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Abstract14

Slow-slip events (SSEs) modulate the earthquake cycle in subduction zones, yet un-15

derstanding their physics remains challenging due to sparse observations and high com-16

putational cost of physics-based simulations. We present a scientific machine-learning17

approach using a data-driven reduced-order modeling (ROM) framework to efficiently18

simulate the SSE cycle governed by rate-and-state friction in a Cascadia-like 2D subduc-19

tion setting. Our approach projects fault slip, slip-rate, and state variable trajectories20

onto a spline-based latent space, which is subsequently emulated using proper-orthogonal21

decomposition and radial-basis-function interpolation. Achieving a speedup of ∼ 360, 000×22

compared to volumetric simulations, the ROMs enable comprehensive parameter explo-23

ration and Bayesian Markov chain Monte Carlo (MCMC) inversion. Our analysis reveals24

complex, non-linear dependencies of SSE characteristics on the width and magnitude of25

the deep, low-effective-normal-stress region. Our MCMC inversion constrained by North-26

ern Cascadia SSEs observations indicates near-lithostatic pore fluid pressure (99.6±0.17%27

lithostatic) and positions the upper frictional transition zone at 30.4 ± 2.8 km depth,28

consistent with geophysical observations. The inversion resolves the deep SSE-portion29

of the slab spanning 45±16 km with low effective normal stress of 3.8±1.4 MPa. This30

framework provides a new tool for advancing the physics-based understanding of SSEs31

and subduction zone faulting mechanics. By systematically linking megathrust proper-32

ties such as fluid pressure and fault strength to rate-and-state friction governed slow slip33

cycle characteristics, such as recurrence interval, our approach helps to constrain the first-34

and second-order physics-based controls and the uncertainties of how plate boundaries35

slip.36

Plain Language Summary37

Slow earthquakes, also known as slow slip events (SSEs), are subtle, slow-moving38

movements that occur deep underground in subduction zones, regions where one tectonic39

plate slides beneath another. Unlike sudden, destructive earthquakes, slow earthquakes40

unfold over days to weeks. Although they do not cause shaking, they may influence how41

and when larger earthquakes happen. Because they occur far below the surface, slow earth-42

quakes are difficult to observe directly. Simulating them with computer models is also43

challenging and time-consuming, limiting what scientists can explore. In this study, we44

develop a fast and efficient method to simulate slow earthquakes using scientific machine45

learning. Our reduced-order model reproduces slow earthquake behavior with over 300,00046

times less computational effort than traditional methods. We apply this approach to a47

model of the Northern Cascadia subduction zone, in the Pacific North-West. Our results48

show that slow earthquakes are highly sensitive to a deep part of the fault that has un-49

usually low resistance to slip, likely caused by high fluid pressure. This new modeling50

tool allows us to test a wide range of physical conditions much more efficiently. It pro-51

vides clearer insight into how slow earthquakes work and how they may influence the broader52

earthquake cycle.53

1 Introduction54

The conventional view of the earthquake cycle as a simple stick-slip phenomenon,55

where accumulated tectonic strain is released only through seismogenic earthquakes (Ried,56

1911), has evolved dramatically over the past two decades. Advanced seismological and57

geodetic observation networks have revealed a rich spectrum of fault slip behavior (Gomberg58

et al., 2016). Among these, slow slip events (SSEs) have emerged as an important com-59

ponent of the seismic cycle, accommodating a large portion of tectonic plate motion and60

thus contributing to the moment budget at large continental faults (Linde et al., 1996;61

Rousset et al., 2019) and in many subduction zones worldwide (Behr & Bürgmann, 2021;62

Schwartz & Rokosky, 2007). For example, SSEs have been documented at the Casca-63
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dia Subduction Zone (CSZ) (Schmidt & Gao, 2010), offshore from Boso Peninsula (Ozawa64

et al., 2007), in the Nankai Trough, Japan (Obara et al., 2004; Araki et al., 2017), and65

along the Hikurangi margin in New Zealand (Wallace et al., 2012). Slow slip events typ-66

ically manifest as transient reversals in the direction of surface deformation, detected by67

high-precision Global Navigation Satellite System (GNSS) networks. SSE displacement68

amplitudes reach several millimeters to centimeters which is 10–100 times faster than69

the tectonic loading and durations range from days to years (Dragert et al., 2001; Peng70

& Gomberg, 2010; Bartlow et al., 2011). The CSZ has been particularly instrumental71

for studying SSEs (Schmidt & Gao, 2010; Bartlow et al., 2011). There, transients recur72

quasi-periodically every ≈14 months and and have been monitored for the past ∼25 years73

(Gomberg et al., 2016; Schmidt & Gao, 2010).74

The physical mechanisms controlling SSEs remain enigmatic, as their potential role75

as precursors of imminent megathrust earthquakes (Obara & Kato, 2016; Ruiz et al., 2014;76

Li & Gabriel, 2024), despite extensive research (Bürgmann, 2018). Their occurrence at77

depths ranging from ∼25-40 km introduces uncertainties about the structure, material78

properties, and pressure and temperature conditions at these transitional depths (Behr79

& Bürgmann, 2021). This, combined with the small surface deformation signals produced80

by SSEs and the rapid loss of resolution with depth, limits the constraints that obser-81

vational data alone can place on their governing physics (Liu & Rice, 2007). Consequently,82

numerical simulations incorporating laboratory-derived friction laws have become essen-83

tial for investigating the mechanics of these phenomena (Liu & Rice, 2007; Segall et al.,84

2010). Rate-and-state friction has emerged as the predominant framework for simulat-85

ing sequences of earthquakes and aseismic slip (e.g., Rice & Tse, 1986; Kato, 2002; Bar-86

bot et al., 2012; Jiang et al., 2022; Erickson et al., 2023). These constitutive laws describe87

fault strength as dependent on both slip-rate and a state variable, representing contact88

properties at the fault interface (Dieterich, 1979; Ruina, 1983).89

Traditionally, two classes of rate-and-state friction models have been used to re-90

produce the key characteristics of SSEs. In both frameworks, SSEs arise spontaneously91

from specific combinations of frictional stability regimes along the fault, particularly, in-92

cluding a conditionally stable region near the transition between fully locked and con-93

tinuously creeping sections. In the first class of models, SSEs emerge from a narrow velocity-94

weakening (VW) region embedded within a velocity-strengthening (VS) zone, where the95

ratio between VW patch width and nucleation size governs SSEs recurrence and prop-96

agation (Rubin, 2008). The second class, introduced by Liu and Rice (2007), focuses on97

transitional frictional stability near the down-dip limit of the seismogenic zone. In this98

approach SSEs nucleate within conditional stable fault portions characterized by VW99

behavior that is stabilized by low effective normal stress and proximity to the VW-VS100

transition. To model spontaneous SSEs, these models incorporate a fault portion with101

reduced effective normal stress (e.g. Liu & Rice, 2005, 2009; Rubin, 2008; Matsuzawa102

et al., 2010; Li & Liu, 2016a; Luo & Ampuero, 2018). In subduction zones, this may re-103

sult from elevated pore fluid pressure at the megathrust interface (Audet et al., 2009;104

Suppe, 2014). The Liu and Rice (2007) framework demonstrates that the ratio between105

the width of this low effective stress zone and the nucleation length scale (h∗) critically106

controls both the occurrence and characteristics of SSEs, with higher ratios producing107

more frequent events of smaller magnitude (Liu & Rice, 2009; Cattania, 2019).108

More recent efforts have focused on incorporating rate-and-state friction fault, along109

with fluid flow, permeability evolution, and changes in pore fluid pressure to produce SSEs110

(Ozawa et al., 2024; Perez-Silva et al., 2023). This aims to provide a more realistic phys-111

ical explanation that aligns with observations. Despite their success in reproducing ob-112

served characteristics of SSEs, physics-based forward models are often simplified, e.g. by113

reducing dimensionality or idealizing fault geometry, and typically focus on limited as-114

pects of the parameter space due to computational challenges. Simulating SSEs requires115

capturing processes across vastly different timescales, from the evolution of individual116
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slow slip events to the periods where fault slip-rate and slip-rate gradients are low. This117

multi-scale character necessitates repeated fine temporal resolution to capture SSE nu-118

cleation dynamics, while simultaneously requiring long simulation times to capture mul-119

tiple SSE cycles. The computational costs become problematic when attempting to con-120

duct sensitivity analyses or quantify uncertainties in model predictions, motivating the121

need for more efficient simulation approaches.122

Scientific machine learning (ML) methods have recently advanced the analysis of123

SSE observations. Deep learning models, in particular, have proven effective in detect-124

ing low signal-to-noise ratio signatures of SSEs from geodetic data and their seismic coun-125

terparts, low-frequency earthquakes (LFEs) and non-volcanic tremor (Hulbert et al., 2022).126

For instance, Lin et al. (2024) applied Convolutional Neural Networks (CNNs) to con-127

tinuous seismic records to build comprehensive LFE catalogs, revealing thousands of pre-128

viously uncataloged events, suggesting hidden SSEs which were unraveled previously. Münchmeyer129

et al. (2024) demonstrated that such models can generalize across different subduction130

zones, suggesting that LFEs may share universal waveforms characteristics that are learn-131

able by deep networks. From a geodetic perspective, Costantino et al. (2023) developed132

a multi-station deep learning detector that operates on raw GNSS time series to iden-133

tify subtle deformation transients associated with SSEs. To overcome the scarcity of la-134

beled training data, they used a synthetic training simulation data set. Early efforts to135

apply ML directly to the governing physics of fault slip include Physics-Informed Neu-136

ral Networks (PINNs), embedding the governing equations into the loss function of neu-137

ral networks to estimate fault properties (e.g. Fukushima et al., 2023; Okazaki et al., 2022;138

Fukushima et al., 2025; Rucker & Erickson, 2024). Recently, Fourier Neural Operators139

(FNOs) have been used to emulate the nonlinear equations governing dynamic rupture140

propagation (Tainpakdipat et al., 2025).141

Reduced-order models (ROMs) have proven to be an effective method to acceler-142

ate geoscience simulations, including modeling slow slip events (Kaveh et al., 2024), seis-143

mic shake maps (Rekoske et al., 2023) and wave fields (Rekoske et al., 2025), thermal144

structures in subduction zones (Hobson & May, 2025a), geothermal geodynamic processes145

(Degen et al., 2023) and magnetotellurics (Quiaro et al., 2025). By projecting high-dimensional146

systems onto lower-dimensional subspaces that retain the primary characteristics, ROMs147

make it possible to capture the overall evolution of complex physical systems at a frac-148

tion of the cost of full-order models (FOMs). Reported speedups range from several hun-149

dred to over 100,000 times faster, depending on the application. Such reductions in com-150

putational cost enable global exploration of the parameter space and facilitate uncertainty151

quantification that are impractical with physics-based models.152

In this study, we introduce and evaluate a new reduced-order modeling framework153

designed to efficiently simulate SSE cycles governed by rate-and-state friction. We uti-154

lize the volumetric, scalable discontinuous Galerkin library (Uphoff et al., 2022) on un-155

structured meshes to simulate sequences of aseismic slip in a Cascadia-like model setup156

following Liu and Rice (2009), and expand their exploration of the model parameter space.157

Our ROM methodology combines an efficient spline-based latent representation of rate-158

and-state friction SSE cycle models outputs, leveraging their phase-space characteris-159

tics, with Proper Orthogonal Decomposition (POD, Bui-Thanh et al. (2003)) and coefficient-160

interpolation using Radial Basis Functions (RBFs, Audouze et al. (2009)). This approach161

reduces the computational cost by ∼ 3.6×105 times compared to performing a physics-162

based tandem simulation, enabling comprehensive parameter space exploration and un-163

certainty quantification of SSE characteristics. We perform a full Bayesian Markov chain164

Monte Carlo (MCMC) inversion constrained by Northern Cascadia SSEs characteristics,165

constraining the width (44.7±16.2 km) and magnitude (3.8±1.4 MPa) of a deep low166

effective normal stress region. We demonstrate the accuracy and efficiency of our ROM167

framework and highlight its potential for advancing the physics-based understanding and168

simulation of complex fault slip behavior.169
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Table 1. Summary of tandem SSE cycle forward simulation parameters.

Symbol Definition Value Reference

Wl Up-dip extent of low effective normal
stress zone

varied
[152, 189.5]
km

Wr Down-dip extent of low effective nor-
mal stress zone

252 km
along dip

σ0 Fault normal stress outside of [Wl,Wr] 50 MPa Liu and Rice (2009)

σW Fault normal stress within [Wl,Wr] varied [1, 6]
MPa

See Eq. (3)

L0 Characteristic slip distance outside of
[Wl,Wr]

13 mm Liu and Rice (2009)

LW Characteristic slip distance within
[Wl,Wr]

0.16 mm Liu and Rice (2009)

a Direct effect parameter varies along-
fault, see
Figure 1

He et al. (2006)

b Evolution effect parameter 0.0045 He et al. (2006)

µ Shear modulus 33.91 GPa

ν Poisson’s ratio 0.25

f0 Reference coefficient of friction 0.6

ṡ0 Reference slip-rate 1×10−6 m/s

2 Full-order models of slow slip cycles in Cascadia170

To investigate the time-dependence of repeating SSEs in a Cascadia-like subduc-171

tion zone, we first describe a full-order model (FOM) simulation framework. The fault172

stress evolution in this model follows the regularized form of the rate-and-state friction173

law (Dieterich, 1979; Ruina, 1983; Lapusta et al., 2000; Rice & Ben-Zion, 1996), given174

by175

τ(ṡ, ψ) = a arcsinh

(
ṡ

2ṡ0
exp

(
ψ

a

))
(1)

where the fault shear stress τ is a function of the slip-rate ṡ (with ṡ = ∥ṡ∥) and a state176

variable ψ, with a representing an empirical friction parameter to describe the “direct177

effect” and ṡ0 a reference slip-rate. The state variable evolves temporally according to178

the Dietrich-Ruina aging law179

dψ

dt
(ṡ, ψ) =

bṡ0
L

(
exp

(
f0 − ψ

b

)
− ṡ

ṡ0

)
(2)

where b is an empirical frictional parameter describing the time-dependent “evolution”180

effect, L denotes the characteristic slip distance, and f0 is a reference friction coefficient.181

The evolution of and interaction between slip-rate and state variable can be an-182

alyzed in a two-dimensional phase-space defined by these variables, which offers a sim-183

plified framework for examining the system’s inherent instability (Ranjith & Rice, 1999).184

For VW faults, trajectories in this phase-space may form either closed or open orbits (i.e.,185
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Figure 1. Model setup and unstructured triangular mesh for the full-order SSE cycle models

using tandem. (a) View of the computational domain, boundary conditions and applied loading,

where ṡP is the applied loading rate. Not to scale, note the 15× vertical exaggeration of the y-

axis. (b) Zoomed view of the rate-and-state friction fault, showing the adaptively refined mesh,

with W and σW being the width and magnitude of a low effective normal stress zone respectively

and a, b are rate-and-state friction parameters. (c) Along-fault profiles of a − b derived from

gabbro friction experiments (He et al., 2006) and the initial effective normal stress distribution

along the fault where Wl and Wr are the up-dip and down-dip extent of the low effective normal

stress zone, σ0 is the effective normal stress outside of this zone and red horizontal bar mark the

