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ABSTRACT

We present ASAGI, an open-source library with a simple in-
terface to access Cartesian material and geographic datasets
in massively parallel simulations with dynamically adap-
tive mesh refinement (AMR). ASAGI distributes geographic
datasets over all compute nodes storing only a portion of the
dataset on each node. An automatic replication mechanism
copies the data between nodes to assure fast local access
even after load migration in the application. We demon-
strate ASAGI’s preparedness for up-to-petascale simulations
in three use cases. We simulate a Tsunami on 512 cores and
a porous media flow on up to 8,192 cores of SuperMUC
with the AMR framework sam(oa)?. We also run an earth-
quake simulation with SeiSol on 65,536 cores. For all appli-
cations, ASAGI provides large complex 3D material datasets
required for the realistic scenarios. The NUMA-awareness
of ASAGI turned out to be especially useful for the hybrid
MPI+4OpenMP parallelization of both codes.

CCS Concepts

eComputing methodologies — Massively parallel and
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1. INTRODUCTION

Adaptive mesh refinement (AMR) is a key ingredient in
many application domains [6, 8,10, 12,15, 16,22]. It allows
to resolve “areas of interest”, such as wave fronts, shocks
or (moving) boundaries with a fine mesh while allowing a
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coarser resolution for the rest of the domain. This can lead
to a much shorter time-to-solution for many applications
[15]. Recent advances have also demonstrated scalability of
AMR on up to 1.6 million cores [16] making it interesting
for current and next generation supercomputers.

Scaling AMR to such a large number of compute cores
requires complex load balancing steps to adapt to the grow-
ing and shrinking number of cells in mesh partitions. These
load balancing steps migrate mesh elements (cells/vertices)
and the corresponding unknowns between nodes to assure
best hardware utilization. An additional issue arises, how-
ever, if the application requires fast access to large space-
and time-dependent material or geographic datasets. In this
paper geographic datasets are the permeability and poros-
ity of underground oil reservoirs in porous media flow, the
bathymetry and sea floor displacement for tsunami simula-
tion, and material velocity properties for seismic wave prop-
agation. We will refer to such datasets as geoinformation.

Large geoinformation datasets are required for many re-
alistic simulations. Due to their size, it is not practical to
replicate the datasets on every node in a distributed mem-
ory parallelization. This is especially applicable for time-
dependent datasets. However, distributing the data means
that it must be migrated along with the cells during load
balancing to ensure fast local access. Since cells can be, de-
pending on the input data, refined, coarsened and migrated
at any point in the simulation, it is hard to predict which
data is required after migration. In addition, there might
exist different resolutions for a single dataset further com-
plicating the decision.

In this paper, we present ASAGI', an open-source library
that provides a simple and easy-to-use interface for applica-
tions. It takes over the migration of geoinformation with-
out explicit migration calls from the application. Instead,
it automatically replicates necessary parts of the dataset on
different compute nodes and deletes data that is no longer
required. ASAGI replicates data only on-demand and im-
plements a block-caching strategy that exploits the tempo-
ral and spatial locality of geoinformation and minimizes the
amortized latency. The hybrid MPI+PThread paralleliza-
tion in ASAGI supports hybrid parallelization (MPI4+X) in
applications and can detect and optimize accesses from dif-
ferent NUMA domains. We use ASAGI in the AMR frame-
work sam(oa)? for flows in porous media and tsunami sim-
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ulations and show scalability to 8,192 cores. ASAGI also
simplifies the initialization of codes based on static unstruc-
tured meshes, such as the earthquake simulation code Seis-
Sol. For both applications, ASAGI provides complex 3D
material parameters and bathymetry/displacement data to
simulate realistic scenarios.

In the next section we discuss alternative approaches for
geoinformation in AMR. In Secs. 3 and 4 we present the
high-level design decisions of ASAGI and a detailed descrip-
tion of its implementation. Sec. 5 contains the results of our
experiments with sam(oa)? and SeisSol. A conclusion of our
work is provided in Sec. 6.

