de�ne Fernald utilization as the di�erence between cyclical TFP and its utilization-adjusted

counterpart.
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Figure A.9: Time series of the Solow residual and its utilization-adjusted counterpart, following the method-
ology in Fernald (2014). Each underlying series is detrended via the Hamilton regression �lter with the four
most recent observations 8 quarters in the past (p = 4, h = 8)

Appendix B. Data appendix

Table B.6 provides the details on constructing the model variables, which are used for

summary statistics and Bayesian estimation.
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Symbol Description Construction

C Nominal consumption PCND+PCESV

I Nominal gross private domestic investment PCDG+PNFI+PRFI

Deflator GDP De�ator GDPDEF

Pop Civilian non-institutional population CNP160V

Pc Price index: consumption PCEPI

Pi Price index: investment INVDEV

c Real per capita consumption C
Pop∗Pc

i Real per capita investment I
Pop∗Pi

y Real per capita output c+ i

nc Labor in consumption sector Labor in nondurables and services

ni Labor in investment sector Labor in construction and durables

n Aggregate labor nc + ni

pi Relative price of investment Pi/Pc

utilND Total capacity utilization: nondurables TCU

utilD Total capacity utilization: durables TCU

SR Solow residual Fernald (2014), FRB of San Francisco

SRutil Utilization-adjusted Solow residual Fernald (2014), FRB of San Francisco

Table B.6: Data sources used in motivating evidence and estimation.

The construction of sectoral data follows Katayama and Kim (2018). We calculate con-

sumption and investment as follows:

Ct =

(
Nondurable(PCND) + Services(PCESV )

Pc × CivilianNonstitutionalPopulation(CNP160V )

)
It =

(
Durable(PCDG) +NoresidentialInvestment(PNFI) +ResidentialInvestment(PRFI)

Pi × CivilianNoninstitutionalPopulation(CNP160V )

)

We use an HP-�ltered trend for population (λ = 10, 000) to eliminate jumps around census

dates.

For labor data, we make use of the BLS Current Employment Statistics (https://www.

bls.gov/ces/data). BLS Table B6 contains the number of production and non-supervisory

employees by industry, and BLS Table B7 contains average weekly hours of each sector. We

compute total hours for nondurables, services, construction, and durables by multiplying the

relevant components of each table. Then we impute labor in consumption as sum of labor
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in nondurables and services. Similarly, we construct labor in investment as sum of labor in

construction and durables. Figure B.10 plots labor hours in each sector. The close comovement

and greater volatility of hours in investment is evident.
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Figure B.10: Sectoral and aggregate hours. Each underlying series is detrended via the Hamilton regression
�lter with the four most recent observations 8 quarters in the past (p = 4, h = 8).

We also make use of disaggregated data on total capacity utilization from the Federal Re-

serve Board. Estimates are available for 89 detailed industries (71 manufacturing, 16 mining,

2 utilities) and also for several industry groups. Our focus is on durables and nondurables.16

Appendix C. Analysis of simpli�ed model

We consider a dynamic version of the static model, which includes capital accumulation.17

We estimate the shock processes {θd, θn, g, z, zI}, each AR(1) with persistence {ρd, ρn, ρg, ρz, ρi}
and conditional standard deviation {σd, σn, σg, σz, σi}. This approach extends the set of shocks
used by BRS to include neutral stationary technology shocks. While generally adhering to

the same calibration strategy and targets, we now �x the following parameters: risk aversion

β = 0.99, σ = 2.0, and Frisch elasticity ζ = 0.72.18 We estimate the model by adding total

capacity utilization as an observable series to the BRS speci�cation, which includes output,

investment, labor productivity, and the relative price of investment. We then compare the

estimates with and without capacity utilization.