VW-VS transition point. Profiles of normal stress are shown for σW = 4 MPa.

limit cycles, e.g., (Pranger et al., 2022)), reflecting stable oscillatory behavior or runaway186

slip, respectively. The geometry of phase-space trajectories provides a clearer, lower-dimensional187

view of the complex faulting behavior than the time-domain (Viesca, 2016a; Ciardo &188

Viesca, 2024). We will later utilize this phase-space representation of the rate-and-state189

friction SSE cycle simulations as a more suitable representation for reduced-order mod-190

eling.191

All models in this study consist of two-dimensional parallelogram-shaped domains192

measuring 4500 km in length and 400 km in width, containing a single planar fault that193

bisects the domain into two geometrically identical regions (Figure 1(a)). This setup194

follows the configuration of the BP3 SCEC community benchmark (Erickson et al., 2023).195

To approximate the CSZ, both the fault and lateral domain boundaries are inclined at196

a shallow dip angle of 10o relative to the upper and lower domain boundaries. The up-197

dip edge of the fault intersects the upper free surface, while the down-dip edge termi-198

nates at the bottom boundary, which is also treated as a free surface.199
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Loading is prescribed as steady tectonic convergence, (Figure 1(a), Biemiller et200

al., 2024), imposed via Dirichlet boundary conditions, with velocities of ṡp = (11.5, 2.0)201

cm/year in the x and z components, respectively, to the fault at depths exceeding 280202

km along-dip. In addition ±ṡp/2 is applied to the lateral domain boundaries. Fault slip203

behavior governed by rate-and-state friction can be classified into two regimes based on204

the difference of the frictional parameters a − b. When a − b < 0, the fault exhibits205

VW behavior, which promotes the release of accumulated stress through rapid seismic206

slip. In contrast, when a−b > 0, the fault is VS, favoring stable creep (Scholz, 1998).207

SSEs are emerging in our model framework by applying a reduced effective nor-208

mal stress (σW ) to a localized subregion of the rate-and-state friction fault, which en-209

compasses the stability transition zone (a−b = 0) between VW (up-dip) and VS (down-210

dip) frictional behavior ( 1), following the approach established in previous studies (e.g.,211

Liu & Rice, 2005, 2007, 2009; Rubin, 2008). The width of this region will be denoted as212

W .213

The initial normal stress along the fault (Figure 1(c)) is given by214

σ(d) =

(
1

1 + exp(−γ(d−Wl))
− 1

1 + exp(−γ(d−Wr))

)
(σW − σ0) + σ0, (3)

where d is the distance along the fault in the down-dip direction with d = 0 at the top215

free surface, σ0 is the normal stress outside the low effective normal stress zone which216

is taken to be 50 MPa. The parameter γ is a smoothing coefficient controlling the smooth-217

ness of the transition between the two normal stress regions and taken to be 0.35, while218

Wl and Wr represent the up-dip and down-dip boundaries of the region of low effective219

normal stress.220

We follow Liu and Rice (2009) and define the width of the low-effective normal stress221

zone (W ) as the distance from the stability transition point (a− b = 0) to it’s up-dip222

termination (Wl). In the following, we build reduced order models to represent varia-223

tions in both the width (by varying Wl) and normal stress reduction (varying σW ) of this224

region (Figure 1). Other model parameters remain fixed.225

We use frictional parameters resembling experimentally derived values for gabbro226

(He et al., 2006). The parameter b is held constant throughout the domain, while a is227

varied to achieve the target a−b values (Figure 1) consistent with the experimental data.228

As characteristic slip distance, we assume LW= 0.16 mm within the low effective nor-229

mal stress zone and L0=13 mm outside of this zone. All model parameters are listed in230

Table 1.231

We employ the open-source SEAS simulation software tandem (Uphoff et al., 2022)232

to conduct quasi-dynamic simulations of SSEs in this two-dimensional Cascadia-like set-233

ting (Liu & Rice, 2009). Each simulation constitutes a full-order model (FOM), where234

simulations are run to contain at least 20 SSE cycles, after a spin up phase. tandem uti-235

lizes a discontinuous Galerkin (DG) finite element method and supports curvilinear el-236

ements within an unstructured mesh composed of triangular elements. Preconditioned237

Krylov methods from the PETSc-TAO library (Balay et al., 2025b, 2025a, 1997) are used238

to solve the elasticity problem arising from the DG spatial discretization. Time integra-239

tion of the rate-and-state friction ODEs within tandem uses an embedded sixth-order240

Runge-Kutta scheme (Abhyankar et al., 2018). We implement time step adaptivity by241

using an error estimator obtained from the difference between the 5th order and 6th or-242

der solution following (Dormand & Prince, 1980).243

For all simulations, the on-fault resolution is chosen to resolve the smaller of the244

characteristic nucleation size, h∗, and the process zone size, Λ, by a factor of 20/dpoly,245

where dpoly = 6 is the polynomial degree of DG basis functions used, thereby ensur-246

ing adequate spatial resolution (Uphoff et al., 2022). The simulations are initiated by247

–7–



manuscript submitted to JGR: Solid Earth

setting the state variable ψ to a value that satisfies the governing rate-and-state friction248

law for the prescribed initial stress conditions and slip-rate, respectively.249

In a general setting, the FOM described above is a set of coupled parametric ODEs250

coupled to a PDE. In any given study designed to explore model parameters, one is re-251

quired to hold some parameters constant and vary others. To generalize the presenta-252

tion of the reduced-order model in Section 3 we denote the parameters varied via253

ξ =
{
ξ1, . . . , ξdim(P)

}
. (4)

In this work we consider a two-dimensional parameter space (dim(P) = 2) with ξ1 =254

W ∈ [30.5, 68] km and ξ2 = σW ∈ [1, 6] MPa. All other parameters such as a, b, L255

(Table 1 for a complete list) are not varied. We will denote our 2D parameter space by256

P.257

3 SEAS model order reduction258

Our reduced-order model (ROM) methodology is designed provide an approximate259

value of slip, slip-rate and state variable at locations along the fault as a function of time260

t and the parameters ξ = (W,σW ). An overview of our ROM methodology is shown261

in Figure 2.262

The construction of our ROM starts by uniformly sampling the parameter space263

within prescribed minimum and maximum values for each ξi. We then evaluate the FOM264

at different parameter realization ξi, i = 1, . . . , N to obtain N simulation outputs, each265

being denoted by Q(ξi) (step 1 in Figure 2). The N outputs consist of time discrete val-266

ues of slip, slip-rate and state variable at different locations along the fault, that is Q(ξi) =267

(t, Ṡ,Ψ,S), where t is a vector of simulation time stamps of length n, and Ṡ,Ψ,S ∈ Rn×m268

are matrices representing slip-rate, state variable, and cumulative slip, respectively, across269

m fault observation points. We will refer to the time series of length n for quantities at270

observation points j = 1, . . . ,m via the sub-script j. That is, Sj denotes the time se-271

ries for the slip at the jth observation point and thus S = [S1, . . . ,Sm] and Qj = (t, Ṡj ,Ψj ,Sj).272

A key aspect of our ROM strategy is that, instead of reducing the dimensionality273

of simulations defined over fixed time intervals, we reduce the dimensionality over each274

SSE cycle independently. Each trajectory Q(ξi) is segmented into p individual cycles275

Qk(ξi), k = 1, . . . , p by applying a slip-rate threshold criterion at a pre-selected loca-276

tion on the fault (step 2 in Figure 2). This location is set to 195 km along-dip, a posi-277

tion chosen to be within the VW region of the low effective normal stress zone (W ) for278

all FOM simulations. Whenever the slip-rate at this location exceeds a threshold of 1×279

10−4 m/s, a new cycle boundary is defined, thereby triggering a split in the data sequence.280

To prevent the clustering of multiple triggers within a single event, we impose an addi-281

tional temporal constraint which ensures that no new cycle boundary can be defined within282

a three-month period following the previous one. This period is well below the expected283

recurrence interval of the SSE and thus ensures that each distinct SSE is identified as284

a single cycle.285

The construction of the ROM corresponding to each individual k SSE cycle is de-286

tailed in Sections 3.1.1 and 3.1.2. Once constructed, each cycle-specific ROM defines a287

mapping288

ROMk(ξ∗) = Qk(ξ∗), for k = 1, . . . , p, (5)

where ROMk(·) represents the reduced-order model for the kth cycle, ξ∗ ∈ P denotes289

an arbitrary parameter vector in which ξ∗ ̸= ξi, i = 1, . . . , N and Qk(ξ∗) is the re-290

sulting ROM approximation for the complete time series of the slip-rate, state and slip291

at all fault observation points m. The superscript ∗ is used to distinguish ROM inputs292

from the full-order model inputs ξi, i = 1, . . . , N used to construct the ROM. To re-293

construct a full multi-cycle simulation sequence for a given parameter ξ∗, we evaluate294
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1
. .

. ⇠
N

)

<latexit sha1_base64="ThX7bBIPchJ70YZ6IFDkOH7O6xY=">AAACBHicbVC7TsMwFHXKqy2vAGMXiwqpMFQJQ2GsxMJYBH1ITYkcx2mtOk5kO4gSdWDhV1gYQIiVH2BjQOJvcNoO0HIky0fn3Kt77/FiRqWyrG8jt7S8srqWLxTXNza3ts2d3ZaMEoFJE0csEh0PScIoJ01FFSOdWBAUeoy0veFZ5rdviJA04ldqFJNeiPqcBhQjpSXXLDmIxQPk2hXHi5gvR6H+oHNLr48OXbNsVa0J4CKxZ6Rcz999fVw2Cg3X/HT8CCch4QozJGXXtmLVS5FQFDMyLjqJJDHCQ9QnXU05ConspZMjxvBAKz4MIqEfV3Ci/u5IUSiz9XRliNRAznuZ+J/XTVRw2kspjxNFOJ4OChIGVQSzRKBPBcGKjTRBWFC9K8QDJBBWOreiDsGeP3mRtI6rdq1au9BpVMAUeVAC+6ACbHAC6uAcNEATYHAPHsEzeDEejCfj1XibluaMWc8e+APj/QfHN5pw</latexit>

↵1(⇠
⇤)

<latexit sha1_base64="jnKY6eeLQ+CLnULQ2L0ZpuvXv2E=">AAACBHicbVC7TsMwFHV4tuUVYOxiUSEVhiphKIyVWJhQEfQhNSVyHKe16sSR7SBK1IGFX2FhACFWfoCNAYm/wWk7QMuRLB+dc6/uvceLGZXKsr6NhcWl5ZXVXL6wtr6xuWVu7zQlTwQmDcwZF20PScJoRBqKKkbasSAo9BhpeYPTzG/dECEpj67UMCbdEPUiGlCMlJZcs+ggFveRe152PM58OQz1B51ben144Jolq2KNAeeJPSWlWu7u6+Oynq+75qfjc5yEJFKYISk7thWrboqEopiRUcFJJIkRHqAe6WgaoZDIbjo+YgT3teLDgAv9IgXH6u+OFIUyW09Xhkj15ayXif95nUQFJ92URnGiSIQng4KEQcVhlgj0qSBYsaEmCAuqd4W4jwTCSudW0CHYsyfPk+ZRxa5Wqhc6jTKYIAeKYA+UgQ2OQQ2cgTpoAAzuwSN4Bi/Gg/FkvBpvk9IFY9qzC/7AeP8B9VKajQ==</latexit>

↵N (⇠⇤)

<latexit sha1_base64="nuewwOirw4bPgxUJD+SwYkTb2+Y="></latexit>

NX

i=1

↵i(⇠
⇤)ui

<latexit sha1_base64="8qT55kO+63ew+2dyeaH8hjw9VLA=">AAAB+HicbVBLSwMxGMy2Pmp9dNWjl2ApFA9l10P1WPDisYJ9QLuWbDbbhmaTNckKdSle/BPiRUERrx78Id78N6aPg7YOhAwz30cm48eMKu0431Ymu7K6tp7byG9ube8U7N29phKJxKSBBROy7SNFGOWkoalmpB1LgiKfkZY/PJv4rRsiFRX8Uo9i4kWoz2lIMdJG6tmFri9YoEaRueD11VHPLjoVZwq4TNw5KdaypbvPh/vnes/+6gYCJxHhGjOkVMd1Yu2lSGqKGRnnu4kiMcJD1CcdQzmKiPLSafAxLBklgKGQ5nANp+rvjRRFapLNTEZID9SiNxH/8zqJDk+9lPI40YTj2UNhwqAWcNICDKgkWLORIQhLarJCPEASYW26ypsS3MUvL5PmccWtVqoXpo0ymCEHDsAhKAMXnIAaOAd10AAYJOARvIBX69Z6st6s99loxprv7IM/sD5+AOw6ljU=</latexit>

q⇤

Along-dip

<latexit sha1_base64="YJCRItYUjnUY663bRGlrnfI1T6E=">AAACAnicbVC7SgNBFJ2NryS+Vq3EZjAIsQm7FtEyYGMZ0TwgWZbZyWwyZPbBzF0xLouNv2JjoYitf2BnIfg3Th6FJh4YOJxzD3fu8WLBFVjWt5FbWl5ZXcsXiusbm1vb5s5uU0WJpKxBIxHJtkcUEzxkDeAgWDuWjASeYC1veD72WzdMKh6F1zCKmROQfsh9TgloyTX3u8BuIRVRP3NT28pwuduLIFXZsWuWrIo1AV4k9oyUavm7r4+reqHump86SpOAhUAFUapjWzE4KZHAqWBZsZsoFhM6JH3W0TQkAVNOOjkhw0da6WE/kvqFgCfq70RKAqVGgacnAwIDNe+Nxf+8TgL+mZPyME6AhXS6yE8EhgiP+8A9LhkFMdKEUMn1XzEdEEko6NaKugR7/uRF0jyp2NVK9VK3UUZT5NEBOkRlZKNTVEMXqI4aiKJ79Iie0YvxYDwZr8bbdDRnzDJ76A+M9x8zIJoz</latexit> lo
g 1

0
(ṡ

)