2. RELATED WORK

Geoinformation for AMR is often neglected as it is only
an issue for very large datasets and for large simulations on
many compute nodes. For smaller setups, it is usually suf-
ficient to hold the complete geoinformation in memory on
every node. This approach allows very fast access to geoin-
formation and scales well, especially in strong scaling setups.
Our results show, nevertheless, that this approach is only op-
timal if NUMA domains are considered in the placement of
geoinformation in memory.

One approach to handle datasets that do not fit into the
memory of a single node is to use database-like services.
In [12], Patra et al. connect their application to GRASS
GIS, a geographic information system, designed to handle
very large datasets. However, this results in a 1:n communi-
cation pattern which may create a bottleneck in massively
parallel simulations. Besides, the batch systems of modern
supercomputers are usually not very well suited for running
database-like services.

A second approach, for tsunami simulation, is described in
[14,15]. Here, the idea is to use a 2D tree structure to provide
multiple resolutions of the bathymetry dataset. To avoid
the limitations of main memory, only the index structure
(i.e. the inner nodes) of the tree is stored in memory. The
leaves of the tree are kept on disk. Although this approach
allows handling datasets in the range of terabytes, it does
not completely avoid disk accesses during the simulation.

Since refinement, coarsening and load balancing of cells is
hard to predict in AMR, it is not clear which data points
will be required after a load balancing step (Fig. 1). Thus,
migrating geoinformation together with mesh elements is not
practical. To avoid the migration as well as disk accesses,
ASAGI implements a lazy replication strategy described in
the next section. To the best of our knowledge, ASAGI is
the only available system for geoinformation limited only by
the combined memory of all nodes and completely obviates
the need for disk accesses during the simulation.

3. DESIGN

One of the main design goals of ASAGI is to provide an
interface for applications that is as simple as possible and al-
lows easy integration into existing codes. ASAGI calls must
be added at three different points in the application as shown
in Listing 1: At the beginning to synchronize processes and
load the datasets, during the simulation to access the data
and at the end to free resources. Most important, ASAGI
does not require explicit information about load balancing
and migration of cells in the application. This information is
derived from the access pattern of the application. Despite
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Data is only replicated on-demand in

the simple interface, ASAGI supports datasets with multiple
resolutions and can manage multiple independent datasets.

Accesses to geoinformation typically have a spatial and
temporal locality in the application. If a grid point is ac-
cessed, there is a very high probability that many of the
neighboring grid points will be required as well. Although
the exact access pattern of adaptive simulations is not easily
predictable, this assumption holds for most applications.

As a further simplification, ASAGI stores datasets only as
Cartesian grids and does not use the mesh structure of the
application. Since geoinformation often comes from sampled
physical properties, many datasets are available as Cartesian
grids anyway. The netCDF library is used as an I/O backend
and accepts netCDF files that respect the COARDS (Co-
operative Ocean/Atmosphere Research Data Service) con-
ventions [1], an established standard for geographic data.
Nearest-neighbor interpolation is used in ASAGI to provide
valid data between grid points. The interface is sufficiently
flexible to support more sophisticated interpolation schemes
in the application as shown in Sec. 5.2.

Instead of predicting possible cell refinements, ASAGI
replicates data points only on-demand (Fig. 2). Whenever
the application requires new information not already avail-
able on the current node, a replication process is triggered.
The replication is based on point-to-point communication
and is completely decentralized. Disk access during the sim-
ulation is only required for datasets that do not fit into the
combined memory of all nodes. Since we do not migrate but
rather replicate data points, we also track the least recently
used points and automatically evict them.

To reduce management overhead, ASAGI divides the data-
set into equal-sized rectangular chunks, similar to the net-



#include <asagi.h>

int main(int argc, char** argv) {
// Initialization
// Initialize ASAGI
asagi::Grid geoData = asagi::Grid::create();
geoData->setComm (MPI_COMM_WORLD) ;
geoData->setThreads (omp_get_max_threads ());
// Set other parameters (optional):
geoData->setParam ("CACHE_SIZE", "64");
// Open the dataset in parallel
#pragma omp parallel
{ geoData->open("material_data.nc"); }

// Do the simulation
while (t < end_time) {
// Loop over all cells
#pragma omp parallel for
for (int i = 0; i < cells.size(); i++) {
float par = geoData->getFloat(cells[i].coord);
// Compute ’cells[i]’ with parameter ’par’
}
// MPI Communication/Load Balancing ...

