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Generalisation of the Navier-slip boundary condition to arbitrary directions:

Application to 3D oblique geodynamic simulations

Anthony Jourdon, Dave A. May, Alice-Agnes Gabriel

• Generalisation of Navier-slip boundary conditions to arbitrary directions.

• Impose oblique boundary conditions by constraining velocity direction, not magnitude.

• Simulation of regional-scale long-term oblique geodynamic systems in 3D.

• Utilisation of Nitsche’s method to impose slip constraint in arbitrary directions.
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Abstract

Although boundary conditions are mandatory to solve partial differential equations, they also

represent a transfer of information between the domain being modelled and its surroundings.

In the case of isolated or closed systems, these can be formulated using free- or no-slip

conditions. However, for other types of system, the information transferred through the

boundaries is essential to the dynamics of the system and can have a first order impact on

its evolution.

This work addresses regional geodynamic modelling, which simulates the evolution of an

Earth’s piece over millions of years by solving non-linear Stokes flow. In this open system,

we introduce a new approach to impose oblique boundary conditions. These new conditions

generalise the Navier-slip boundary conditions to arbitrary directions in three dimensions.

The method requires defining both slip and stress constraints. The stress constraint is im-

posed utilising a coordinate transformation to redefine the stress tensor along the boundaries

according to the arbitrary direction chosen while for the slip constraint we utilise Nitsche’s

approach in the context of the finite element method, resulting in a symmetrised and pe-

nalised weak form. We validate our approach through a series of numerical experiments

of increasing complexity, starting with 2D and 3D linear models. Then, we apply those

boundary conditions to a 3D non-linear geodynamic model of oblique extension that we

compare with a standard model utilising Dirichlet boundary conditions. Our results show

that using Dirichlet boundary conditions, which requires to provide arbitrary velocity func-



tions along the boundaries, strongly influences the evolution of the system and generates

artefacts near and along the boundaries. In comparison, the model using the generalised

Navier-slip boundary conditions behaves closely to a model with an unbounded domain,

providing a physically interpretable solution near and along the boundaries. Finally, we

show that the numerical solve of the system is not affected by these boundary conditions

when using Krylov methods preconditioned with multigrid. The method presented in this

work offers a more accurate and physically meaningful approach to impose oblique boundary

conditions to an open system which is a first order improvement for regional geodynamic

simulations.
Keywords: Finite element method, Navier-slip boundary conditions, Nitsche’s method,

geodynamics, variational form

1. Introduction

1.1. Geodynamic modelling

Long term geodynamics modelling studies the motion of Earth’s rocks over millions

of years. To physically model large space and time scales motions the Earth’s interior is

treated as non-linear highly viscous fluids that are accounted for in the Stokes or Navier-

Stokes equations. Long term geodynamics can be modelled through two approaches. One

approach consists of modelling the entire planet, the global models (e.g. Tackley, 2008;

Kronbichler et al., 2012; Heister et al., 2017) while the other approach focuses only on a

region, the regional models (e.g. Gerya and Yuen, 2007; Popov and Sobolev, 2008; May

et al., 2015; Kaus et al., 2016). In this work we focus on regional models.

Regional models present the advantage of being relatively small with respect to the

Earth (∼ 103 km in each spatial direction) allowing high spatial resolution models (∼ 103

m in each spatial direction). However, because they represent a region embedded in a non-

modelled global domain they require boundary conditions in the three spatial dimensions.

These boundary conditions are not only a mandatory mathematical formulation to uniquely

solve a system of partial differential equations, they also represent a transfer of physical
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information. Obviously, depending on the transferred information the mechanical response

of the modelled domain will differ.

On Earth, the internal dynamics of the planet notably expresses through the motion of

tectonic plates leading to the formation of oceanic ridges, mountain belts and subduction

zones. These particular places are called tectonic plates boundaries and represent the main

expression of Earth’s activity concentrating earthquakes, mineral resources and human eco-

nomic activity. The first and foremost observation is that the deformation in tectonic plates

boundaries is three-dimensional, i.e. non-cylindrical, oblique (Bird, 2003; Brune et al., 2018).

1.2. Motivation and challenges

In models the obliquity is mostly applied through initial conditions i.e., oblique weak

zones together with free-slip boundary conditions (e.g. Brune et al., 2012; Ammann et al.,

2018; Pourhiet et al., 2017; Duclaux et al., 2020).