Table C.7 reports the prior distributions used for both speci�cations. In addition to ϕ and

η, we specify distributions for the persistence parameters of nonstationary neutral technol-

16Capacity utilization data can be downloaded at https://www.federalreserve.gov/datadownload/

Choose.aspx?rel=G17 and is also available from the Federal Reserve Economic Database (FRED).
17Appendix G lists the full set of equilibrium conditions.
18BRS also �x ζ = 0.72 but they use σ = 1 and β = 0.997. We have also estimated the model with ϕ = 0.32

and η = 0.2 as by BRS and obtained a similar variance decomposition as that paper.
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ogy, stationary neutral technology, investment-speci�c technology, labor supply, and shopping

e�ort. We apply identical prior distributions for the conditional standard deviation and per-

sistence of the stationary shocks. These conditional standard deviations follow an inverse

gamma distribution with a mean of 0.01 and a standard deviation of 0.1. The persistence

parameters have a prior mean of 0.6 and a standard deviation of 0.2.

Table C.7: Prior distributions

Parameter Distribution Mean Std

ϕ Beta 0.32 0.20

η Gamma 0.20 0.15

σeg Inv. Gamma 0.01 0.10

σx Inv. Gamma 0.01 0.10

ρg Beta 0.10 0.05

ρx Beta 0.60 0.20

Table C.7: Prior distributions. We use the symbol x as a shorthand for a shock in the set {θd, θn, z, zI}.

Table C.8 compares the posterior means and 90% probability bands of the key shopping-

related parameters. In the �rst panel, the parameter ϕ is imprecisely estimated with a lower

posterior mean. In fact, the 90% probability band includes essentially a null e�ect. By

contrast, when we add total capacity utilization, the posterior mean increases substantially

to 0.88 and the estimate is precise. Estimates for the shopping cost elasticity η are also

signi�cantly higher and more precisely estimated. Generally, estimates of ρd and σd are more

precise as well, though the properties di�er. With the use of utilization data, demand shocks

exhibit greater persistence, but their innovations become less volatile.
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Table C.8: Role of capacity utilization on parameter estimates

Parameter BRS dataset Add capacity utilization

Post. mean 90% HPD interval Post. mean 90% HPD interval

ϕ 0.0978 [0.0001, 0.205] 0.883 [0.863, 0.906]

η 0.412 [0.282, 0.572] 1.87 [1.86, 1.90]

ρd 0.871 [0.775, 0.961] 0.928 [0.914, 0.941]

σd 0.0484 [0.0024, 0.0987] 0.0075 [0.0068, 0.0081]

Table C.8: Estimation of baseline BRS model with two sets of observable series. The �rst considers growth
rates of output, investment, labor productivity, and the relative price of investment. The second speci�cation
also considers total capacity utilization growth.

The top panel of Table C.9 compares the standard deviations at the posterior mean of

shocks θd, shopping e�ort D, and utilization util, where the last two are expressed in growth

rates. The main result is that total capacity utilization is ten times more volatile even though

shopping-e�ort shocks are less volatile and shopping e�ort has similar volatility. The key

di�erence lies in the transmission of shopping e�ort to utilization through ϕ. The bottom

panel highlights the role of these varying parameter estimates for the forecast error variance

fraction attributable to demand shocks. It is very small in the former case but large in the

latter, accounting for about two thirds of output, almost a third of labor productivity, and

about half the Solow residual.
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Table C.9: Comparison of volatility and variance decomposition

BRS dataset Add capacity
utilization

Volatility

θd 9.84 2.00

D 1.54 1.69

util 0.15 1.49

FEVD

Y 7.73 63.6

Y/N 2.49 27.0

SR 6.14 54.1

Table C.9: The �rst sub-table documents standard deviations of shopping-related variables under two sets of
observables. The second sub-table shows the fraction of the unconditional variance decomposition attributable
to the demand shock θd. See Table C.8.

These two exercises sharply illustrate the informative role of total capacity utilization. The

shopping-related parameters more precisely estimated, demand shocks explain much more of

the forecast error variance, and the volatility of total capacity utilization in the model rises

ten-fold, much closer to the empirical value.19

Yet there are signi�cant caveats to this analysis. First, in the absence of variable capital

utilization, only shopping can in�uence total capacity utilization. Firms should also be able

to select the intensity of capital use. To make the dynamic tradeo� more interesting and

better �t investment data, there should also be investment adjustment costs. Then capacity

utilization will re�ect both shopping e�ort and intensity of capital use. Moreover, given the

focus on productivity, it makes sense to incorporate �xed production costs. These empirically

relevant costs help explain why productivity rises with output and also a�ect the contribution

of capital intensity to capacity utilization.