}

delete geoData;
// Free other resources

Listing 1: Integration of ASAGI into a hybrid
MPI+OpenMP parallelized code written in C++-.
ASAGI provides similar interfaces for C and
Fortran.

CDF library, and does not manage single grid points or ar-
bitrarily shaped regions. These chunks group (spatially and
temporally) adjacent grid points together and are used as
cache lines. Thus, whenever a task of the application re-
quests a grid point not stored locally, the whole chunk is
transfered to a local cache. Every subsequent access to grid
points in the same chunk can then be handled without fur-
ther communication. Since we assume that the application
often requests adjacent grid points, most of the requests can
be satisfied by the cache which amortizes the cost of repli-
cating chunks from other nodes or loading them from the
file system.

4. IMPLEMENTATION

To scale to a large number of nodes, ASAGI distributes
the datasets to all processes and does not use a centralized
server to access them, thus, avoiding the bottleneck of typi-
cal 1:n communication patterns. In addition, the server part
is directly integrated into the library and is therefore auto-
matically started with the application making it easy to use
with batch systems.

When a task of the application requests a grid point,
ASAGI executes the following steps:

1. Determine the chunk containing the grid point.

2. If the chunk is not in the local cache, look for it in other
NUMA domains and/or on other MPI ranks and copy
it to the local cache.

3. If the chunk is not stored on any node, load it from
the file.

4. At this point the chunk is in the local cache and the
requested value is returned.

A detailed description of the implementation and available
options for steps 2 and 3 is given in the following subsections.

4.1 Local chunk storage

ASAGI supports three different methods to handle chunks.
In full mode, ASAGI loads the whole dataset during the ini-
tialization. If MPI communication is enabled, the dataset
gets distributed over all MPI ranks, such that each rank has
to store only a portion of the whole set. Instead of read-
ing the dataset at initialization, ASAGI can also be used
in cache mode. In this mode, chunks are only loaded on-
demand when they are required by the application. While
this mode reduces the initialization time, it usually increases
the total execution time since it complicates the replication
of chunks between nodes. A global dictionary needs to be
maintained with all current locations of chunks. This dictio-
nary needs to be updated with every replication, which is not
necessary in full mode since the initial position of a chunk is
fixed and chunks are always copied from there. Therefore,
the cache mode is primarily useful if the dataset is very large
and does not fit into the total memory of all nodes or only
a very small part of the dataset is actually processed by the
application. Finally, ASAGI has a pass-through mode where
accesses are not optimized with the chunk cache but directly
passed to the underlying 1/0 library. Since this mode is only
useful for testing, it is not discussed further in this paper.

To automatically evict unused chunks from the cache,
ASAGI implements the two-handed clock algorithm orig-
inally used as a page replacement algorithm in operating
systems [21]. The algorithm provides a reasonable approx-
imation for the least-recently-used (LRU) strategy with a
very low overhead. The actual size of the cache can be con-
figured through ASAGI’s interface.

4.2 Chunk replication

ASAGI has three different ways to handle multiple MPI
processes for full and cache mode. The simplest way is to
turn MPI communication completely off. For the full mode,
this means that the whole grid is stored in each process. Al-
though only possible for smaller datasets, this combination
can be used as a performance baseline to which other modes
can be compared. If MPI communication is turned off in
cache mode, ASAGI only looks for the chunk in the local
cache or on the local node and, if the chunk is not found
there, directly reads it from the file.