However, the free-slip boundary condition represents an infinitely resistant material in

the direction normal to the boundary and a null friction material in the direction tangential

to the boundary. The problem with that condition is that it enforces cylindrical behaviours in

the vicinity of the boundary, limiting the obliquity of the whole system or forcing to consider

very large domains to avoid a too strong influence of the boundary conditions. Figure 1a & 1b

illustrates such issues. In case of low to moderate obliquity (Figure 1a) the influence of the

free-slip boundary condition is confined to the vicinity of the boundaries. However, in case

of high obliquity (Figure 1b) the impact of the free-slip condition influences the evolution of

the whole system by enforcing a cylindrical behaviour and a strain propagation orthogonal

to the boundaries. The latter case illustrates the strong limitations caused by the free-slip

boundary condition.

Therefore, to work around this problem, some studies proposed to impose obliquity

through boundary conditions (e.g. Brune et al., 2012; Brune, 2014; Heine and Brune, 2014;

Pourhiet et al., 2018; Jourdon et al., 2020, 2021). Until now, the only approach to impose

oblique boundary conditions involves strong Dirichlet imposition i.e., directly setting a value

to the velocity (or displacement) along the boundary. This approach succeeds to simulate

3



Ob
liq

ue
 

we
ak

 zo
ne

Orthogonalization
to the boundary

Artificial velocity gradients Artificial velocity gradients

Oblique 

weak zone

Strain propagation orthogonal 
to the free-slip boundary

εII

High obliquityLow to moderate obliquity

- +

(a)

(c)

(b)

(d)

Figure 1: Map views of 3D geodynamic numerical models modelling oblique stretching. (a) Low to moderate

obliquity, (b) high obliquity imposed through initial conditions (weak zones) coupled with free-slip boundary

condition. In both cases, the free-slip boundary condition forces the deformation to orthogonalize while

approaching the boundary. High obliquity model shows a total obliteration of the obliquity of the initial

weak zone. (c) Low to moderate obliquity, (d) high obliquity imposed through Dirichlet boundary conditions.

In both cases the transition of the velocity vectors from one direction to the opposite is arbitrary and enforces

artificial gradients along the boundaries.

highly oblique systems (Jourdon et al., 2021). Nevertheless, the problem is that requires to

provide values to the velocity vectors everywhere along the boundaries and particularly in

regions where the vectors are pointing in opposite directions leading to artificial and arbitrar-

ily imposed velocity gradients in the tangential direction of the boundary (Figure 1c & 1d).

Such boundary effects can then influence the strain localization and produce non physical

results. Moreover, strong Dirichlet boundary conditions remains simple for Eulerian do-

mains whose boundaries are aligned with the coordinate system, but for arbitrary Eulerian

or Lagrangian meshes, being able to directly set a value to the velocity vector components
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is, in general, not trivial.

Thus, there is still a necessity to find a method to impose obliquity in geodynamic models

without imposing such strong limitations to the modelling objectives.

1.3. Previous work

The objective is to impose oblique boundary conditions i.e., the velocity direction but

without constraining the magnitude of the velocity vectors to avoid arbitrary choices leading

to artificial velocity gradients along the boundaries. Therefore, we seek to impose a slip-type

boundary condition.

In the finite element method several approaches can be considered to apply a slip-type

boundary condition. The Lagrange multiplier method was used to impose free-slip boundary

conditions on curved surfaces (Verfürth, 1987). This approach introduces a new variable and

requires particular choices of finite elements function space (Verfürth, 1987) or the addition of

a penalty term in the weak form resulting in a stabilized formulation (Verfürth, 1991; Urquiza

et al., 2014). Nonetheless, Stenberg (1995) showed that the stabilized Lagrange multiplier

method was closely related to Nitsche’s method (Nitsche, 1971) to weakly impose Dirichlet

boundary conditions. Nitsche’s method was firstly developed to weakly impose Dirichlet

boundary conditions in Poisson-type equations (Nitsche, 1971) before being extended to

Stokes and Navier-Stokes equations (Stenberg, 1995). Then, Freund and Stenberg (1995)

adapted the method to weakly impose free-slip boundary conditions. The method is based

on the symmetrization of the Neumann stress boundary term and the penalization of the

slip condition in the boundary integral (Nitsche, 1971; Stenberg, 1995).