Second, total capacity utilization is inappropriate as an economy-wide target since it is

only constructed for speci�c industries. In particular, it is not measured for consumption

services, a large part of the economy. Enriching the model to include multiple sectors allows

19On page 23, footnote 14, BRS state that, in the absence of cross-sectional evidence, `we �nd that the
parameter ϕ is not well identi�ed by the aggregate data. In particular, the resulting estimates of ϕ vary widely
across data sets, ranging from 0.09 to 0.44 depending on whether we include or omit shopping time data.' By
contrast, we �nd that ϕ is well-identi�ed from aggregate data given the inclusion of capacity utilization.
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us to exploit dis-aggregated capacity utilization data in our estimation.

Third, the model struggles to �t aspects of sectoral data, which important for the transmis-

sion mechanism operating via goods market frictions. In the second speci�cation, though the

correlation of labor in each sector is not too far below the data (0.58), the autocorrelation is

0.18 for nc and −0.01 for ni. For consumption and investment, the respective autocorrelations

are 0.28 and 0.20, well below the empirical values.

In the special case of BRS, relative shopping e�ort across sectors equals the relative labor

allocation and the relative value of output:

Dc

Di

=
nc

ni

=
C

piI
(C.1)

Equation (C.1) highlights the informative role of sectoral data: (1) the labor ratio pins down

the ratio of shopping e�ort, (2) and labor inputs and sectoral output data provides information

on sectoral labor productivity, which are in turn linked to the relative price of investment.

Such data is especially relevant given our focus on a demand-based explanation of productivity.

Unfortunately, (C.1) raises the following challenge. The variables C, I, and pi are observ-

ables in estimation and thus determine nc/ni. Trying to use nc and ni�or even just their

ratio�as observables in estimation would induce stochastic singularity. The use of these series

versus the relative price of investment becomes arbitrary.

The main text generalizes (C.1), breaking the one-for-one link between shopping e�ort and

hours. The more general form arises from using sector-speci�c wage markup shocks, incor-

porating imperfect competition in the labor market in the vein of Schmitt-Grohé and Uribe

(2012). Additionally, limited factor mobility facilitates sectoral comovement and dampens

excessive volatility, and �xed costs permit a more general relationship between output and

augment the contribution of capital intensity to total capacity utilization.

Appendix D. Details of household and �rm problem

Competitive search creates additional interconnections between the household and �rm

problems. A complete characterization requires solving both jointly. We start with the house-

hold problem. Let γmc, γsc, γi, λ, µmc, µsc, µi be the respective Lagrangian multipliers on the

constraints. The �rst order conditions are

[ymc] : umc = γmc + λpmc

[ysc] : usc = γsc + λpsc
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[ij] : −γi − λpj + µj

(
1− S ′

j(xj)xj − Sj(xj)
)
+ βθbEµ′

jS
′
j(x

′
j)(x

′
j)

2 = 0 (D.1)

[dj] : ud = −AjD
ϕ−1
j Fjγj, j ∈ {mc, sc} (D.2)

[di] : udθi = −AiD
ϕ−1
i Fiγi (D.3)

[nc] : un
∂na

∂nc

= −λW ∗
c (D.4)

[ni] : un
∂na

∂ni

= −λW ∗
i (D.5)

[hj] δh(hj)µj = λRj j ∈ {mc, sc, i} (D.6)

[k′
j] : µj = βθbE

{
λ′R′

jh
′
j + (1− δj(h

′
j))µ

′
j

}
j ∈ {mc, sc, i} (D.7)

The multipliers γmc, γsc, γi re�ect the value of an additional unit of traded output. In the

consumption submarkets, these represent a wedge between the marginal utility of consumption

and the marginal utility of wealth. For investment, the multiplier γi represents an analogous

wedge between the marginal utility of wealth and value of the investment good. Equations

(D.2) and (D.3) equate the marginal shopping disutility to the additional units obtained by

search multiplied by the value of the unit. Equations (D.4) and (D.5) equate the marginal

disutility of work in each sector to the (variable) wage multiplied by the marginal utility

of wealth. Equation (D.6) equates the marginal cost of depreciated capital to the value of

additional output generated in terms of consumption. Finally, (D.7) equates the marginal

value of capital to the expected discounted rate of return, composed of the rental income and

value of undepreciated capital.