ASAGI can switch between remote memory access (RMA)
and an explicit communication thread when MPI communi-
cation enabled. The RMA implementation is based on MPI
windows with passive target communication from the MPI-
2 standard [11]. In full mode, the MPI windows are set
up after loading the data from the file and are configured
such that each process has direct access to all chunks of the
dataset. In cache mode, the local caches from each node are
accessible via RMA to replicate chunks. This is in contrast
to the full mode where caches are completely private and
replication is only done from the initially loaded dataset. To
maintain the global dictionary with RMA, required for the
cache mode, ASAGI uses MPI mutexes based on the MPI-
3 functions MPI_Fetch_and_op and MPI_Compare_and_swap.
The implementation is similar to [3] with the following slight
modification. Instead of updating the next pointer and wait-
ing in an MPI_Recv when the mutex is locked, we use an
MPI_Ssend which stores an implicit previous pointer. To for-



ward the lock to the next process in the queue, an MPI_Recv
with MPI_ANY_SOURCE is used. This optimization avoids the
update of the next pointer as described in [3].

Instead of using RMA, ASAGI can start an explicit com-
munication thread using the pthread library. This thread
waits for queries from other processes and sends back the
requested chunk. In cache mode, the thread also manages
the dictionary updates. Although only one communication
thread is started independent of the number of datasets,
ASAGTI still requires one core which cannot be used by the
application. The communication thread is therefore only
useful for codes with a hybrid parallelization.

For hybrid codes, ASAGI can activate NUMA detection.
If more than one NUMA domain is detected, ASAGI creates
a chunk cache for each NUMA domain and caches not only
accesses to remote nodes, but also to other NUMA domains.
The additional caching together with the increased memory
bandwidth can speedup the accesses to the dataset as shown
in Sec. 5. In full mode, ASAGI distributes the dataset over
all NUMA domains at initialization and provides an option
to search for a chunk in caches of all local NUMA domains
before using MPI.

5. RESULTS

To test the performance and scalability of ASAGI, we
used the AMR framework sam(oa)? [10] and the earthquake
simulation code SeisSol [7]. All tests were performed on
SuperMUC Phase 1 which is ranked 23rd on the Nov’l5
TOP500 list [19]. SuperMUC features 9216 dual socket In-
tel Xeon E5-2680 nodes with 16 cores and 32 GiB memory
per node. The nodes are organized in 18 islands connected
in a 4:1 pruned tree via Infiniband FDR10. All input files
were stored on the GPFS file system with an aggregated
bandwidth of 180 GiB/s. We used Intel MPI for sam(oa)?
but IBM MPI for SeisSol since the respective MPI library
has performed best with each code in the past.

For all datasets, we set the chunk size in the netCDF file
to exactly match the chunk size and thus the access pattern
of ASAGI. Fig. 3 shows the load time of the large setup
described in Sec. 5.1.1. The chunked storage in the netCDF
file leads to a factor 13 improvement in the initialization
time on 512 nodes. Note that finding the optimal chunk size
for a netCDF file for ASAGI is trivial since the library loads
the data chunk-by-chunk.

5.1 Sam(oa)?

Sam(oa)? is a parallel framework for dynamically adaptive
solutions of Partial Differential Equations (PDEs) based on
Sierpinski space-filling curve traversal. Currently, two major
applications are supported by sam(oa)?: porous media flow
and tsunami wave propagation. For both scenarios, the exe-
cution is split into two phases: the initialization phase starts
with a grid consisting of only a small number of cells and
successively refines and distributes the grid to multiple MPI
ranks using appropriate local error indicators. Afterwards,
the time stepping phase executes the simulation on the gen-
erated grid, allowing further refinement and coarsening in
each time step. To model heterogeneities in the computa-
tional domain, external files store the cell-local geoinforma-
tion managed by ASAGI. Hence, each time a cell is refined,
ASAGI is invoked for data access.

In all the experiments with sam(oa)® we analyze the two
phases separately. During the first phase (the initial mesh
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Figure 3: Load time of 4x 4.2 GiB of geoinformation
with continuous and chunked netCDF files. ASAGI
was configured in full mode with MPI windows and
NUMA detection enabled.

adaption), there are very coarse cells which have a subopti-
mal access pattern for ASAGI since the fine dataset is sam-
pled numerous times to create a cell average. This simpli-
fication in sam(oa)? avoids creating different resolutions of
the same dataset in an additional preprocessing step. How-
ever, the averaging for the coarse cells often requires different
chunks and therefore multiple chunk replications for a single
cell. This effect leads to significantly slower mesh adaption
rates in the beginning. We only measure and compare the
time for complete mesh adaption steps of sam(oa)2 since
ASAGI calls are tightly integrated into the mesh adaption.