1.4. Present work

In this work, we propose a formulation in terms of slip-type conditions to impose the

direction of the velocity vector and compute its magnitude based on stress. This formulation

is based on the finite element method and is a generalisation of Nitsche’s method to arbitrary

directions to apply Navier-slip boundary conditions. Firstly we provide the variational form

in the context of the incompressible Stokes equation. Secondly we show simple 2D and
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3D numerical simulations employing this method to model a rotated Couette flow and an

oblique stretching. Thirdly we provide two geodynamic models of oblique extension. The

first model uses classical Dirichlet boundary conditions while the second model employs the

generalised Navier-slip boundary conditions. Finally, we compare these results both in term

of impact on the geodynamic evolution and numerical efficiency.

2. Governing equations

2.1. Conservation of mass and momentum

In regional geodynamics simulations, a common physical model is to consider non-inertial

incompressible flow. In this case the conservation of momentum in an open bounded domain

Ω ∈ R3 with boundary ∂Ω is thus:

∇ · τ (u, p)−∇p+ ρg = 0 (1)

−∇ · u = 0, (2)

where u is the velocity vector, p is the pressure, ρ the material density, g the gravity

acceleration vector,

τ (u, p) = 2η(u, p)ε(u) (3)

is the deviatoric stress tensor, η the velocity and pressure dependent effective viscosity and

ε(u) =
1

2

(
∇u+∇uT

)
(4)

the strain rate tensor. The total stress is given by

σ(u, p) = τ (u, p)− pI, (5)

where I ∈ R3 is the identity tensor.

2.2. Boundary conditions

We will denote the outward pointing unit normal vector to ∂Ω by n. To solve equa-

tions (1) & (2), the traditional modelling approach considers the following boundary condi-
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tions

ui = ūi, i = 1, 2, 3 ∀x ∈ ΓD (6)

σn = T̄ ∀x ∈ ΓN (7)

u · n = ḡ ∀x ∈ ΓS (8)

τn = T̄ ∀x ∈ ΓS (9)

where x denotes the coordinates vector, ΓD defines the segment where Dirichlet constraints

are imposed, ΓN defines the segment where Neumann constraints are imposed and ΓS defines

the segment along which Navier-slip constraints are applied.

In this work, we generalise the notion of the Navier-slip conditions. Our generalisation

enables constraining the normal component of the velocity and shear stress across a plane

defined arbitrarily with respect to the boundary ∂Ω. We denote the unit vector normal to

this arbitrary plane via n̂. The two tangents spanning the plane with normal n̂ are denoted

by t̂1 and t̂2 respectively. The three unit vectors n̂, t̂1, t̂2 define a new coordinate system

satisfying

n̂× t̂1 = t̂2, t̂2 × n̂ = t̂1, t̂1 × t̂2 = n̂.

The generalised Navier-slip boundary conditions express the velocity and traction constraints

in terms of that newly defined coordinates system. The velocity constraint is thus given by:

u · n̂ = ḡ ∀x ∈ ΓS. (10)

To define the stress constraints we first define the rotation matrix Λ as

Λ :=
[
n̂ t̂1 t̂2

]
=

[
Λ0 Λ1 Λ2

]
. (11)

We also introduce H a 3× 3 symmetric tensor with entries Hij given by either 0 or 1. The

purpose of this tensor is to discriminate which stress tensor components are constrained

(Hij = 1) and which are not (Hij = 0). We also denote by (⊙) the point-wise product

between tensors such that A⊙B = AijBij ∀i, j.
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The traction terms in the rotated system can be obtained with

ΛTσΛ =


n̂ · σn̂ n̂ · σt̂1 n̂ · σt̂2
t̂1 · σn̂ t̂1 · σt̂1 t̂1 · σt̂2
t̂2 · σn̂ t̂2 · σt̂1 t̂2 · σt̂2

 = ΛTτΛ− pI. (12)

Thus the traction constraints to be applied on the boundary segments ΓS are given by

H⊙
(
ΛTτ

S
Λ
)
≡ G

S
∀x ∈ ΓS (13)

with τ
S

an arbitrarily defined deviatoric stress tensor containing the stress constraints.

Note that because the velocity is constrained in the n̂ direction, we require that H00 = 0.

Moreover, due to the boolean nature of H the stress along boundary can be decomposed as:

ΛTσΛ =
(
1−H

)
⊙
(
ΛTσΛ

)
+H⊙

(
ΛTσΛ

)
=

(
1−H

)
⊙
(
ΛTτΛ

)
+G

S
− pI

(14)

where G
S

is the tensor containing the stress constraints to be applied.