We next characterize the envelope conditions:

∂V j

∂pj
= −λj = −λdjAjD

ϕ−1
j Fj j ∈ {mc, sc, i} (D.8)

∂V j

∂Dj

= (ϕ− 1)djAjD
ϕ−2
j Fjγj j ∈ {mc, sc, i} (D.9)

∂V j

∂Fj

= djAjD
ϕ−1
j γj j ∈ {mc, sc, i}

The ratio of (D.8) and (D.9) characterizes the indi�erence curve between price and tightness

in a submarket:

∂V j

∂pj

∂V j

∂Dj

= − λDj

(ϕ− 1)γj
(D.10)

48



We next turn to the �rm's problem. The �rm chooses labor type s in sector j so as to generate

an e�ective labor bundle nj at the lowest possible cost. The problem is

min
nj(s)

∫ 1

0

Wj(s)nj(s)ds s.t. (D.11)(∫ 1

0

nj(s)
1/µjdj

)µj

≥ n (D.12)

Take the �rst order condition of (D.11) and recognize Wj as the Lagrangian multiplier on

constraint (D.12). Rearrange as

nj(s) =

(
Wj(s)

Wj

)−
µj

µj−1

nj

The corresponding wage index for composite labor input in sector j is

Wj =

[∫ 1

0

Wj(s)
1/(µj−1)ds

]µj−1

We can now examine the simpli�ed �rm problem. Let ιj and ∇j be the multipliers on partic-

ipation constraint and production technology. The �rst order conditions are

[Fj] ∇j = pjAjD
ϕ
j + ιj

∂V j

∂F j

[nj] Wj = ∇jzjfn (D.13)

[k] hjRj = ∇jzjfk (D.14)

[pj] AjD
ϕ
j Fj + ιj

∂V j

∂pj
= 0 (D.15)

[Dj] ϕAjD
ϕ−1
j pjFj + ιj

∂V j

∂Dj
= 0 (D.16)

Take the ratio of �rst order conditions (D.15) and (D.16) to alternately characterize the

indi�erence curve between price and tightness:

∂V j

∂pj

∂V j

∂Dj

=
Dj

ϕpj

Plug in (D.10) to �nd

Dj

ϕpj
= − λDj

(ϕ− 1)γj
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which we rearrange as

γj =
ϕ

1− ϕ
λpj

Since γj = uj − λpj for j = {mc, sc}, we have

λ = (1− ϕ)
uj

pj
(D.17)

which allows us to characterize γi:

γi = ϕ
uj

pj
pi j ∈ {mc, sc}

Note that (D.17) also implies that the marginal utility relative to the price is the same in

each consumption subsector. The values of γmc, γsc and λ allows us to rewrite the shopping

optimality conditions and labor leisure tradeo�:

−ud = ϕujAjD
ϕ−1
j [zjf(hjkj, nj)− νj] j ∈ {mc, sc}

−udθi = ϕ
umcpi
pmc

AiD
ϕ−1
i [zif(hiki, ni)− νi]

un
∂na

∂nj

= −umc(1− ϕ)

pmc

W ∗
j j ∈ {c, i}

We next revisit the investment �rst order condition (D.1) and characterize Tobin's Q. For

sector j ∈ {mc, sc, i} we have

λpi + γi = µj(1− S ′(xj)xj − S(xj)) + βθbEµ′
j(S

′(x′
j)(x

′
j)

2)

λpi +
ϕ

1− ϕ
λpi = µj(1− S ′(xj)xj − S(xj)) + βθbEµ′

j(S
′(x′

j)(x
′
j)

2)

λpi
1− ϕ

= µj(1− S ′(xj)xj − S(xj)) + βθbEµ′
j(S

′(x′
j)(x

′
j)

2)

Let Qj = µj/λ: relative price of capital in sector j in terms of consumption. Using Qj rewrite

the choice of optimal investment as

pi
1− ϕ

= Qj[1− S ′
j(xj)xj − Sj(xj)] + βθbE

λ′

λ
Q′

jS
′
j(x

′
j)(x

′
j)