5.1.1 Two-Phase Porous Media Flow

The first scenario is a 2.5D two-phase porous media flow
model for oil reservoir simulation [10]. Using a low-order
IMPES (Implicit pressure, explicit saturation) scheme, the
simulation alternates the solution of a linear system for pres-
sure updates and explicit time steps for phase saturation
updates. Cell permeability tensors and cell porosities are
provided by ASAGI. AMR is supported in the horizontal
dimensions, the vertical dimension is uniformly refined.

We tested the scenario with two different mesh sizes in
sam(oa)?. In the small test case, we used an input file with
71 million grid points (~1 GiB) and allowed vertical refine-
ment between 8,000 and 2 million cells with 340 layers in the
horizontal dimension. For the large setup, we increased the
input file by a factor of four in x and y dimension leading
to 17 GiB of geoinformation and allowed a vertical refine-
ment from 8,000 to 33 million cells. With this size, we have
already reached the memory limit of a SuperMUC node.
Storing the whole dataset on all nodes is only possible for
64 resp. 256 and more nodes (without/with NUMA detec-
tion). For smaller node counts, the combined memory re-
quirements from sam(oa)® and ASAGI exceed the limit. The
chunk sizes are fixed to 16 x 16 x 340 grid points for the small
and 64 x 64 x 340 grid points for the large setup. The caches
are set to 256 chunks per node (340 MiB resp. 5.3 GiB).

Fig. 4 shows the initial mesh adaptions of sam(oa)? with
different ASAGI configurations. Sam(oa)? is executed with
one task per node and 15 (communication thread) resp. 16
(MPI windows) OpenMP threads per node. Since the whole
dataset is required to initialize the simulation, the full mode
of ASAGI is much faster than the cache mode even if we in-
clude the load time in the measurement. Throughout the
experiments, the communication thread version performs
better than the MPI window implementation despite the
fact that only 15 cores are available for the computation.
One major disadvantage of MPI windows with passive target
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Figure 6: Overhead of the mesh adaption in

sam(oa)? for the large oil reservoir simulation. An
explanation of the modes can be found in Table 1.

communication is that they are not guaranteed to progress
if the target does not call any MPI functions. Since we did
not start the explicit progress thread of the Intel MPI li-
brary, some tasks have to wait until they get their requested
chunks which slows down the whole mesh adaption. The
results also show that the NUMA-aware storage and com-
munication lead to additional performance improvements.

Since all chunks are stored in the cache of at least one node
after the initial mesh adaptions, the cache mode (with MPI
enabled) delivers a similar performance to the full mode in
the simulation (Fig. 5). Indeed, the NUMA-aware caches
have a greater impact on the performance than the MPI
communication pattern. In this state, the simulation is dom-
inated mostly by the linear solver and the whole mesh adap-
tion including the ASAGI calls only requires between 4.7%
and 4.9% of the total wall time when enabling MPI commu-
nication and NUMA detection in full mode on 512 nodes.
Storing the whole dataset on every node reduces this only
to 3.2% (Fig. 6).

5.1.2  Tsunami Simulation with Time-Dependent Dis-
placements

The second scenario in sam(oa)? is a shallow water wave
propagation solver used for tsunami simulation. The simula-
tion scheme is fully explicit in this case, hence computation
per time step is comparably small and calls to ASAGI have
a much larger impact on the performance during the simula-
tion. In contrast to the first setup, the shallow water imple-
mentation is purely 2D and based on bathymetry and sea
floor displacements. However, sam(oa)2 has the option to
use time-dependent displacements generated by earthquake
simulation codes. Such displacements elevate the sea floor
and thus the water over time and are considered to be more
realistic compared to an instant elevation produced by static
displacements.