<latexit sha1_base64="ulDNPJsWh7bp1uMECXVudMhnGkM=">AAAB63icbVC7SgNBFL2b+IjxFbW0GQyBVGHXQi0DNpYRzAOSJcxOZpMhM7PLzKwQlmBjbWPhAxsLf8EPsfNvnE1SaOKBC4dz7uXee4KYM21c99vJ5dfWNzYLW8Xtnd29/dLBYUtHiSK0SSIeqU6ANeVM0qZhhtNOrCgWAaftYHyZ+e1bqjSL5I2ZxNQXeChZyAg2mdSLNeuXym7NnQGtEm9ByvV85e7z5f690S999QYRSQSVhnCsdddzY+OnWBlGOJ0We4mmMSZjPKRdSyUWVPvp7NYpqlhlgMJI2ZIGzdTfEykWWk9EYDsFNiO97GXif143MeGFnzIZJ4ZKMl8UJhyZCGWPowFTlBg+sQQTxeytiIywwsTYeIo2BG/55VXSOq15Z7Wza5tGFeYowDGcQBU8OIc6XEEDmkBgBA/wBM+OcB6dV+dt3ppzFjNH8AfOxw+fkZGS</latexit>

 

<latexit sha1_base64="eOaQRi2JU12TrXG1LtI3OZCGGQ0=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBSBV2LaKdARvLBMwFkiXMTmaTMbOzy8xZISwprWwsFLH1AazzHHY+gy/h5FJo9IeBj/8/hznn+LHgGh3n08qsrK6tb2Q3c1vbO7t7+f2Dho4SRVmdRiJSLZ9oJrhkdeQoWCtWjIS+YE1/eDXNm3dMaR7JGxzFzAtJX/KAU4LGqmE3X3BKzkz2X3AXULh8n9S+7o8n1W7+o9OLaBIyiVQQrduuE6OXEoWcCjbOdRLNYkKHpM/aBiUJmfbS2aBj+9Q4PTuIlHkS7Zn7syMlodaj0DeVIcGBXs6m5n9ZO8Hgwku5jBNkks4/ChJhY2RPt7Z7XDGKYmSAUMXNrDYdEEUomtvkzBHc5ZX/QuOs5JZL5ZpTqBRhriwcwQkUwYVzqMA1VKEOFBg8wBM8W7fWo/Vivc5LM9ai5xB+yXr7Bo2BkSE=</latexit> t

3. Transform to 
phase space

10. Stack SSE-𝑘

in time

<latexit sha1_base64="2dTq2iKj+AybByON689dkXuLB7I=">AAAB+XicbVC7SgNBFL1rfMT4WrW0GQyBFCHsWkQbIWBjGcE8IFnC7GQ2GTI7u8zMBsISbPwJwSaFIraCH2Ln3zh5FJp4YOBwzj3cO8ePOVPacb6tjczm1vZOdje3t39weGQfnzRUlEhC6yTikWz5WFHOBK1rpjltxZLi0Oe06Q9vZn5zRKVikbjX45h6Ie4LFjCCtZG6tj1E18gtoU4v0gqVUNy1807ZmQOtE3dJ8tVM4eHz6XFa69pfJkuSkApNOFaq7Tqx9lIsNSOcTnKdRNEYkyHu07ahAodUeen88gkqGKWHgkiaJzSaq78TKQ6VGoe+mQyxHqhVbyb+57UTHVx5KRNxoqkgi0VBwpGO0KwG1GOSEs3HhmAimbkVkQGWmGhTVs6U4K5+eZ00LspupVy5M20UYYEsnME5FMGFS6jCLdSgDgRG8Awv8Gql1tR6s94XoxvWMnMKf2B9/AAAzpTq</latexit>

k = 1, . . . , p
9. Transform 
to time domain
 (Eq. (27))

<latexit sha1_base64="DM1UjW//IncdJgz3l9tWhQAq+5A=">AAAB+HicbVBLSwMxGMy2Pmp9dNWjl2Ap9FR2PVSPBS8eK9gHtEvJZrNtaDZZk6xQl+LFPyFeFBTx6sEf4s1/Y7btQVsHQoaZ7yOT8WNGlXacbyuXX1vf2CxsFbd3dvdK9v5BW4lEYtLCggnZ9ZEijHLS0lQz0o0lQZHPSMcfn2d+54ZIRQW/0pOYeBEachpSjLSRBnap7wsWqElkLng9cAd22ak5M8BV4i5IuZGv3H0+3D83B/ZXPxA4iQjXmCGleq4Tay9FUlPMyLTYTxSJER6jIekZylFElJfOgk9hxSgBDIU0h2s4U39vpChSWTYzGSE9UsteJv7n9RIdnnkp5XGiCcfzh8KEQS1g1gIMqCRYs4khCEtqskI8QhJhbboqmhLc5S+vkvZJza3X6pemjSqYowCOwDGoAhecgga4AE3QAhgk4BG8gFfr1nqy3qz3+WjOWuwcgj+wPn4A+FuWPQ==</latexit>q1
<latexit sha1_base64="hX4ahx6T54GuNwaral+/m0BhYgU=">AAAB+HicbVBLSwMxGMy2Pmp9dNWjl2Ap9FR2PajHghdPUsE+oC1LNpttQ7PJmmSFuhQv/gnxoqCIVw/+EG/+G7NtD9o6EDLMfB+ZjB8zqrTjfFu5/Mrq2npho7i5tb1Tsnf3WkokEpMmFkzIjo8UYZSTpqaakU4sCYp8Rtr+6Czz2zdEKir4lR7HpB+hAachxUgbybNLPV+wQI0jc8Fr78Kzy07NmQIuE3dOyvV85e7z4f654dlfvUDgJCJcY4aU6rpOrPspkppiRibFXqJIjPAIDUjXUI4iovrpNPgEVowSwFBIc7iGU/X3RooilWUzkxHSQ7XoZeJ/XjfR4Wk/pTxONOF49lCYMKgFzFqAAZUEazY2BGFJTVaIh0girE1XRVOCu/jlZdI6qrnHteNL00YVzFAAB+AQVIELTkAdnIMGaAIMEvAIXsCrdWs9WW/W+2w0Z8139sEfWB8/JF6WWg==</latexit>qN

<latexit sha1_base64="6aIyoOCPo1/i3Jov5PTR+ousvNc=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoOQU9gVjB4DXsRTBPPAZA29k0kyZHZ2mZkVwpKv0IsHRbz6N7n5N04eB00saCiquunuCmLBtXHdbyeztr6xuZXdzu3s7u0f5A+P6jpKFGU1GolINQPUTHDJaoYbwZqxYhgGgjWC4fXUbzwxpXkk780oZn6Ifcl7nKKx0kMbRTzAjvfodfIFt+TOQFaJtyCFSrYcPV9Mbqud/KTdjWgSMmmoQK1bnhsbP0VlOBVsnGsnmsVIh9hnLUslhkz76eziMTmzSpf0ImVLGjJTf0+kGGo9CgPbGaIZ6GVvKv7ntRLTu/JTLuPEMEnni3qJICYi0/dJlytGjRhZglRxeyuhA1RIjQ0pZ0Pwll9eJfXzklcule9sGkWYIwsncApF8OASKnADVagBBQkv8AbvjnZenQ/nc96acRYzx/AHztcPoJSTHQ==</latexit>

↵1
1

<latexit sha1_base64="vX/zcn4y47y8GvF8IEjoOScpsPc=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYhByCruC0WPAi3iQCOaBSQy9k9lkyOzMMjMrhCVfoRcPinj1b3Lzb5w8DppY0FBUddPdFcScaeN5387K6tr6xmZmK7u9s7u3nzs4rGmZKEKrRHKpGgFqypmgVcMMp41YUYwCTuvB4Gri15+o0kyKezOMaTvCnmAhI2is9NBCHvex4z/ednJ5r+hN4S4Tf07y5UxJPp+Pbyqd3LjVlSSJqDCEo9ZN34tNO0VlGOF0lG0lmsZIBtijTUsFRlS30+nFI/fUKl03lMqWMO5U/T2RYqT1MApsZ4Smrxe9ifif10xMeNlOmYgTQwWZLQoT7hrpTt53u0xRYvjQEiSK2Vtd0keFxNiQsjYEf/HlZVI7K/qlYunOplGAGTJwDCdQAB8uoAzXUIEqEBDwAm/w7mjn1flwPmetK8585gj+wPn6AcyIkzo=</latexit>

↵N
1

<latexit sha1_base64="onziSfSc4XWC5LYpHPDVnaw5Xz0=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoOQU9gVjB4DXsRDiGAemKxhdjKbDJmdWWZmhbDkK/TiQRGv/k1u/o2Tx0ETCxqKqm66u4KYM21c99vJrK1vbG5lt3M7u3v7B/nDo4aWiSK0TiSXqhVgTTkTtG6Y4bQVK4qjgNNmMLye+s0nqjST4t6MYupHuC9YyAg2VnroYB4PcLf6WO3mC27JnQGtEm9BCpVsWT5fTG5r3fyk05MkiagwhGOt254bGz/FyjDC6TjXSTSNMRniPm1bKnBEtZ/OLh6jM6v0UCiVLWHQTP09keJI61EU2M4Im4Fe9qbif147MeGVnzIRJ4YKMl8UJhwZiabvox5TlBg+sgQTxeytiAywwsTYkHI2BG/55VXSOC955VL5zqZRhDmycAKnUAQPLqECN1CDOhAQ8AJv8O5o59X5cD7nrRlnMXMMf+B8/QD4tpNX</latexit>

↵N
N

<latexit sha1_base64="am4Be2rEFm8yKu/uZFnJOhVTuMU=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYhByCruC0WPAi3iQCOaBSQy9k9lkyOzMMjMrhCVfoRcPinj1b3Lzb5w8DppY0FBUddPdFcScaeN5387K6tr6xmZmK7u9s7u3nzs4rGmZKEKrRHKpGgFqypmgVcMMp41YUYwCTuvB4Gri15+o0kyKezOMaTvCnmAhI2is9NBCHvexc/vod3J5r+hN4S4Tf07y5UxJPp+Pbyqd3LjVlSSJqDCEo9ZN34tNO0VlGOF0lG0lmsZIBtijTUsFRlS30+nFI/fUKl03lMqWMO5U/T2RYqT1MApsZ4Smrxe9ifif10xMeNlOmYgTQwWZLQoT7hrpTt53u0xRYvjQEiSK2Vtd0keFxNiQsjYEf/HlZVI7K/qlYunOplGAGTJwDCdQAB8uoAzXUIEqEBDwAm/w7mjn1flwPmetK8585gj+wPn6AczCkzo=</latexit>

↵1
N

<latexit sha1_base64="UAg/VwyMducofd/Orof1rbwCBSU=">AAAB8XicbVDLSgNBEOyNrxhfUY+CDAYhp7DrIXozIIjHBMwDkyXMTmaTIbOzy8ysEJYc/QMvHhTxKnjOd3jzG/wJZ5McNLGgoajqpqvbizhT2ra/rMzK6tr6RnYzt7W9s7uX3z9oqDCWhNZJyEPZ8rCinAla10xz2ookxYHHadMbXqV+855KxUJxq0cRdQPcF8xnBGsj3XUCrAeej65RN1+wS/YUaJk4c1K4/JjUvh+OJ9Vu/rPTC0kcUKEJx0q1HTvSboKlZoTTca4TKxphMsR92jZU4IAqN5kmHqNTo/SQH0pTQqOp+nsiwYFSo8AznWlCteil4n9eO9b+hZswEcWaCjJb5Mcc6RCl56Mek5RoPjIEE8lMVkQGWGKizZNy5gnO4snLpHFWcsqlcs0uVIowQxaO4ASK4MA5VOAGqlAHAgIe4RleLGU9Wa/W26w1Y81nDuEPrPcfRvKUWw==</latexit>

F

<latexit sha1_base64="2KcZXao9d0x8oQpVt4bYRoJSUuQ=">AAACD3icbVDLSgMxFM3UV62v8bFzEyyKqzLjoroRC4K6rNgXdGrJpJk2NJMZkoxQh/6BG3/EhQguFHHr1p1L/8RMW0VbDwROzrmXe+9xQ0alsqwPIzU1PTM7l57PLCwuLa+Yq2sVGUQCkzIOWCBqLpKEUU7KiipGaqEgyHcZqbrd48SvXhEhacBLqheSho/anHoUI6Wlprnj+Eh1XA+ewEP4zZ0L2vbRz7dyWWqaWStnDQAniT0i2aOH68/Tu4242DTfnVaAI59whRmSsm5boWrESCiKGelnnEiSEOEuapO6phz5RDbiwT19uK2VFvQCoR9XcKD+7oiRL2XPd3VlsqIc9xLxP68eKe+gEVMeRopwPBzkRQyqACbhwBYVBCvW0wRhQfWuEHeQQFjpCDM6BHv85ElS2cvZ+Vz+3MoWLDBEGmyCLbALbLAPCuAMFEEZYHAD7sETeDZujUfjxXgdlqaMUc86+APj7QvPLJ7w</latexit>

F = ⌃VT

<latexit sha1_base64="AzDQFznxxRLcvJK9BHO2OrjEdbQ=">AAAB8HicbVC7SgNBFL0bXzG+4qOzGQyCVdi1iHYGFLSMYB6SLGF2MpsMmZldZmaFuOQrbCwUsbWw8kvsLP0TJ49CEw9cOJxzL/fcG8ScaeO6X05mYXFpeSW7mltb39jcym/v1HSUKEKrJOKRagRYU84krRpmOG3EimIRcFoP+ucjv35HlWaRvDGDmPoCdyULGcHGSrctgU0vCNFFO19wi+4YaJ54U1I4+7j/vnzfSyvt/GerE5FEUGkIx1o3PTc2foqVYYTTYa6VaBpj0sdd2rRUYkG1n44DD9GhVToojJQtadBY/T2RYqH1QAS2cxRQz3oj8T+vmZjw1E+ZjBNDJZksChOOTIRG16MOU5QYPrAEE8VsVkR6WGFi7I9y9gne7MnzpHZc9ErF0rVbKLswQRb24QCOwIMTKMMVVKAKBAQ8wBM8O8p5dF6c10lrxpnO7MIfOG8/X/OTzQ==</latexit>

D
<latexit sha1_base64="7BUdVJp9Xi6aztewp/l/96OezFE=">AAAB8HicbVC7SgNBFL3rM8ZXfHQ2g0GwCrsW0c6AhZYR3CSSLGF2MpsMmZldZmaFuOQrbCwUsbWw8kvsLP0TJ49CEw9cOJxzL/fcGyacaeO6X87C4tLyympuLb++sbm1XdjZrek4VYT6JOaxaoRYU84k9Q0znDYSRbEIOa2H/YuRX7+jSrNY3phBQgOBu5JFjGBjpduWwKYXRshvF4puyR0DzRNvSornH/ffl+/7WbVd+Gx1YpIKKg3hWOum5yYmyLAyjHA6zLdSTRNM+rhLm5ZKLKgOsnHgITqySgdFsbIlDRqrvycyLLQeiNB2jgLqWW8k/uc1UxOdBRmTSWqoJJNFUcqRidHoetRhihLDB5ZgopjNikgPK0yM/VHePsGbPXme1E5KXrlUvnaLFRcmyMEBHMIxeHAKFbiCKvhAQMADPMGzo5xH58V5nbQuONOZPfgD5+0HebeT3g==</latexit>