2

We also use Tobin's Q to rewrite the optimal utilization in j ∈ {mc, sc, i} and the Euler
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equation:

δh(hj)Qj = Rj

Qj = βθbE
λ′

λ

[
(1− δ(h′

j))Q
′
j +R′

jh
′
j

]
It remains to solve for the Lagrangian multipliers ιj and ∇j on the �rm problem. This is

straightforward given λ and γj. First,

ιj =
Ajq

ϕ
j Fj

∂V j

∂pj

=
1

λ

Second,

∇j = pjAjD
ϕ
j + ιj

∂V j

∂F j

= pjAjD
ϕ
j +

AjD
ϕ
j γj

λ

= pjAjD
ϕ
j + AjD

ϕ
j

ϕ

1− ϕ
pj

= AjD
ϕ
j

(
pj +

ϕ

1− ϕ
pj

)
=

pjAjD
ϕ
j

1− ϕ

The value of additional production capacity ∇j exceeds the additional sales pjAjD
ϕ
j . This

is because the additional sales also relax the participation constraint of households. Finally,

the value of these multipliers enables us to characterize the factor demands for the �rms.

Substitute for ∇j in (D.13) to �nd

(1− ϕ)
Wj

pj
= Aj(Dj)

ϕzj
∂f(hjkj, nj)

∂n

=
αn

nj

AjD
ϕ
j zjf(hjkj, nj)

=
αn

nj

AjD
ϕ
j

(
yj

AjD
ϕ
j

+ νj

)
=

αn

nc

(yj + AjD
ϕ
j νj)

=
α

nc

yj(1 + νR)
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where we use νR
j = νjΨT/yj. We can simplify the capital demand (or rental rate) (D.14) using

ratios as

Wj

Rj

=
αn

αk

hjkj
nj

Aggregating across sectors, the steady-state labor labor of income is αn(1 + νR)/(1 − ϕ)

and the capital share of income is αk(1 + νR)/(1− ϕ).

Appendix E. Calibration

In general, we determine some (�xed) parameters from long-run targets, estimate the pa-

rameter set Θ described in the main text, and back out the remaining (dependent parameters)

given draws from Θ and long-run targets. The dependent parameters are thus random vari-

ables. Here we use the term calibration more broadly to characterize the determination of

dependent parameters as a function of both estimated parameters and long-run targets.

Several key targets used for calibration are investment-to-output piI/Y , capital-to-output

pik/Y , the labor share of income, the unconditional growth rate g, and share of services Sc in

consumption. In terms of model variables at quarterly frequency, we have

κ ≡ piI/Y = 20%, pik/Y = 2.75(4) = 11, g = 0.45%, τ ≡ nW

Y
= 67%, Ssc ≡

pscysc
C

= 65%

The �rst two targets are identical to Bai, Rios-Rull, and Storesletten (2025), and the third

corresponds to 1.8% per capital annual growth, which is very close to the average over the

data sample. The share of services to overall output is 0.65 ∗ 0.80 = 0.52. That is, at our

calibrated steady state, capacity utilization is unobserved for about half the economy.

Capital accumulation (ignoring adjustment costs) in transformed variables 20 is given by

gk̂′ = (1− δ)k̂ + gÎ

Balanced growth, in terms of original variables, implies a steady state in terms of k̂, such that

δ = 1− g +
I

k
≈ 1.37%

20Investment is divided by the stochastic trend Ît = It/Xt while the capital stock is divided by the lagged
stochastic trend K̂t = Kt/Xt−1 to maintain its status as a predetermined variable.
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Next, we characterize αn, αk and σb. Labor demand (17) for each sector implies

Wjnj =
αn

1− ϕ
pjY

j(1 + νR
j )

where νR
j = νjX/Fj. The steady state labor share is thus∑

Wjnj

Y
=

αn

1− ϕ

C + piI

Y
(1 + νR

ss) =
αn

1− ϕ
(1 + νR

ss)

so that αn = (1− ϕ)×labor share/(1 + νR
ss).

In steady state, the rate of return on capital in each sector is equal, so we let R denote the

common value: R = Rj for all j. It is helpful to use the interest rate r on an illiquid bond as

the value which satis�es βg−σ = 1/(1 + r).