We decided to use the 2011 Tohoku tsunami (Fig. 8) as
an example for the shallow water implementation since it
is well documented and there are many datasets available.
Thus, our setup consists of a 2D bathymetry dataset obtain
from GEBCO [2] with 14,000 x 8,000 grid points and a
3D displacement file computed with SpecFEM [5] with 80
time steps and 2572 x 3621 x 80 grid points. This results in

Figure 8: Visualization of the 2011 Tohoku tsunami

after 3, 10, 17 and 23 min on a fully adaptive grid
simulated with sam(oa)?.

427 MiB of bathymetry data and 2.8 GiB of displacement
data. We use a chunk size of 128 grid points in = and y
direction and four grid points in time. The chunk caches are
configured to hold 512 bathymetry and 512 displacement
chunks and require 32 4+ 128 MiB of memory.

Fig. 7 shows, similar to the porous media flow, the per-
formance for initial mesh adaption and the mesh adaption
during the simulation. For the initial mesh adaption of the
time-dependent dataset, the improvement of the NUMA de-
tection is clearly visible. During the actual simulation stor-
ing the whole dataset on each node performs best but also
the full mode with MPI communication and the cache mode
deliver a reasonable performance.

5.2 SeisSol

SeisSol is an earthquake simulation package that couples
3D seismic wave propagation to the simulation of dynamic
rupture propagation across earthquake fault zones [18]. In
contrast to sam(oa)?, it does not use AMR, but relies on fully
unstructured tetrahedral meshes. These meshes are cru-
cial to resolve complex geometries of realistic underground
structures and resolve small-scale earthquake dynamics. We
integrated ASAGI into the initialization routines of Seis-
Sol to load complex 3D velocity models (material proper-
ties describing the seismic wave speeds) required for accu-
rate propagation of seismic waves. Note, that the initializa-
tion of element-wise material properties avoids the efforts of
specifically meshing the interfaces represented by geological
changes in material properties. Since the initialization of
the velocity model is completely decoupled from the rest of
the code (in contrast to sam(oa)?), SeisSol can act as bench-
mark application for ASAGI. In addition, due to the fixed
mesh in SeisSol it is also possible to count the exact number
of accesses to ASAGI.

Although there are two alternative approaches for loading
3D velocity models, we explicitly decided to use the Carte-
sian grids in ASAGI as a common interface. One method for
static unstructured meshes is to integrate geoinformation di-
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Figure 5: Scaling of the mesh adaption step during the simulation with different ASAGI configurations in
the porous media flow scenario. An explanation of the communication patterns can be found in Table 1.

Table 1: Communication patterns in ASAGI
No MPI communication and no NUMA detection — In full mode the whole dataset is stored on

none
every node.

numa No MPI communication but with NUMA detection — In full mode the whole dataset is stored
on every node.

window With MPI communication using RMA (MPI windows), no NUMA detection

window + numa

With MPI communication using RMA and NUMA detection

window + numa/cache

Only avail. in full mode: MPI communication using RMA and NUMA detection; caches from
other NUMA domains are searched for the chunk before using MPI

comm

With MPI using a communication thread, no NUMA detection

comm -+ numa

With MPI using a communication thread and NUMA detection

comm + numa/cache

Only avail. in full mode: MPI using a communication thread and NUMA detection; caches from
other NUMA domains are searched for the chunk before using MPI
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Figure 9: Coupled dynamic rupture and wave prop-
agation simulation based on the 1994 Northridge
earthquake with the 3D velocity model CVM-H.

rectly into the mesh structure, as for example done in [17].
While this is very simple for a single simulation, it is less
efficient for extended studies since it requires a new dataset
for every change of the mesh. Compared to simple Cartesian
grids, the integration of geoinformation into the mesh struc-
ture also complicates the preprocessing step, especially for
very large meshes with 100+ million cells. We also decided
against the direct integration of community velocity mod-
els (e.g. [9,20]), which provide explicit code to compute the
material properties for any coordinate. Such models would
require changes of SeisSol’s code base for every new model
and would limit us to models providing a library.