U

<latexit sha1_base64="K8LIfAVfrJfviFYypavFF90Y4qA=">AAACAHicbVC7SgNBFL3rM4mvVQsLm8EgWISwaxEFm6CNZQTzgGQJs7OzyZDZBzOzQljSpPFDbCwMYutn2Pk1OptE0MQDA2fOuZd773FjzqSyrE9jZXVtfWMzly9sbe/s7pn7Bw0ZJYLQOol4JFoulpSzkNYVU5y2YkFx4HLadAc3md98oEKyKLxXw5g6Ae6FzGcEKy11zaNOgFXf9VGzhDpX6Od33TWLVtmaAi0Te06K1fyjN/kal2pd86PjRSQJaKgIx1K2bStWToqFYoTTUaGTSBpjMsA92tY0xAGVTjo9YIROteIhPxL6hQpN1d8dKQ6kHAaurswWlIteJv7ntRPlXzopC+NE0ZDMBvkJRypCWRrIY4ISxYeaYCKY3hWRPhaYKJ1ZQYdgL568TBrnZbtSrtzpNCyYIQfHcAJnYMMFVOEWalAHAiN4gheYGGPj2Xg13malK8a85xD+wHj/BkJImIw=</latexit>

W, B

<latexit sha1_base64="yYvckny/ragF6KpfD02JbB7s1x8=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0XpopREpAoiFNy4kgr2AU0Ik8mkHTqZhJmJWEr/wI2/4saFIm7duvNvnLRZaOuFYQ7n3MO99/gJo1JZ1rdRWFpeWV0rrpc2Nre2d8zdvbaMU4FJC8csFl0fScIoJy1FFSPdRBAU+Yx0/OFVpnfuiZA05ndqlBA3Qn1OQ4qR0pRnHjt+zAI5ivQHnQfq0Sp0LiCFl9DWKIiVhFV445llq2ZNCy4COwdlkFfTM7+0F6cR4QozJGXPthLljpFQFDMyKTmpJAnCQ9QnPQ05ioh0x9N7JvBIMwEMY6EfV3DK/naMUSSzlXVnhNRAzmsZ+Z/WS1V47o4pT1JFOJ4NClMGVQyzcGBABcGKjTRAWFC9K8QDJBBWOsKSDsGeP3kRtE9qdr1Wvz0tNyp5HEVwAA5BBdjgDDTANWiCFsDgETyDV/BmPBkvxrvxMWstGLlnH/wp4/MHC1CaBg==</latexit>

⇠i, i = 1, . . . , N

<latexit sha1_base64="QPSZGKn68sjw6zMtFBEFSmQpSIk=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBG6KolIdVlw47KCfUAbymQ6aYdOMmHmRiihn+HGhSJu/Rp3/o2TNgttPTBwOOde5twTJFIYdN1vZ2Nza3tnt7RX3j84PDqunJx2jEo1422mpNK9gBouRczbKFDyXqI5jQLJu8H0Lve7T1wboeJHnCXcj+g4FqFgFK3UH0QUJ0FI0qE3rFTdursAWSdeQapQoDWsfA1GiqURj5FJakzfcxP0M6pRMMnn5UFqeELZlI5539KYRtz42SLynFxaZURCpe2LkSzU3xsZjYyZRYGdzCOaVS8X//P6KYa3fibiJEUes+VHYSoJKpLfT0ZCc4ZyZgllWtishE2opgxtS2Vbgrd68jrpXNW9Rr3xcF1t1oo6SnAOF1ADD26gCffQgjYwUPAMr/DmoPPivDsfy9ENp9g5gz9wPn8Ar0yQzA==</latexit>

u1
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uN

Figure 2. Overview of the SEAS ROM methodology. (a) The offline component of the ROM

framework, which is performed once during initialization. This computationally intensive setup

stage primarily involves data collection by performing N FOM simulations with parameters vec-

tors ξi (step 1). This is followed by latent space encoding (qi) via spline interpolation (step 4).

Subsequently, dimensionality reduction using POD of D, the staked latent vector matrix, via

SVD, where D = UΣVT (step 5). The columns of U (ui) form the POD basis. The ROM is

constructed by interpolating the POD coefficients (αi
r) along the rows of the POD coefficient ma-

trix F using RBFs with polynomial terms, defined by RBF weights W and polynomial coefficient

B matrices. (b) The online component of the ROM framework, which enables fast inference of

ROM-based simulations for any new parameter vector ξ∗, where the ∗ superscript distinguishes

ROM inputs and outputs from their FOM counterparts, within the bounds of the training set.

Steps 3 through 9 are performed for each k = 1, . . . , p cycles and marked with solid arrows.
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each of the p individual cycle ROMs to obtain Q1(ξ∗), . . . ,Qp(ξ∗) and concatenate them295

to form a continuous approximation of the complete time series for slip, slip-rate and state296

varible (step 10 in Figure 2).297

While the uniform sampling of our parameter space ensures broad coverage, it does298

not account for the possibility that the underlying function approximated by the ROM299

may locally exhibit high gradients, or non-smooth behavior. In such regions of the pa-300

rameter space, the ROM may yield large approximation errors. To address this, we adopt301

an empirical refinement strategy wherein the uniformly sampled parameter space is it-302

eratively refined in regions exhibiting high ROM approximation errors. Errors are es-303

timated using leave-one-out cross-validation (LOOCV). Regions which are identified as304

having a high error are resampled, e.g., refined in parameter space, by performing ad-305

ditional FOM simulations, and rebuilding the ROM (Section 3.2). The iterative refine-306

ment continues until the ROM leave-one-out errors fall within the range of SSEs recur-307

rence interval and potency (P0) standard deviations of the corresponding FOM simu-308

lations. The potency is defined as309

P0 =

∫

A

∥s+ − s−∥2 dA, (6)

where A is the fault surface area and s− and s+ are the cumulative slip before and af-310

ter each SSE event respectively (Ben-Zion & Zhu, 2002).311

3.1 Reduced-order models of slow slip cycles in Cascadia312

3.1.1 Simulation latent space representation313

Directly reducing the order of the FOM is challenging for two reasons. First, the314

simulations are complex, spanning tens of orders of magnitude in slip-rate and involv-315

ing adaptive time steps ranging more than 6 order of magnitude. Second, each N sim-316

ulation output (Q(ξi)) amounts to approximately 2 GB of floating-point data, making317

it impractical to apply a ROM scheme directly to the raw simulation output. Instead,318

we propose to use a B-spline interpolant (spline latent space hereafter) to represent the319

simulation output, which in general constitutes a lossy compression framework.320

Casting spline interpolation as a compression framework aligns with a broader chal-321

lenge in scientific computing, where high-performance computing (HPC) applications gen-322

erate increasingly large datasets, making storage and analysis difficult. Data compres-323

sion provides a viable solution by reducing the data size. While lossless compression pre-324

serves all original information, its compression is usually not efficient for scientific sim-325

ulation data, which lack the necessary redundant patterns (Lindstrom, 2014). In con-326

trast, lossy compression, such as the spline latent space approach, achieves higher com-327

pression factors by selectively discarding less critical information under user-defined er-328

ror constraints (Tao et al., 2017). This enables efficient representation while preserving329

essential features for further analysis.330

To formalize the lossy compression framework, we define a transformation of sim-331

ulation data Qj (the parameter vector is omitted for notational clarity) into a latent space332

representation qj ∈ Rl at a single observation point (j) along the fault via333

G(Qj) = qj , G−1(t, qj) ≈ Qj such that F(Qj , G
−1(t, qj)) > 1− ϵ, (7)

where F(·, ·) is the fidelity criterion with tolerance ϵ << 1, G(·) and G−1(·, ·) are the334

transformations defined in this subsection (Eqs. (12), (13), (14)) and G−1 is evaluated335

over t ∈ Qj . For this study, this criterion is met if the Pearson Correlation Coefficient336

(PCC) between its original slip-rate time series Ṡ ∈ Qj , and its corresponding recon-337

structed slip-rate time series ˜̇Sj ∈ G−1(t, qj) is greater than 1−ϵ, where we have used338

ϵ = 0.001.339
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Figure 3. Phase-space H (Eq. (9)) as a function of the along-dip distance of FOM simulation

results. (a) FOM results using ξ1 = (W = 37.375 km, σW = 2 MPa). (b) FOM results using

ξ2 = (W = 48 km, σW = 4 MPa). Both panels show trajectories plotted for observation points

sampled every 6 km. For each observation point, the trajectory forms a nearly closed loop. The

time-domain behavior of these results is depicted in Figure 4.

Seismic cycle simulations often span a wide range of time steps and slip velocities,340

covering several orders of magnitude. This variability makes direct spline placement and341

coefficient estimation over t −→ ∥ṡ(t)∥ particularly challenging. However, the simula-342

tion data in phase-space, along the parametric curve343

H(t) = (log10(ṡ(t)), ψ(t)) (8)

exhibit a well-behaved, loop-like structure (Figure 3). Consequently, SEAS simulation344

data can be compressed more efficiently via splines when the output is represented in345

phase-space rather than time. We achieve this by first parametrization time t with a vari-346

able ϕ which is defined by:347

ϕ(t) ∈ [0, 1] s.t. ϕ(t1) = 0 and ϕ(tn) = 1.

such that ϕ represents the time progression along the trajectory in the phase-space, and348

then349

H(ϕ) = H (ϕ(t)))

=

(
log10

(
ṡ(ϕ(t))

)
, ψ(ϕ(t))

)
.

(9)

Using spline interpolation, we define an interpolant for ϕ in terms of t. Similarly,350

we also can define a spline interpolate for slip-rate, state and slip in terms of phi. This351

two-step procedure results in the construction of four B-splines, constructed via least-352

squares fitting. These splines will be used to define the forward transformation G. The353

inverse transformation G−1 is then defined by first evaluating spline interpolant to ap-354

proximate ϕ(t), and this result is used to evaluate the splines approximating the slip-355

rate, state and slip (as functions of ϕ).356

Definition of G and G−1
357

Given a set of data points whose elements consist of paired values of independent358

(x) and dependent variables (f(x)) denoted by {x̂i, f̂i}ni=1 = (x̂, f̂) where f̂i = f(x̂i),359

then the construction of the B-Spline is defined by360

B : x̂, f̂ → kx, cf , (10)

–11–



manuscript submitted to JGR: Solid Earth

where kx, cf are the spline knots and spline coefficients respectively. The B-spline ap-361

proximation of the function f(·) is given by362

f(x) ≈ f̃(x) = B−1(kx, cf , x), x1 ≤ x ≤ xn. (11)

We note that subscript on the knot vector k indicates the independent variable, and the363

subscript on the coefficient vector c indicates the dependent variable.364

In this work we use B-spline interpolants to define a latent space transformation365

for the SSE simulation output. Given Qj , the transformations G : Qj −→ qj is defined366

as:367

G
(
Qj

)
=
(
B(t,Φj),B(Φj , Ṡj),B(Φj ,Ψj),B(Φj ,Sj)

)

= (kt, cϕ,kϕ, cṡ, cψ, cs) (12)

= qj ,

where Φj = (ϕ(t1) . . . ϕ(tn)) for t = (t1, . . . , tn) ∈ Qj , kt, cϕ ∈ RK0 are the spline368

knot and coefficient vector for ϕ(t) and kϕ, cṡ, cψ, cs ∈ RK1 are the spline knot and co-369

efficient vector for ṡ(ϕ), ψ(ϕ), s(ϕ) respectively. As the same independent variable ϕ is370

used for the slip-rate, state and slip, the knot vector kϕ is only stored once in Eq. (12).371

In Section 4.2 we discuss how K0,K1 were chosen. Furthermore, in Appendix B a de-372

scription of how the knot placement is defined within kt,kϕ (given K0,K1) is provided.373

For a specific time t, the spline latent vector qj can be used to reconstruct the slip-374

rate, state and slip. Defining this as g−1 : t, qj −→ ˜̇s(t), ψ̃(t), s̃(t) we have:375

g−1(t, qj) =
(
B−1(kϕ, cṡ, ϕ̃(t)) , B−1(kϕ, cψ, ϕ̃(t)) , B−1(kϕ, cs, ϕ̃(t))

)

=
(
˜̇s(t), ψ̃(t), s̃(t)

)
, (13)

where ϕ̃(t) = B−1(kt, cϕ, t) is the B-spline approximation for ϕ.376

Lastly we have the inverse transformation given by377

G−1 : t̃, qj −→ Q̃j =
(
t̃, ˜̇Sj , Ψ̃j , S̃j

)
, (14)

where t̃ ∈ Rn∗
is an arbitrary time vector which in general is different to t, and ˜̇Sj , Ψ̃j ,378

S̃j are the length n∗ vectors containing the spline approximations for slip-rate, state and379

slip at observation point j for times t = t̃1, . . . , t̃n∗ . The entries of ˜̇Sj , Ψ̃j , S̃j are com-380

puted using ˜̇s(t), ψ̃(t), s̃(t) obtained from applying g−1 pointwise.381

The transformations from simulation output into a spline latent space at a specific382

observation point could easily be expanded to all simulation fault observation points by383

applying G on each specific observation point and letting the latent space vector q store384

the spline knots and coefficients of all observation points. For notation simplicity we will385

use from here on q ∈ Rl, G, g−1 and G−1 to represent the transformation of the en-386

tire simulation to latent space with387

G(Q) = (kt, cϕ1,kϕ1, cṡ1, cψ1, cs1, . . . , cϕm,kϕm, cṡm, cψm, csm) = q (15)

where Q = (t, Ṡ,Ψ,S) with Ṡ,Ψ,S ∈ Rm×n as defined in Section 2. We note that388

all fields (slip-rate, state and slip) and at all observation points use the same vector of389

time values t, hence for efficiency the knot vector kt can be reused in Eq (15) and thus390

only appears once. Therefore, the length l of the spline latent space representation q is391

given by:392

l = (1 +m)K0 + 4mK1, (16)
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where K0 is the dimension of the knot vector kt and each of the m coefficient vectors393

cϕj . Similarly, K1 is the dimension of each of the m knot vectors kϕj and their corre-394

sponding coefficient vectors (cṡj , cψj , csj).395

In the same fashion we will expend g−1 to be396

g−1(t, q) =







˜̇s1(t)
...

˜̇sm(t)


 ,



ψ̃1(t)
...