The Euler equations in the steady state imply

Q = βg−σ[(1− δ)Q+R] ⇒

(1 + r)Q = (1− δ)Q+R

(r + δ)Q = R

Given that capital utilization hj = 1 for all j in the steady state, the parameter σb satis�es

σb =
R

Q
= r + δ

Combining with Tobin's Q, pi/(1− ϕ) = Q, we have

(1− ϕ)
R

pi
= r + δ

Now, turn to the �rm demand for capital (18):

(1− ϕ)
Rj

pj
= αk

Yj

kj
(1 + νR)

An immediate corollary is that Yj/kj = Y/k for all k and hence

r + δ = αk
Y

k
(1 + νR)
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so that

αk =
r + δ

1 + νR

k

Y

We pin down the weight of services ωsc as the empirical measure Sc = pscYsc/C and set

Sc = 0.65. The ratio of demand in consumption subsectors implies

Ymc

Ysc

=

(
pmc

psc

)−ξ
ωmc

ωsc

Multiply each side by pmc/psc, so that

pmcYmc

pscYsc

=

(
pmc

psc

)1−ξ
ωmc

ωsc

and plug in Sc: (
1− Sc

Sc

)
=

(
pmc

psc

)1−ξ
1− Sc

Sc

so that pmc = psc. Since we normalize psc = 1 and have also normalized the consumption price

index to unity, we have pmc = psc = pc = 1.

Given the target for capacity utilization ΨT,j, we wish to �nd the corresponding level

coe�cient Aj = ΨT,j/D
ϕ
j . This entails solving for each Dj. We �rst solve for D. Let us sum

each side of the shopping optimality condition across sectors:

∑
j

D1/ηDj =
∑
j

ϕpjYj

D
η+1
η = ϕY

Given that we choose technology coe�cients such that Y = 1, we obtain D = ϕ
η

η+1 .

Now, take the ratio of the shopping conditions rearrange for relative shopping e�ort:

Dmc

Dsc

=
pmc

psc

Ymc

Ysc

=
1− Sc

Sc

(E.1)

Similarly,

Dj

Di

= Sj
1− I/Y

I/Y
(E.2)
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Now, we put (E.1) and (E.2) together to characterize shopping e�ort in each sector:

Dmc = (1− Sc)(1− I/Y )D

Dsc = Sc(1− I/Y )D

Di = (I/Y )D

Appendix F. Cyclical deviations of Solow residual and total capacity utilization

In the main text we analyze the relationship between the Solow residual and capacity

utilization in growth rates. Here we compare them in terms of cyclical deviations. Using (21),

the cyclical component of the Solow residual is

ŜRj ≡
SRj

Xτ
=

AjD
ϕ
j zjh

αk
j g1−αk−τ k̂αk−1+τ

j nαn−τ
j

1 + νR
j

= g1−τ Ŷj

k̂1−τ
j nτ

j

The log linear representation is

˜̂
SRj = ϕD̃j + z̃j + αkh̃j + (1− αk − τ)g̃ + (αk − 1 + τ)

˜̂
kj + (αn − τ)ñj −

νR
ss

1 + νR
ss

ν̃R
j

and note that g̃t = log gt − log g which is �rst-order equivalent to Xobs. Log linearizing (24)

yields

ũtilj = ϕD̃j + (1 + νR
ss)αkh̃j

Thus, in the absence of �xed costs, we have

˜̂
SRj|νj=0 = ũtilj + z̃j + (1− αk − τ)(log gt − log g) + (αk − 1 + τ)

˜̂
kj + (αn − τ)ñj

Given the detrending, the coe�cient on nonstationary technology is 1 − αk − τ rather than

1 − αk. Otherwise, the relationship between cyclical components of the Solow residual and

utilization has the same form as the one in growth rates.

The relationship between the cyclical form and growth rate form is

dSRt = ∆ log SRt

= log ŜRt + τ logXt − (log ŜRt−1 + τ logXt−1)

= ∆
˜̂
SRjt + τ log gt
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The growth rate of the Solow residual equals the growth rate of cyclical deviations plus the

log deviation of the stochastic trend growth rate relative to the unconditional mean multiplied

by the labor share.
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