To test the ASAGI integration, we simulated an earth-
quake scenario based on the 1994 Northridge earthquake
(Fig. 9) integrating the SCEC Community Velocity Model
— Havard (CVM-H) [13,20]. We used 3D meshes (1.9 mil-
lion and a 74.8 million elements) constructed from geologi-
cal constraints such as high-resolution topography data and
SCEC Community Fault Model as presented in [4], but re-
placed the 1D velocity structure with the complex 3D ve-

Sylmar CS (SCS) 0.1 - 10 Hz
T

—— 1D velocity synthetics
—real data
T / ——3D velocity synthetics

normalized EW velocity

time [s]

Figure 10: Observed ground motions compared to
respective simulations with SeisSol based on the
complex 3D model provided by ASAGI and a simpli-
fied 1D velocity model at station Sylmar CS (SCS).
The 3D velocity model captures the first strong seis-
mic waves much better than the simplified model.

locity model. This replacement influences the local ground
motions and overall high-frequency content of the seismic
wave field. For the meshes, we created input datasets with
900 meter resp. 200 meter resolution resulting in 5.7 and 527
million grid points. The datasets consist of three different
parameters (density, shear modulus and the first Lamé pa-
rameter), resulting in 66 MiB resp. 5.9 GiB of input data.
To project the Cartesian grid to the cell centers of the tetra-
hedra, SeisSol samples the eight surrounding grid points and
implements a trilinear interpolation. The chunk size in the
netCDF file and in ASAGI is set to 32 grid points and the
cache is configured to hold 128 chunks per node (48 MiB).
Since the whole dataset is required, we only tested the full
mode of ASAGI which performs much better in such cases.
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Figure 11: Load time for the 66 MiB (left) and 5.9 GiB (right) velocity model datasets. An explanation of

the communication patterns can be found in Table 1.
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Figure 12: Number of data accesses per second handled by ASAGI in the Northridge setup. An explanation

of the communication patterns can be found in Table 1

In addition to the initialization benchmarks, we also simu-
lated 50 s of the earthquake on the high resolution mesh. For
SeisSol, this was the first simulation at that scale that used
a complex 3D velocity model. Previous simulations were
only based on a few material regions provided via a CAD

model or used simple 1D velocity structure. The compari-
son of synthetic and observed ground motions covering the
full frequency band relevant for seismic engineering (up to

10 Hz) at station Sylmar CS (SCS) is shown in Fig. 10. The

3D velocity model captures the strong, first arriving seismic

waves much better than the simplified 1D model.

Figs. 11 and 12 present the load and the initialization time
in SeisSol for the small and the large datasets. Since the to-
tal initialization takes only between 0.1 and 1 seconds for the
small dataset, measurement errors are inevitable. However,
as can be seen, the NUMA-aware storage has a stronger in-
fluence on the performance than the MPI communication

mode which confirms our experiments with sam(oa)?. The
long load times we measured for the large setup when dis-

abling MPI communication can be explained by the addi-
tional I/O requirements. If MPI is enabled, each point in
the dataset is only loaded by one rank. If MPI is disabled,
however, each data point is loaded from all ranks, increasing
the I/O transfers by a factor equal to the number of ranks.
In addition, disabling the MPI communication in ASAGI
also removes the implicit barrier between loading the data
and the initialization in SeisSol. Thus, and due to measur-
ing only rank 0, imbalances in the load time are only visible

in the second phase of the initialization.

6. CONCLUSIONS
We presented ASAGI, an open-source library for geoin-
formation in adaptive simulations. The library provides a

simple interface that can easily be integrated into existing
The distributed design of ASAGI allows it

applications.
to handle very large geoinformation datasets without disk
accesses. The replication of data between compute nodes



and NUMA domains in ASAGI is automatically triggered
by data accesses from the application. ASAGI uses chunks
(similar to netCDF) to cache data on the local node and to
reduce the number of replications.

Our results show that ASAGI is prepared for petascale
simulations on current supercomputers. With the AMR
framework sam(oa)?, ASAGI scaled up to 8,192 cores on
SuperMUC. Already on the dual socket Intel Xeon E5-2680
nodes, sam(o0a)? profits from the NUMA-aware storage op-
timization in ASAGI. In addition, we were able to initialize
a complex 3D velocity model with 5.9 GiB in only a few
seconds in SeisSol using ASAGI on 65,536 compute cores.
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