ψ̃m(t)


 ,



s̃1(t)
...

s̃m(t)





 ∈ Rm×3 (17)

resulting in three column vectors of B-splines evaluations at time t at all m observation397

points.398

This spline-based latent space provides a compact representation of complex seis-399

mic cycle simulations. In the following, we demonstrate how this latent encoding can be400

leveraged to construct a ROM that accurately emulates the full-order simulations with401

orders of magnitude lower computational cost.402

3.1.2 One SSE cycle reduced-order model403

To construct a ROM for an individual SSE cycle, we adopt a strategy similar to404

the approach of Rekoske et al. (2025), originally developed for seismic wave propagation.405

Here, we extend this methodology to one cycle of SSE simulation.406

Let us consider a collection of N full-order model simulations, each corresponding407

to a distinct parameter realization ξ1, . . . , ξN . For a given SSE cycle k, these simulations408

yield full-order outputs Qk(ξ1), . . . ,Q
k(ξN ). Using Eq. (15) we map each simulation out-409

put into its spline latent representation to form a matrix D ∈ Rl×N (step 4 in Figure410

2) given by411

D =
(
G(Qk(ξ1)) . . . G(Q

k(ξN ))
)
=
(
qk(ξ1) . . . q

k(ξN )
)
, (18)

where qk(ξi) is the spline latent column vector representation of the ith simulation in412

the kth cycle. We then compute the Singular Value Decomposition (SVD) of D:413

D = UΣVT , (19)

where U contains the left singular vectors (basis functions), Σ is a diagonal matrix of414

singular values λi, and V contains the right singular vectors. The SVD provides an op-415

timal low-rank approximation in the least-squares sense and allows each latent vector416

qk(ξi) to be expressed as a linear combination of the orthonormal basis vectors in U:417

qk(ξi) =

N∑

r=1

λrvirur =

N∑

r=1

αirur, (20)

where αir = λrvir are the Proper Orthogonal Decomposition (POD) coefficients. This418

decomposition is consistent with viewing the SVD as a POD of the matrix D, captur-419

ing the most energetic modes of variability across the simulations dense representation420

(step 5 in Figure 2, Berkooz et al., 1993; Bui-Thanh et al., 2003; Druault et al., 2005).421

We adopt a radial basis functions (RBFs) interpolation strategy to perform a map-422

ping from an arbitrary ξ∗ ∈ P to approximate POD coefficients (e.g., Lazzaro & Mon-423

tefusco, 2002; Audouze et al., 2009; Xiao et al., 2015; Rekoske et al., 2025). To avoid bias424

due to differing parameter scales, we first normalize the parameter space:425




ξ̄1
...

ξ̄N


 =






ξ11 . . . ξb1
...

. . .
...

ξ1N . . . ξbN


−

(
ξ̄1 . . . ξ̄b

)

⊘

(
std(ξ1) . . . std(ξb)

)
, (21)
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where ξ̄r and std(ξr) denote the mean and standard deviation of the rth parameter across426

the N samples, and ⊘ denotes element-wise division.427

Given a new normalized parameter vector ξ̄
∗
, the interpolated POD coefficient vec-428

tor α(ξ̄
∗
) (step 7 in Figure 2) is expressed as:429

α(ξ̄
∗
) =

N∑

i=1

wiφ(∥ξ̄∗ − ξ̄i∥2) +
|V |∑

r=1

brpr(ξ̄
∗
), (22)

where wi are the RBFs weights and φ(·) is the RBF kernel defined in terms of the Eu-430

clidean distance (R) between points. In this study, we consider the linear kernel φ(R) =431

R, which provides a simple yet effective means of interpolating in the reduced space (see432

Text S?? and Figure ??). In Eq. (22) br are polynomial weights, and pr(·) are the mono-433

mials of the input parameters up to degree d:434

pr(ξ̄
∗
) = ξa11 · · · ξadim(P)

dim(P) , for a1, . . . , adim(P) ≥ 0 and

dim(P)∑

l=1

al ≤ d. (23)

The interpolation weights are determined by solving the following linear system (Step435

6 in Figure 2):436 (
Φ Λ

ΛT 0

)(
W
B

)
=

(
F
0

)
(24)

where437

Φij = φ(∥ξ̄i − ξ̄j∥2), Φ ∈ RN×N (25a)
438

Fij = αji = λivji, F ∈ RN×N (25b)

and Λ ∈ RN×|V | is the matrix of monomial evaluations at each ξ̄i.439

Following the calculation of the POD coefficients and the RBF interpolant, the co-440

efficient corresponding to a new parameter vector ξ∗ can be retrieved by interpolating441

the POD coefficients corresponding to the training parameter realizations ξ1, . . . , ξN used442

for the FOM simulations. To estimate a spline latent vector (step 8 in Figure 2) using443

the ROM scheme for a new normalized parameter vector ξ̄
∗
, we perform444

qk(ξ∗) =
N∑

i=1

αi(ξ̄
∗
)ui, (26)

where αi(ξ̄
∗
) is the ith interpolated POD coefficient computed using Eq. (22).445

The ROM-computed spline latent vector qk(ξ∗) can then be mapped back to the446

full-order output space (step 9 in Figure 2) by applying the transformation G−1 given447

by Eq. (12) to yield:448

Qk(ξ∗) = G−1(t∗, qk(ξ∗))

=
(
t∗, g−1(t∗1, q

k(ξ∗)), . . . , g−1(t∗k, q
k(ξ∗))

)

=
(
t∗, Ṡk∗,Ψk∗,Sk∗

)
, (27)

where t∗ ∈ Rn∗
yielding m× n∗ matrices approximating the simulation output corre-449

sponding to the new parameter realization ξ∗ over the n∗ length time vector t∗.450

3.2 Training and validation: Leave-one-out cross validation451

A leave-one-out cross-validation (LOOCV) approach is employed to assess the ac-452

curacy of our ROM predictions (Rippa, 1999; Kohavi, 1995). Under this framework, each453
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parameter realization ξi is systematically excluded from the training set, the model is454

constructed using the remaining N − 1 simulations, and prediction accuracy is evalu-455

ated against the withheld simulation. This process iterates across all N parameter re-456

alizations to obtain an unbiased estimate of generalization error.457

For each ξi and each SSE cycle k, we consider the POD coefficient vector αr the458

rth row of the F matrix as our validation set and perform the procedure described in459

Eq. (22) to Eq. (27) with ξ̄
∗
= ξ̄i. This yields the predicted coefficients αr(ξ̄

∗
i ) and the460

corresponding ROM output Qk(ξ̄
∗
i ) for the k

th cycle.461

To assess the accuracy of the ROM predictions, we:462

1. Compare the recurrence intervals of the full-order and ROM simulations using the463

average cycle durations:464

Tc =
1

p

p∑

k=1

(max(tk)−min(tk)) , tk ∈ Qk(ξi), (28)

and similarly for the predicted outputs:465

T ∗
c =

1

p

p∑

k=1

(max(t∗k)−min(t∗k)) , t∗k ∈ Qk(ξ̄
∗
i ). (29)

2. Compare the SSEs mean potency P0 (Eq. (6)). In a 3D context, the potency can466

be related to the seismic moment by M0 = µP0, where µ is the shear modulus.467

In our 2D model the potency can be estimated without further assumptions where468 ∫
A
is a line integral, we can approximate the seismic moment by assuming some469

fault width of Ws km along strike, yielding M0 = µWsP0.470

4 Results471

4.1 FOM results472

We performed a total of 76 FOM evaluations using the computational resources473

of the Nautilus Kubernetes cluster of the National Research Platform. Our simulation474

suite was initiated with a relatively coarse sampling grid spanning W ∈ [30.5, 68] km475

and σW ∈ [1, 6] MPa. Subsequently, the sampling density was increased within the range476

W ∈ [30.5, 53] km, and further refined within W ∈ [35.5, 38] km. This adaptive re-477

finement strategy aimed to improve the accuracy and robustness of the ROMs, partic-478

ularly letting the leave-one-out cross-validation error estimation described in Section 3.2479

stay within simulation Tc and P0 standard deviation.480

The computational expense per simulation exhibited considerable variation, depend-481

ing on the specific values chosen for the W and the σW within the localized subregion482

around the stability transition zone a−b = 0. As is standard for seismic cycle simula-483

tions, an initial spin-up phase was removed to minimize the influence of initial conditions484

on the subsequent system time-dependence behavior (Rubin & Ampuero, 2005). The com-485

putation time required for this spin-up phase proved to be highly sensitive to the model486

parameters, particularly the normalized fault width487

W

h∗
=
Wπ(1− ν)(b− a)σW

2µL
, (30)

where h∗ is the characteristic nucleation size, ν is the Poisson ratio and µ is the shear488

modulus (Table 1). This is consistent with the results of Liu and Rice (2009), who showed489

that lower W/h∗ induces more frequent SSE oscillations, necessitating longer spin-up times490

to allow the system to reach a quasi-steady state before the analysis period.491
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We establish a uniform simulation duration cutoff of t = 75 years for all model492

runs. The majority of the computational effort during each simulation was concentrated493

on resolving the fine-scale time-dependence associated with the SSEs themselves. Indi-494

vidual simulation run times ranged from 19.2 to 302.4 hours on 30 MPI ranks, correspond-495

ing to computational costs between 628 and 9125 CPU hours per simulation. The cu-496

mulative computational cost for executing the entire suite of 76 FOM simulations amounted497

to approximately 233,565 CPU hours.498

To illustrate the typical time-dependence observed in our FOM simulations, we first499

examine two representative cases: simulation ξ1 with parameters (W = 37.375 km, σW =500

2 MPa) and simulation ξ2 with parameters (W = 48 km, σW = 4 MPa), yielding W/h∗501

values of 5.44 and 16.73, respectively (Figure 4). Both simulations exhibit quasi-periodic502

SSEs: ξ1 recurs approximately every Tc = 0.73 ± 0.004 years with peak slip velocities503

Vmax ≈ 10−2.7 m/s and accumulating a mean total slip of δ = 0.98 ± 3.4 × 10−5 cm504

per event, while ξ2 shows Tc = 1.36 ± 0.07 years, Vmax ≈ 10−1.6 m/s, and δ = 2.7 ±505

8.8× 10−3 cm.506

Analyzing these simulations in their phase-space (Figure 3) shows a simplified view507

of the underlying rate-and-state friction characteristics. For both cases, as an SSE nu-508

cleates, the representative phase-space trajectory rapidly transitions towards higher slip509

velocities. It then evolves through a characteristic loop, involving stages of rapid state510

evolution and slip-rate changes that reflect the weakening and subsequent healing phases511

dictated by Eq. (2). The cycle is completed by the slow evolution during the long inter-512

seismic period, which, although dominant in the time-domain, represents a relatively small513

portion of the path length traced in the phase-space during one full cycle. This confirms514

the utility of the phase-space perspective for capturing SEAS cycles and highlighting the515

periods of rapid dynamic change during the events themselves, across different param-516

eter regimes.517

Figure 5 presents the resulting recurrence time (Tc) and average SSE slip (δ) as a518

function of the normalized fault width (W/h∗) for all 76 FOM simulations, juxtaposed519

with the results reported by Liu and Rice (2009) for gabbro rheology. Notably, our re-520

sults, obtained using the volumetric discontinuous Galerkin finite element code tandem521

(Uphoff et al., 2022), show excellent agreement with those of Liu and Rice (2009), which522

were generated using a boundary element method.523

The simulations reveal that spontaneous, quasi-periodic SSEs are generated over524

a wide range of the explored parameter space, corresponding to W/h∗ values ranging from525

3.75 to 32.54. For W/h∗ values smaller than 3.75, these simulation settings do not pro-526

duce distinct SSEs; the system either evolves towards steady creep or exhibits very fast527

recurrence intervals (Tc ≪ 1 year) with the slip-rate oscillating around the tectonic load-528

ing rate. Within the approximate range 3.75 < W/h∗ < 18, our findings are consis-529

tent with Liu and Rice (2009), we observe clear trends where both the recurrence time530

(Tc) and the mean slip (δ) appear to increase approximately linearly with W/h∗. How-531

ever, for W/h∗ ≳ 18, we observe a deviation from this linear trend, particularly for Tc,532

which tends to slightly decrease and than plateau. The specific W/h∗ value where this533

transition begins appears influenced by σW , for instance, the deviation becomes notice-534

able around W/h∗ ≈ 11 for σW = 3 MPa, but closer to W/h∗ ≈ 15 for σW = 6 MPa.535

In contrast, the mean accumulated slip in those events (δ) seems to maintain an approx-536

imately linear dependence on W/h∗ across the entire range where SSEs are observed.537

These results indicate a complex dependency between the SSE time-dependence538

behavior and the model parameters W,σW . Although the normalized fault width (W/h∗)539

controls the time-dependence behavior at first order, our results suggest second-order540

independent dependencies on both W and σW , which we will explore further using our541

ROM approach.542
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Figure 4. FOM results for two parameter vectors: ξ1 = (W = 37.375 km, σW = 2 MPa) and

ξ2 = (W = 48 km, σW = 4 MPa). Each simulation presents 20 SSE cycles, with ξ1 spanning

a shorter time period due to its reduced recurrence interval. (a) Slip-rate as a function of time

and along-dip distance for ξ1. The locked portion of the subduction interface is not shown. (b)

Equivalent slip-rate representation for ξ2. (c)-(e) Temporal profiles of slip-rate at specific obser-

vation points along the fault (indicated by dashed lines in panels (a) and (b)), with ξ1 shown by

the red curve and ξ2 by the black curve.
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Figure 5. FOM results for key SSE characteristics as a function of normalized fault width

(W/h∗). Panel (a) shows the mean SSE slip (δ) occurring within the low effective normal stress

zone versus W/h∗. Panel (b) depicts the SSE recurrence time (Tc) versus W/h∗. Our FOM re-

sults using tandem (Uphoff et al., 2022) (coloured circles) are compared with the BEM results

reported in Liu and Rice (2009) (black stars). The volumetric based FOM results obtained from

tandem exhibit good agreement with those of Liu and Rice (2009) in their common range of

W/h∗.
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4.2 Latent space representation accuracy analysis543

The primary goal of employing the spline latent space representation, as detailed544

in Section 3.1.1, is to achieve a substantial compression of the complex FOM simulation545

data while preserving the essential characteristics, a necessary requirement to construct546

an accurate reduced-order model. As our chosen representation employs lossy compres-547

sion, it is important to quantify the quality of this representation by evaluating how ac-548

curately the original simulation variables can be reconstructed from the latent vector q.549

Following Eq. (7), we assess this accuracy primarily using the Pearson Correlation Co-550

efficient (PCC) between the original FOM slip-rate time series ˆ̇S within the low effec-551

tive normal stress zone W and the corresponding reconstruction ˆ̇S∗ obtained via the in-552

verse transformation G−1(t, q). We aim to ensure the PCC remains above a threshold,553

1 − ϵ where ϵ = 0.001. The trade-off lies in minimizing the dimensionality l of the la-554

tent vector q (i.e., minimizing the number of spline knots and coefficients) while main-555

taining this high level of reconstruction accuracy.556

Figure 6 provides a quantitative comparison validating the efficiency of represent-557

ing the slip-rate (ṡ) using our proposed phase domain spline approach versus a conven-558

tional time-domain spline, illustrated using four different FOM parameter pairs. The plot559

shows the number of spline knots required for the B-spline representation to achieve a560

PCC exceeding 0.999 when reconstructing the slip-rate time series. This comparison con-561

siders the full simulation duration after the initial spin-up period, without constraining562

the number of SSE cycles included. As clearly demonstrated, splines parameterized by563

the phase progression variable ϕ consistently require considerably fewer spline knots to564

reach this high accuracy threshold compared to splines based directly on the time-domain.565

The four example FOM simulations contain approximately 2×105 to 4×105 time steps,566

requiring only 400 - 900 spline knots for satisfactory representation using the phase tra-567

jectory approach, compared to 7000 - 15000 spline knots needed for the time-domain ap-568

proach. This empirically confirms that the simulation characteristics can be represented569

much more efficiently in the phase-space.570

Building on the now established efficiency of phase-space parameterization, Fig-571

ure 7 further assesses the performance of our spline latent space representation in recon-572

structing detailed simulation outputs. Although the figure presents the reconstruction573

of slip-rate time series along one observation point (195 km along fault), the reconstruc-574

tion PCC score is calculated over all observation points within W . For a lengthy 33-cycle575

SSE simulation, whose original outputs
(
t̂, Φ̂, ˆ̇S, Ψ̂, Ŝ

)
comprise 1.8×108 floating-point576

numbers, a clear relationship is observed between reconstruction fidelity and the num-577

ber of spline knots utilized. With the ratio of knots fixed at K1 = 0.1K0, which was578

found to be adequate based on trial and error, a representation with K0 = 1000 spline579

knots per observation point (illustrated by the blue curve in Figure 7(a)) reproduces the580

general characteristics of the slip-rate waveform at a specific observation point, yet it fails581

to capture crucial details such as slip-rate peaks and performs poorly during the inter-582

seismic period.583

The target reconstruction accuracy, defined by a PCC score exceeding 1−ϵ (where584

ϵ = 0.001), is achieved with K0 = 12000 spline knots (red curve, Figure 7(a)). This585

results in a latent representation size of l ≈ 4×106 floating-point numbers, correspond-586

ing to a 97.5% data compression. The performance of this latent space representation587

was also evaluated for individual SSE cycles (Figure 7(c)-(j)), which are fundamental588

to our ROM scheme (Section 3.1.2), across a range of model parameters (ξ1 through ξ4).589

The original output data for these single-cycle simulations range from 4 × 106 to 7 ×590

106 floating-point numbers. For these single-cycle cases, the target PCC threshold is met591

when the number of spline knots K0 equals 250, 300, 450, and 350 per observation point592

for simulations using ξ1 = (30.5 km, 4 MPa), ξ2 = (38 km, 6 MPa), ξ3 = (48 km, 2 MPa)593

and ξ4 = (68 km, 3 MPa), respectively. This level of reconstruction yields data com-594
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Figure 6. Comparison of spline interpolation accuracy when the slip-rate (ṡ) is represented

in time-domain and phase-space. The plot demonstrates the number of spline knots required

to achieve a PCC exceeding 0.999 (red horizontal line) when reconstructing the slip-rate. The

phase-space based spline (gray lines) computed via B−1(kϕ, cṡ, ϕ̃(t)) (see Section 3.1.1, Eq. (13))

consistently requires considerably fewer spline knots than time-domain representation (black

lines, computed via B−1(kt, cṡ, t)), demonstrating the efficiency of phase-space representation of

the SSE FOM simulation output. Panel (a) shows the PCC for spline calculated with number

of spline knots < 700, while panel (b) illustrates the performance difference for spline calculated

with number of spline knots > 5000. In the case of the gray lines, the number of knots corre-

sponds to K1.

pression ratios between 97.3% and 97.8%, comparable to the multi-cycle simulation re-595

construction.596

Throughout the remainder of this work, we construct ROMs using K0 = 800 and597

K1 = 80 spline knots for the time to phase-progression (kt) and the phase to physical598

variable (kϕ) mapping respectively. This choice ensures that reconstruction fidelity com-599

fortably exceeds the desired threshold while still achieving an approximate 95% reduc-600

tion in data size compared to the original FOM output. With m = 346 fault observa-601

tion points, this results in a total latent vector length of l = 388, 320 for each SSE cy-602

cle simulation (Eq. (16)).603

4.3 ROM results604

The objective of developing the ROM is to accelerate the inference of SSE cycles605

over the parameter space defined by the width of the low effective normal stress zone (W )606

and its magnitude (σW ). This section details the performance and accuracy of the con-607

structed ROM.608

The development of the ROM involves an initial offline phase, which includes run-609

ning the 76 FOM simulations to generate the training dataset, transforming these sim-610

ulations into their spline latent space representations, performing POD on the matrix611

of latent vectors D for each SSE cycle, and constructing the RBF interpolators for the612

POD coefficients (Figure 2 - offline computations). The generation of the 76 FOM sim-613

ulations incurred a cumulative cost of approximately 233,565 CPU hours (Section 4.1.614

The subsequent offline computations for the ROM construction, of calculating spline co-615

efficients in order to transform the FOM to their latent space require an additional ∼360616

CPU hours all other offline steps have negligible run time compare to the first two.617
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Figure 7. Accuracy of the spline latent space reconstruction of the FOM slip-rate ṡ(t). Pan-

els (a) and (b) analyze the spline accuracy when applied to an entire time series consisting of

33-cycle SSEs simulation with ξ = (50.5 km, 4 MPa). Panel (a): Slip-rate at an along-dip of

195 km for the FOM (black line); spline reconstruction using K0 = 1000 spline knots (blue line)

and K0 = 12000 spline knots (red line). The gray dashed line shows the PCC (right y-axis) as

a function of the number of spline knots (top x-axis). Note that the PCC is calculated for all

observation points within W . Panel (b): Reconstruction errors, |˜̇s(t) − ṡ(t)|/ṡ(t) when using

K0 = 1000 (blue) and K0 = 12000 (red) splines knots. Panels (c), (e), (g), (i): Spline recon-

struction for slip-rate when applied to a single SSE cycle using K0 = 200 spline knots (cyan) and

K0 = 800 spline knots (pink) with ξ given by (30.5 km, 4 MPa), (38 km, 6 MPa), (48 km, 2 MPa)

and (68 km, 3 MPa) respectively. Panels (d), (f), (h), (j): Spline reconstruction errors associated

with (c), (e), (g), (i) respectively.
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Once all the offline tasks are complete, evaluating the ROM for a new parameter618

vector ξ∗ (online task) is very fast. A single ROM evaluation, which involves interpo-619

lating the POD coefficients using the RBFs (Eq. (22)), reconstructing the latent vector620

q∗ (Eq. (26)), and then transforming it back to the physical space using the inverse spline621

transformation G−1 (Eq. (27)) to obtain the time series for slip-rate, state variable, and622

cumulative slip takes approximately 30 seconds with one CPU. This represents a speedup623

of 3.68× 105 compared to the average FOM runtime of ∼ 3000 CPUh.624

The accuracy of the ROM was systematically assessed using the LOOCV proce-625

dure detailed in Section 3.2. In this process, for each of the 76 FOM simulations, the ROM626

was trained on the remaining 75 simulations, and its predictions for the held-out param-627

eter set were compared against the actual FOM results. Figure 8 illustrates the ROM’s628

capability in reproducing key physical characteristics of SSEs, namely the recurrence time629

Tc and potency P0. For recurrence time, the ROM’s predictions largely fall within the630

FOM’s cycle-to-cycle standard deviation, with only one exception among the 76 cases.631

The mean absolute difference between FOM and ROM Tc was 11.56 days, relative to an632

average SSE recurrence time of 440 days for the dataset. Consequently, the R2 score com-633

paring ROM-predicted Tc to FOM Tc is 0.98, indicating a strong linear relationship and634

a near one-to-one correspondence.635

For the potency, the majority of ROM predictions also align with the FOM results636

within the FOM’s own standard deviation, which, as shown in Figure 8(d), can exhibit637

considerable cycle-to-cycle variability. However, notable discrepancies between FOM and638

ROM potency were observed for a few parameter vectors, specifically ξ = (68 km, 6 MPa),639

ξ = (60.5 km, 6 MPa), ξ = (30.5 km, 4 MPa), and ξ = (30.5 km, 6 MPa). These cases640

generally lie at the periphery of our sampled parameter space, often near corners where641

the interpolation scheme has limited surrounding data. The ROM appears to exhibit a642

systematic overestimation of potency. While the R2 score for ROM predicted P0 versus643

FOM P0 is 0.59, on the other hand the PCC between the two datasets is substantially644

higher at 0.946, suggesting a strong underlying correlation despite the offset. This sys-645

tematic overestimation, further discussed in Section 5.5, though not ideal, might be ad-646

dressable through post-processing corrections.647

To further illustrate the ROM’s predictive capabilities, Figures 9, ??, ?? show di-648

rect comparisons of the slip-rate, cumulative slip, and state variable evolution at two spe-649

cific fault observation points: 195 km and 220 km along dip. These locations correspond650

to a VW region within W and the stability transition zone (a − b = 0), respectively.651

These predictive capabilities are presented for three distinct parameter sets: ξ1 = (W =652

37.375 km, σW = 5 MPa), which yielded among the best prediction results in the LOOCV;653

ξ2 = (W = 60.5 km, σW = 4 MPa), which showed median prediction accuracy; and654

ξ3 = (W = 43.0 km, σW = 3 MPa), which represents the cases with the largest LOOCV655

discrepancies.656

For both ξ1 and ξ2, the ROM mostly captures the overall SSEs timeseries char-657

acteristics successfully, including peak slip-rates and recurrence times. For ξ3, the re-658

currence time prediction is less accurate; although the mean recurrence time predicted659

by the ROM remains within one standard deviation of the FOM’s mean recurrence time,660

the difference between the means is approximately two months, which is comparable to661

the cycle-to-cycle standard deviation observed in the FOM for this parameter set. Nev-662

ertheless, the prediction of event potency for ξ3 remains reasonable, with the FOM yield-663

ing an average potency of 3153 m2 and the ROM predicting 3097 m2.664

In machine learning applications, it is common practice to employ a validation set665

for hyperparameter tuning and model construction, and a separate test set for an un-666

biased evaluation of the finalized model (Kohavi, 1995). While we utilized an LOOCV667

scheme for validation (Section 3.2), we also established an independent test dataset to668

further assess our ROM. For this purpose, an additional seven FOM simulations were669
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Figure 8. Results of the LOOCV test assessing ROM performance. (a) Comparison of FOM

results versus ROM-predicted recurrence time (Tc). The dashed line indicates a 1:1 ratio. (b)

Characteristic recurrence time (Tc) as a function of normalized fault width (W/h∗). Vertical bars

represent the standard deviation derived of the FOM results, and colored horizontal bars show

the corresponding ROM-calculated values. (c) Comparison of FOM results versus ROM-predicted

potency (P0). The dashed line indicates a 1:1 ratio and the dotted line shows the best linear fit

between the ROM and FOM results. (d) Potency (P0) as a function of normalized fault width

(W/h∗). Vertical bars represent the standard deviation of the FOM results, and colored horizon-

tal bars indicate the ROM-calculated values.
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Figure 9. LOOCV comparison of slip-rate predictions from the ROM (red curves) versus

those from the FOM (black curves). Results are displayed for three different parameter sets at

two along-dip observation points: 195 km (panels (a), (c), (e)) and 220 km (panels (b), (d), (f)).

The parameters (W,σW ) used were: ξ1 = (37.375 km, 5 MPa) ((a)-(b)); ξ2 = (60.5 km, 4 MPa)

((c)-(d)); ξ3 = (43.0 km, 3 MPa) ((e)-(f)).
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run, distributed across our parametric domain. These simulations were not used during670

the ROM construction process.671

The test dataset yielded prediction results for Tc and P0 that were similar to those672

obtained from the LOOCV procedure (Figure 8), achieving R2 scores of 0.92 and 0.58,673

respectively. The test dataset results for P0 also showed the systematic overestimation674

previously observed in the LOOCV analysis, although the predicted potency maintained675

a strong linear correlation with the simulated potency, evidenced by a PCC of 0.98. The676

availability of this test dataset also facilitated the evaluation of a post-processing cor-677

rection for the potency overestimation. The corrected potency, P c0 , is calculated as:678

P c0 = (m− 1)P0 − n, (31)

where m and n are the coefficients of the first-degree polynomial that best fits the po-679

tency predictions from the LOOCV analysis. Applying this correction to the potency680

values in the test set improved the R2 score to 0.95 (Figure ??).681

The computational efficiency and demonstrated accuracy of the ROM facilitate a682

detailed exploration of the parameter space. Figure 10 presents the ROM predictions for683

Tc and the corrected P0 on a finely sampled grid of W and σW . We initially sampled the684

parametric space uniformly with 10000 P ∗ pairs, subsequently removing pairs that fell685

outside the convex hull of the FOM training parameters (illustrated as white space in686

the bottom left corner of Figure 10), which resulted in a total of 9116 ROM evaluations.687

The ROM smoothly interpolates between the FOM training points, revealing complex688

dependencies that might be overlooked with coarser parameter space sampling. For in-689

stance, analyzing the FOM results solely as a function of W/h∗ might suggest that for690

normalized fault lengths in the range of 4−15, SSE recurrence times increase linearly,691

and then gradually approach a constant for W/h∗ > 15. In contrast, the ROM’s dense692

parametric view of Tc as a function of both W and σW (Figure 10(b)) shows a more com-693

plex picture. A diagonal band, roughly delineated by the points (W = 53 km, σW =694

1 MPa) and (W = 30.5 km, σW = 6 MPa), exhibits a high gradient, indicating rapid695

changes in recurrence time over short parametric distances. To the upper-right and lower-696

left of this band, smaller gradients are observed, with Tc variations appearing to be pre-697

dominantly influenced by changes in effective normal stress. This detailed mapping of698

SSE characteristics as a function of fault properties is critical for understanding the un-699

derlying physics and for constraining these parameters against geodetic observations. The700

construction of these high-resolution parameter maps using the ROM required only 75701

CPU hours, in stark contrast to the estimated 3×107 CPU hours that would have been702

necessary if one exclusively used a FOM.703

4.4 Uncertainty quantification of width and amplitude of low effective704

normal stress regions governing slow slip events705

The extensive parameter space exploration detailed in Section 4.3, while showcas-706

ing the ROM’s efficiency, could theoretically be achieved with FOMs, if sufficient par-707

allel computing resources were available, although at a vastly greater cost. However, cer-708

tain tasks in model-based inference, such as global optimization or Bayesian parameter709

estimation via Markov Chain Monte Carlo (MCMC) methods, are inherently sequential710

or have limited parallelizability. For such methodologies, the computational cost of FOMs711

renders them practically infeasible. The rapid evaluation capabilities of our ROM frame-712

work, on the other hand, opens the door to utilize these techniques, allowing for robust713

uncertainty quantification of model parameters based on observations.714

Here, we describe how the ROM can be employed within an MCMC framework to715

invert for the uncertainties in the fault parameters W (width of the low effective nor-716

mal stress zone) and σW (magnitude of low effective normal stress), constrained by ob-717

served characteristics of Cascadia SSEs. We will show that in our models the recurrence718
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Figure 10. ROM predictions for characteristic properties of SSEs. (a) Recurrence time (Tc)

as a function of the normalized fault width (W/h∗). (b) Recurrence time (Tc) as a function of

the width (W , x-axis) and magnitude (σW , y-axis) of the low effective normal stress zone. This

panel highlights complex dependencies, such as a diagonal band of high Tc gradient (c) Corrected

potency (P0) as a function of the normalized fault width (W/h∗). (d) Corrected potency (P0)

as a function of W (x-axis) and σW (y-axis). The uncorrected potency results are presented in

Figure ??.
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interval of SSEs is mainly controlled by the magnitude of effective normal stress, whereas719

their magnitudes primarily depend on the width of the low-stress region.720

We employ the Metropolis-Hastings MCMC algorithm to sample the posterior prob-721

ability distributions for W and σW . The observational constraints derived from Casca-722

dia SSE studies are:723

1. The mean recurrence interval µobsTc
= 1.17 years (14 months) with a standard de-724

viation σobsTc
= 0.17 years (2 months), assuming a normal distribution (Schmidt725

& Gao, 2010; Gomberg et al., 2016).726

2. The seismic moment M0 is assumed to follow a normal distribution with mean µobsM0
=727

7.28 × 1018 Nm (corresponding to Mw ≈ 6.45) and standard deviation σobsM0
=728

4.22 × 1018 Nm, encompassing the typical range of Mw ∼ 6.2 − 6.7 for Casca-729

dia SSEs (Behr & Bürgmann, 2021; Schmidt & Gao, 2010).730

For given parameter vector ξ = (W, σW ), the ROM can be used to compute TROMc731

and PROM0 (in units of m2). The ROM potency is corrected by the best fitted linear re-732

lation to 1 to 1 relation correction (Figure 8) and than converted to seismic moment us-733

ing MROM
0 = µWsP

ROM
0 , where µ is the shear modulus (Table 1) and Ws is the as-734

sumed along-strike width of 60 km.735

The likelihood function L(Dobs | (W,σW )) for a proposed parameter vector, given736

the observed data Dobs = (T obsc , log10(M
obs
0 )), is:737

L ∝ exp


−1

2



(
TROMc − µobsTc

σobsTc

)2

+

(
log10(M

ROM
0 )− µobslog10(M0)

σobslog10(M0)

)2



 . (32)

We initiate the chains with a uniform prior distributions to W and σW over the738

ranges W ∈ [30.5, 68] km and σW ∈ [1, 6] MPa. Then the chains are propagated with739

the Metropolis-Hastings algorithm (Hastings, 1970) which iteratively proposes new pa-740

rameter vector (Wi+1, σW,i+1) from the current state (Wi, σW,i). The ROM is evaluated741

at the proposed state, the likelihood Li+1 is computed, and the proposal is accepted with742

probability α = min
(
1, Li+1·Priori+1

Li·Priori

)
.743

To sample the posterior distributions, we ran 10 parallel chains, each for 6000 it-744

erations (including a 600 burn-in iteration) requiring approximately 50 hours of compu-745

tation. This extent of MCMC analysis is computationally tractable only due to the ROM’s746

efficiency. Relying on the FOM would be prohibitive; the sequential nature of each chain,747

requiring 6000 model evaluations, would translate to an estimated 50 years of compu-748

tation time per chain, in addition to the geneal immense total computational effort re-749

quired for all 10× 6000 FOM evaluations.750

The convergence of the MCMC inversion was monitored using diagnostics presented751

in Figure ??. We employed the potential scale reduction factor, R̂, which compares vari-752

ance between chains to variance within each chain, values approaching 1 indicate con-753

vergence to a common target distribution (Vehtari et al., 2021). We also calculated the754

Effective Sample Size (ESS) to quantify the number of independent samples in the cor-755

related MCMC output, crucial for reliable posterior inference (Gelman et al., 1995). Fig-756

ure ?? indicates that R̂ values for model parameters generally fell below 1.01 after ap-757

proximately 4000 total MCMC evaluations (summed across all 10 chains, not including758

their burn-in periods). The ESS for key parameters typically surpassed 200, a level of-759

ten considered sufficient for robust estimation of posterior means and standard devia-760

tions (Gelman et al., 1995), after approximately 8000 total MCMC evaluations. Attain-761

ing these levels of convergence and sample independence, corresponding to thousands762

of individual model evaluations, is babyhood what is feasible with FOM simulations.763
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Figure 11. Posterior probability distributions and correlations for fault parameters character-

istic properties of SSEs. The parameters shown are: the magnitude of low effective normal stress

(σW ), the width of the low effective normal stress zone (W ), the recurrence interval (Tc), and

the seismic moment (M0). Diagonal plots (panels (a), (c), (f), (j)) display the marginal posterior

probability distributions for each parameter. The y-axis of each marginal plot indicates the prob-

ability density. Off-diagonal plots (panels (b), (d), (e), (g), (h), (i)) illustrate the bivariate joint

posterior distributions for pairs of parameters. For example, panel (b) shows the joint posterior

of σW and W .

The MCMC analysis, informed by the observed Cascadia SSE recurrence intervals764

and seismic moments, yields posterior probability distributions for the fault parameters765

W and σW , visualized in Figure 11. The posterior distribution for the width of the low766

effective normal stress zone, W , is characterized by a mean of 44.7 km and a standard767

deviation of 16.2 km. For the magnitude of the low effective normal stress, σW , the in-768

ferred posterior has a mean of 3.8 MPa and a standard deviation of 1.4 MPa. These val-769

ues represent the constrained estimates and associated uncertainties for these parame-770

ters, conditional on the observational data and the physics assumed by our model.771

Analysis of the relationships within the posterior samples (Figure 11) further il-772

luminates the control of these parameters on SSE characteristics. The SSE recurrence773

interval (Tc) exhibits a strong dependence on σW , with a PCC between their posterior774

samples of 0.86, whereas its correlation with W is considerably weaker (PCC = 0.2). Con-775

versely, the seismic moment (M0) is primarily correlated with W (PCC = 0.75), and shows776

a more moderate correlation with σW (PCC = 0.45). These findings suggest that, within777

our model framework for Cascadia-like SSEs, the magnitude of effective normal stress778

predominantly governs the timing of SSEs, while the spatial extent of this low-stress re-779

gion is the primary factor controlling their magnitude.780
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5 Discussion781

5.1 Implications for the state of stress and pore fluid pressure in Cas-782

cadia783

Our findings support the critical role of low effective normal stress, e.g., maintained784

by high pore fluid pressure (e.g. ?, ?)¿behr2021sses, in enabling and modulating SSEs785

at the CSZ. Our MCMC inversion, constrained by observed Cascadia SSE characteris-786

tics, suggests that these events are consistent with low effective normal stress of 3.8±787

1.4 MPa. This aligns well with conditions hypothesized for SSE generation, which ne-788

cessitate near-lithostatic pore fluid pressures at the depths where Cascadia SSEs typ-789

ically occur. Such low effective normal stress is consistent with the findings of Audet and790

Kim (2016), who highlighted near-lithostatic pore-fluid pressure as a dominant control791

in SSE environments, often evidenced by seismic observations like high Vp/Vs ratios in792

Cascadia’s episodic tremor and slow slip zone. Based on 3D dynamic rupture simula-793

tions (Madden et al., 2022) proposed that pore fluid pressure likely averages near 97%794

of lithostatic pressuren in the Sumatra megathrust. Our results give even higher pore795

fluid pressure of 99.6±0.17% of lithostatic pressure assuming constant crust density of796

2.8×103 kg/m3. We are also in quantitative agreement with numerical models by Perez-797

Silva et al. (2023), which require effective normal stresses in the range of 1-5 MPa to gen-798

erate SSEs on rate-strengthening faults, a scenario compatible with the transitional sta-799

bility regime investigated in our study.800

The inferred upper depth limit of the SSE generation zone from our MCMC inver-801

sion, 30.44±2.8 km, or 175.3±16.2 km along-dip provides quantitative constraints on802

the transition from locked seismogenic behavior to aseismic creep along the Cascadia megath-803

rust. This depth is consistent with observations and models suggesting that SSEs in Cas-804

cadia initiate down-dip of the primary locked seismogenic zone. For instance, Audet and805

Kim (2016) noted that deep non-volcanic tremors, which are often correlated with SSEs,806

generally occur at depths of 30 to 45 km , some distance down-dip of the main seismo-807

genic zone. Michel et al. (2019), who inverted geodetic observations using secular lin-808

ear motion for interseismic locking and for SSE slip distribution, also describe the zone809

of SSEs and tremors in their Cascadia models as lying inland from the coastline, clearly810

disconnected from and down-dip of the locked portion of the megathrust by a shallow811

creeping section. Their modeling indicates this transition zone, characterized by station-812

ary fault creep, spans between approximately 100 km and 150 km away from the trench.813

The down-dip limit of this shallow creeping section at around 150 km along dip, as iden-814

tified by Michel et al. (2019), falls within the uncertainty bounds of our MCMC inver-815

sion result for the updip limit of the SSE zone, although our specific model setup does816

not explicitly impose a creeping zone between the locked and SSE-prone sections.817

5.2 Secondary controls on the recurrence time of SSEs818

Our parameter exploration, enabled by the ROM, allows us to investigate param-819

eter regimes beyond those typically accessible via computationally intensive direct FOM820

studies, expanding upon the linear trends reported by Liu and Rice (2009) and highlight-821

ing more complex, second-order dependencies on both W and σW (Figs 5, 10, 11). Our822

MCMC inversion (Figure 11) uncovers the posterior distributions of W and σW , con-823

strained by characteristic SSE observations from the northern CSZ.824

Given that the extent of our parameter exploration allows W/h∗ to vary by a fac-825

tor of 6 due to changes in σW (holding W constant), versus a factor of 1.6 due to changes826

in W (holding σW constant), the general gradient of Tc across the sampled parameter827

space appears predominantly aligned with the σW axis. This observation is supported828

by the MCMC inversion, where Tc exhibits a PCC of 0.83 with σW , compared to only829

0.2 with W . Notably, some regions exhibit high gradients in recurrence time with a strong830

dependence on W . For instance, at σW = 2.75 MPa, Tc jumps from 0.85 years to 1.1831
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years as W increases from 38 km to 43 km. This represents a 30% increase in recurrence832

time but only a 7% increase in the normalized fault width W/h∗.833

5.3 Forward modeling method834

A crucial aspect underpinning our ROM development is the verified accuracy of835

the FOMs that generated the training data. Our FOM simulations, performed using the836

volumetric discontinuous Galerkin finite element code tandem (Section 2, Uphoff et al.,837

2022), successfully reproduce the key relationships between normalized fault width (W/h∗),838

SSE recurrence interval, and mean SSE slip previously established by Liu and Rice (2009)839

using a boundary element method (BEM) (Figure 5). This agreement verifies our phys-840

ical model setup prior to the development of our ROM.841

While BEM offers computational advantages for fault-dominated problems by re-842

ducing dimensionality compared to our tandem-based FOMs, for more complex model843

setups BEM simulations may still be computationally expensive. For example, Tainpakdipat844

et al. (2025) report that simulations for their SSEs models demand between 20 and 250845

CPU hours. Therefore, BEM may be similarly limited as volumetric codes when calcu-846

lating more than 10,000 model inferences, as done with our ROM for exploring the pa-847

rameter spaces and estimating uncertainties. Furthermore, classical BEM techniques typ-848

ically assume a homogeneous or layered elastic medium and simplified model and fault849

geometries (Rice & Gu, 1983; Lapusta et al., 2000; Liu & Rice, 2005; Lapusta & Liu, 2009;850

Segall & Bradley, 2012; Li & Liu, 2016b, 2017; Barbot, 2019). Despite recent develop-851

ments to incorporate more complex models (e.g., Mallick et al., 2022; Mallick & Sathi-852

akumar, 2024), efficiently handling widespread and complex off-fault material variations,853

or complex subsurface geometries and topography, remains a challenge for BEM com-854

pared to volumetric codes.855

It is important to note that the ROM framework presented in this study is agnos-856

tic to the specific numerical method of the FOM. Consequently, our ROM scheme could857

be readily applied to training data generated from BEM-based simulations or from vol-858

umetric simulations that accommodate complex off-fault material properties.859

Nie and Barbot (2021) explore SSEs in a 2D anti-plane strain setting, varying both860

the Dieterich-Ruina-Rice number (Ru), which is proportional to W/h∗ by a constant fac-861

tor close to unity and Rb = (b − a)/b, a parameter that controls the ratio of dynamic862

to static stress drops (Gabriel et al., 2012). In our model, a larger width of the low ef-863

fective normal stress zone incorporates a greater portion of the VW section of the fault864

(Figure 1), thereby increasing the apparent Rb of the SSE-producing zone. Although Nie865

and Barbot (2021) did not directly investigate the change in recurrence time as a func-866

tion of Rb, their observed data shows rapid changes in the peak slip-rate and the sys-867

tem limit cycle style which can consequently alter the recurrence times of events. The868

picture emerging from our parametric space exploration reveals three distinct dependen-869

cies of recurrence time on the normalized fault length: for Rb < 0.175, recurrence time870

increases steeply over a relatively short interval of W/h∗ (from 7.5 to 12.5); in contrast,871

for Rb > 0.21, the recurrence interval becomes linearly dependent on the normalized872

fault length, and a transition zone between these behaviors is identified for Rb values in873

the range 0.175 ≤ Rb ≤ 0.21 (Figure ??). These detailed dependencies of recurrence874

time on W/h∗ agrees with Nie and Barbot (2021) in that SSEs characteristics have at875

least secondary dependence on Rb.876

5.4 Comparison with previous work877

The application of ROM techniques to accelerate computationally intensive sim-878

ulations is gaining traction in earthquake science (Rekoske et al., 2023; Kaveh et al., 2024;879

Rekoske et al., 2025; Ragu Ramalingam et al., 2025; Hobson & May, 2025a) and beyond880
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(e.g., Degen et al., 2023; Quiaro et al., 2025; Hobson & May, 2025b). Our ROM method-881

ology, which combines a spline-based latent space representation with RBF interpola-882

tion for POD coefficients builds a ROM for each individual slow slip event expanding the883

approach by Rekoske et al. (2025). A key difference in our approach is the two-step na-884

ture of the model order reduction. The first step involves the transformation of the com-885

plex SSE cycle data into an efficient, low-dimensional spline-based latent representation.886

Key advantage of this latent space is the representation of simulations as fixed-length887

vectors, which addresses the challenge of variable timestep outputs and differing dura-888

tions across simulations. This is a prerequisite for the following matrix-based ROM anal-889

yses and could also be utilized by other machine learning methods, such as many neu-890

ral networks, which require uniform-length inputs (Lecun et al., 1998). Another aspect891

of our ROM framework the per-cycle ROM construction helps effectively managing and892

reducing the dimensionality of the complex time-history data that are characteristic of893

SSE cycle simulations.894

Kaveh et al. (2024) employ a POD-based ROM to forecast extreme events in a rate-895

and-state friction fault model that produces SSEs. They focus on identifying precursor896

states to SSEs by building their ROM from simulation snapshots of the inter-event pe-897

riods only, and over one simulation settings (no change in initial parametrization), thereby898

capturing the system’s characteristics while excluding the SSEs themselves. This allows899

them to define an optimization problem within the reduced-order space to find extreme900

events precursors. In contrast, our ROM is designed to efficiently simulate the entire SSE901

cycle, including the SSEs.902

Physics-Informed Neural Networks (PINNs, Fukushima et al., 2023; Okazaki et903

al., 2022) represent a class of deep learning models that are trained to solve PDEs by904

directly incorporating the equations, along with initial and boundary conditions, into905

the neural network’s loss function. Recently, PINNs have emerged as a promising can-906

didate for a data-driven approach to solving and inverting fault and rate-and-state fric-907

tion equations in both laboratory (Borate et al., 2024) and numerical settings (Rucker908

& Erickson, 2024; Fukushima et al., 2025). Fukushima et al. (2025) employed PINNs for909

the direct inversion of spatially distributed frictional parameters (a, a−b, L) from geode-910

tic observations. Parameters are determined by minimizing a composite loss that includes911

both data misfit and PDEs residuals, the underlying physics thus serves as an inherent912

regularization constraint during the learning process itself. In such an intrusive frame-913

work, the learning phase is coupled with the inversion for specific fault frictional prop-914

erties. Conversely, our ROM functions as a non-intrusive, data-driven surrogate for the915

underlying physics, i.e., is agnostic toward the kind of forward model used. The ROM916

approximates the complex input-output relationships of the system from a dataset of FOM917

simulations, without requiring explicit knowledge or direct utilization of the governing918

equations during its construction phase. This process yields an efficient forward model,919

which can subsequently be integrated into established inversion frameworks. As a result,920

our ROM approach is well-suited for uncertainty quantification, as showcased by our MCMC921

analysis. This is a capability not as directly featured in a PINNs parameter estimation922

framework.923

5.5 Limitations924

A primary consideration for the scalability of our ROM approach is the offline cost925

associated with generating the FOM simulations required for training. In this study, with926

a two-dimensional parameter space (dim(P) = 2, for W and σW ), the 76 FOM simu-927

lations, though computationally intensive, provide a sufficient basis for constructing an928

accurate ROM. However, the number of FOM evaluations needed to adequately sam-929

ple the parameter space and train a robust ROM can, in theory, increase exponentially,930

with the number of parameters being surrogated in the parameter space P. While the931

speedup achieved during the online phase is substantial, the initial investment in FOM932
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simulations for higher dimensional parameter spaces could become a limiting factor. Fu-933

ture work might explore more adaptive or sparse sampling strategies to mitigate the chal-934

lenge of FOM generation in higher-dimensional parameter spaces for ROMs (Bui-Thanh935

et al., 2008).936

Another limitation observed in our results is the systematic overestimation of po-937

tency by the ROM (Figure 8(c),(d)). Although we demonstrated that a simple linear post-938

processing correction, derived from the LOOCV results, can effectively mitigate this bias939

for the test set (Figure ??), this is not an ideal solution. The source of this systematic940

discrepancy may lie in the RBFs interpolation of POD coefficients, in the accumulation941

of minor errors through the multi-step ROM construction process or potentially in the942

ROM lacking the ability to perfectly capture the transition between consecutive SSE cy-943

cles when they are concatenated in time. Ideally, the ROM should predict potency ac-944

curately without requiring such a correction. This suggests an area for future refinement,945

perhaps through the exploration of alternative interpolation schemes for the POD co-946

efficients, or by investigating strategies like introducing small overlaps or more sophis-947

ticated blending techniques between individual SSE cycle ROMs when reconstructing948

longer time series.949

Furthermore, as with most data-driven surrogate models, at its core, our ROM is950

an interpolatory method. Its accuracy can be trusted only within the convex hull of the951

training parameter sets (ξ) and it should not be used for extrapolation beyond the sam-952

pled parameter range. The quality of the ROM predictions is also contingent on the den-953

sity and distribution of the FOM training samples. While our iterative refinement strat-954

egy aimed to address regions of high error, ensuring comprehensive coverage for com-955

plex, high-gradient parameter responses remains a challenge.956

Finally, the physical limitations inherent in the FOMs themselves will propagate957

to the ROM. Our current FOMs, for instance, are 2D and do not capture 3D effects such958

as along-strike variations in fault properties (Brudzinski & Allen, 2007; Li & Liu, 2017)959

or in SSE kinematics (Takagi et al., 2019; Li & Gabriel, 2024). Similarly, more complex960

rheologies (Gao & Wang, 2017) or fluid-transport mechanisms (Perez-Silva et al., 2023;961

Ozawa et al., 2024), if not included in the FOMs, cannot be represented by the ROM.962

The ROM’s are ultimately bounded by the underlying full-order model, the ROM can-963

not learn, or capture time-dependence and or physics which is not present in the FOM.964

5.6 Future work965

A natural future extension of our SEAS ROM approach involves applying it to more966

complex simulations, such as those incorporating fast earthquakes in addition to SSEs,967

more extensive frictional parameter variations, or to extend the forward simulations to968

3D SSE models, all requiring to approximate more parameters. For example, a transi-969

tion from 2D to 3D domains (and consequently from a 1D to a 2D fault) would increase970

the number of coupled rate-and-state friction equations. These added complexities could971

potentially disrupt the well-behaved nature of the phase-space limit cycle trajectories,972

possibly leading to chaotic behavior(Barbot, 2019; Cattania, 2019), which would be more973

challenging to capture with a ROM. Wang (2024) studied the effect on cycle simulations974

of a 1D fault embedded in a 2D domain and found that an increase in the number of in-975

teracting rate-and-state friction points in space can lead to more complicated time-dependence976

behavior, potentially resulting in more complex phase-space trajectories. Distinguish-977

ing between quasi-periodic and truly chaotic behavior is not straightforward, and the for-978

mer can be misinterpreted as the latter (Wang, 2024).979

The stability of these limit cycles and their potential transition to chaotic behav-980

ior can be linked to the friction parameters explored. Viesca (2016b) demonstrated that981

as the ratio of rate-and-state friction parameters a/b approaches 1, the system tends to-982

wards instability and can exhibit chaotic characteristics. Conversely, smaller a/b values983
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are associated with stable, periodic limit cycles. However,Viesca (2016b) also notes that984

in most seismic cycle models a/b ≤ 0.8, in this regime, slip instability does not develop985

chaotically but rather in a universal manner. In the context of our Cascadia-like model,986

the a − b parameters vary along the fault, transitioning from VW to VS behavior. In987

the VW sections, our chosen b value of 0.0045 and a values (Figure 1(c)) result in a/b988

ratios that are generally sufficiently less than 1. This suggests that the SSEs generated989

in our 2D FOMs should, and do, exhibit stable limit cycles. However, extending the ROM990

to exploring parameter regimes where a/b is closer to unity would necessitate careful con-991

sideration of these potential transitions to more complex, possibly chaotic or quasi-periodic,992

behaviors. The adaptability of the spline latent space representation and the POD-RBFs993

framework, which handles the simulation cycle-by-cycle, makes it a promising candidate994

for future work aiming at capturing such behavior, provided the training FOMs adequately995

sample these complex regimes of the parameter space.996

6 Summary997

We present a two-step, scientific machine learning reduced-order modeling (ROM)998

framework that accelerates rate-and-state friction simulations of the slow slip cycle by999

3.6×105 compared with full-order sequences of earthquakes and aseismic slip (SEAS)1000

models. First, each simulated slow slip event (SSE) is recast into a compact spline-based1001

latent space using a phase-space representation of slip rate and state. Second, proper or-1002

thogonal decomposition (POD) combined with radial-basis-function (RBF) interpola-1003

tion emulates the simulations with varying initial conditions. Our ROMs are validated1004

with leave-one-out cross-validation and comparison to earlier, independent SSE simu-1005

lations. We use the ROMs to explore complex, non-linear dependencies of northern Cascadia-1006

like SSE characteristics on the width W and magnitude σW of a deep low effective nor-1007

mal stress zone. We perform a Bayesian Markov-chain Monte-Carlo inversion, constrain-1008

ing these parameters and their uncertainties to W = 44.7 ± 16.2 km and σW = 3.8 ±1009

1.44 MPa. These values imply near-lithostatic pore fluid pressure (99.6±0.17% litho-1010

static) and place the upper SSE source boundary (i.e., the frictional transition zone) at1011

30.44 ± 2.8 km depth, which is consistent with geophysical observations. Because the1012

method is non-intrusive and agnostic to the underlying forward model, future work may1013

extend our ROMs to even higher-dimensional parameter spaces, mixed seismic–aseismic1014

cycles, and fully 3-D geometries, offering a practical route to systematic uncertainty quan-1015

tification throughout the earthquake cycle. By systematically linking megathrust prop-1016

erties to rate-and-state governed slow slip cycle characteristics, our study helps to con-1017

strain first- and second-order controls on how plate boundaries slip, providing input for1018

seismic hazard assessment and future 3-D modeling.1019

Appendix A Mathematical symbols and definitions1020

Table A1: Table of mathematical symbols and definitions used
throughout the study

Symbol Definition Dimension
τ Fault shear stress RD−1

ṡ Slip-rate RD−1

ψ State variable in rate-and-state fric-
tion

Scalar

a, b Empirical friction parameters Scalar
ṡ0 Reference slip-rate Scalar
L Characteristic slip distance Scalar
f0 Reference friction coefficient Scalar

Continued on next page
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Symbol Definition Dimension
θ State variable in standard aging law Scalar
ṡp Plate convergence velocity (11.7

cm/year)
RD−1

h∗ Characteristic nucleation size Scalar
Λ Process zone size Scalar
dpoly Polynomial degree of basis functions Scalar
σW Effective normal stress Scalar
Wl Up-dip extent of the low effective

normal stress region
Scalar

Wr Down-dip extent of the low effective
normal stress region

Scalar

W Width of low effective normal stress
seismogenic region

Scalar

ξ Parameter pair Rk
P 2D parameter space RN×b

Q Data set of simulation outputs Rn × Rm×n × Rm×n × Rm×n

t FOM simulation time steps vector Rn

Ṡ FOM simulation slip-rate outputs Rm×n

Ψ FOM simulation state variable outputs Rm×n

S FOM simulation cumulative slip out-
puts

Rm×n

ROMi(·) Reduced-order model for cycle i Function
ξ∗ Parameter pair input for the ROM

(ξ∗ /∈ P)
Rk

Q∗ ROM simulation output set Rn × Rm×n × Rm×n × Rm×n

q Latent space representation of Q Rl
G(·) Simulation to spline latent space pro-

jector
Function

G−1(·, ·) Spline latent space to simulation re-
construction

Function

H(·) Trajectory of the phase-space para-
metric curve log10(ṡ(t), ψ(t))

Function

ϕ(t) Progression variable along trajectory
in phase-space

Scalar

B(·, ·) B-spline transformation Function
B−1(·, ·, ·) Inverse B-spline transformation Function
kx B-spline knot vector placed along x RM
cf B-spline coefficient vector evaluated

along f(x)
RM

D Matrix of latent vector representations RN×l

uk Basis vector of the image of D Rl

αjk POD coefficient Scalar
φ(·) RBF kernel Function
Tc SSEs recurrence interval Scalar
P0 SSEs potency Scalar
Ws along strike fault length Scalar
N number of FOM evaluation Scalar
i FOM parameter index (e.g. ξi) Scalar
n length of time steps vector Scalar
m number of fault observation points Scalar
j index for specific observation point

(e.g. Qj)
Scalar

Continued on next page
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Symbol Definition Dimension
p number of SSEs cycles Scalar

k index for specific SSE cycle (e.g. Qk) Scalar

Appendix B B-spline knot placement strategy1021

The accuracy and efficiency of our spline-based latent space representation depends1022

on the strategic placement of B-spline knots. An optimal knot distribution allocates more1023

knots to regions of high functional complexity, increases representation fidelity with a1024

minimal number of spline knots. Given the multi-scale nature of the SSE cycle simula-1025

tions data, we developed a two-step, adaptive knot placement strategy for our two dis-1026

tinct spline mappings: (1) mapping the phase progression ϕ from the simulation time1027

t using kt ∈ RK0 knots, and (2) mapping the physical variables (ṡ, s, ψ) from the phase1028

progression variable ϕ using kϕ ∈ RK1 knots.1029

For the first mapping, which connects simulation time t to the phase progression1030

ϕ, the primary challenge is the highly non-uniform distribution of time steps from the1031

full-order model’s adaptive time-stepping scheme. As shown in Figure B1, the relation-1032

ship ϕ(t) is characterized by a long, low-gradient inter-event period, preceded and fol-1033

lowed by an abrupt change during the SSEs. To model this, we use a combination of quantile-1034

based and uniform knot placement along time. The adaptive time stepping used in the1035

FOM generates a high density of time steps during the rapid slip of an SSE, placing knots1036

according to the quantiles of the time steps vector (t) allocates more knots to the SSE1037

period itself. On the other hand, uniformly placed knots ensure coverage in the inter-1038

event period, where time steps can be sparse. This combined approach is crucial for ac-1039

curately resolving the sharp onset and evolution of the slow slip event while efficiently1040

representing the long, quasi-static interseismic period with fewer knots. Based on trial1041

and error for the best reconstruction fidelity, a ratio of 0.7 is chosen between quantile1042

and uniform placement, which gives 0.7K0 quantile knots and 0.3K0 uniform knots along1043

t.1044

For the second mapping, which represents the trajectory in phase space, a simi-1045

lar approach is taken for placing knots along the ϕ. However, the mapping from ϕ to the1046

fault variables is much smoother and lacks sharp, abrupt gradients (Figure 3, Figure 6,1047

and Section 4.2). Consequently, a majority of the knots are placed uniformly. A ratio1048

of 0.2 is chosen between quantile and uniform placement, which gives 0.2K1 quantile knots1049

and 0.8K1 uniform knots along ϕ.1050

Open Research Section1051

All codes and data products supporting this study are openly available. The in-1052

put files required to reproduce the tandem simulations, a static version of the tandem1053

code, and the ROM analysis code are publicly hosted on Zenodo (Magen et al., 2025).1054

The complete raw outputs from all simulations are archived on the National Data Plat-1055

form S3 bucket. The Zenodo repository provides the direct link and instructions for ac-1056

cessing these raw data.1057
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