Along the boundary ΓS, the traction vector can be defined by

σn = Λ
(
ΛTσΛ

)
ΛTn =

∑
i

∑
j

(n ·Λi)
(
Λj · σΛi

)
Λj. (15)

Therefore, combining Eqs. (14) & (15) we obtain

σn = Λ
[(
1−H

)
⊙

(
ΛTτΛ

)
+H⊙

(
ΛTτΛ

)]
ΛTn− pn

=
∑
i

∑
j

(n ·Λi)
(
(1−Hij)Λj · τΛi

)
Λj + (n ·Λi)GSij

Λj − pn
(16)

on ΓS.

3. Weak form

In the domain Ω we employ a mixed finite element formulation to solve equations (1) & (2).

We define the velocity space

H1
0(Ω) :=

{
v ∈ H1(Ω) : v|ΓD

= 0
}
, (17)

8



and the pressure space

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω

q = 0

}
. (18)

Where v ∈ H1
0 and q ∈ L2

0 are the test functions associated with the velocity u and the

pressure p respectively. Multiplying Eq. (1) by v and Eq. (2) by q and integrating by part

yields the weak form of the Stokes problem

A ((v, q); (u, p)) = F(v), ∀(v, q) ∈ H1
0(Ω)× L2

0(Ω) (19)

where the bilinear form is given by

A ((v, q) ; (u, p)) := AV (v,u, η(u, p))Ω − B(u, q)Ω − B(v, p)Ω

−AS(v,u, η(u, p))ΓS
+Ap(v, p)ΓS

(20)

with

AV (v,u, η(u, p))Ω :=

∫
Ω

2η(u, p)ε(u) : ε(v) dV (21)

B(v, p)Ω :=

∫
Ω

p∇ · v dV (22)

AS(v,u, η(u, p))ΓS
:=

∑
i

∑
j

∫
ΓS

(v ·Λi) (n ·Λj) (1−Hij)Λi ·
(
2η(u, p)ε(u)

)
Λj dS (23)

Ap(v, p)ΓS
:=

∫
ΓS

v · pn dS (24)

and the linear form is given by

F(v) := FV (v)Ω + FS(v)ΓS
(25)

where

FV (v)Ω :=

∫
Ω

v · ρg dV (26)

FS(v)ΓS
:=

∑
i

∑
j

∫
ΓS

(v ·Λi) (n ·Λj) (GS)ij dS (27)

4. Nitsche’s method

To weakly impose the slip constraint we use Nitsche’s method (Nitsche, 1971). To that

end, we first define the discrete spaces vh,uh ⊂ H1
0 and ph, qh ⊂ L2

0. Then, we introduce
9



the penalty of the slip constraint. Its bilinear form is defined as

Ah
γ

(
vh,uh

)
ΓS

:=

∫
ΓS

γ
(
vh ·Λ0

) (
uh ·Λ0

)
dS (28)

and its linear form as

Fh
γ (v

h)ΓS
:=

∫
ΓS

γ
(
vh ·Λ0

)
ḡ dS. (29)

The bilinear form of the discrete weak form is thus defined as

Ah
((
vh, qh

)
;
(
uh, ph

))
:= A

((
vh, qh

)
;
(
uh, ph

))
+Ah

γ

(
vh,uh

)
ΓS

(30)

and the linear form as

Fh(vh) := F(vh) + Fh
γ (v

h)ΓS
. (31)

The penalty parameter γ should be large enough to ensure that the bilinear form is

coercive. Minimal values for γ at each facet f were proposed for triangular/tetrahedral

meshes (Shahbazi, 2005)

γf >
k(k + d− 1)Af

dVf

, (32)

and quadrilateral/hexahedral meshes (Hillewaert, 2013)

γf > (k + 1)2
Af

Vf

, (33)

with k the polynomial order of the finite element velocity space, d the number of spatial

dimensions, Af the area of the facet and Vf the volume of the cell containing the facet.

In addition, a symmetrising term is added to enhance stability of the discrete weak form.

The symmetry term acts only on the weakly imposed Dirichlet constraint, i.e. on the n̂

(Λ0) component. Moreover, in the bilinear form defined by Eq (23) the only component

that cannot be constrained by data in the linear form defined by Eq. (27) is the component

involving n̂ · τ n̂. Thus the symmetric form only applies to that component such that in the

bilinear form it is defined by the terms

AS
S(v

h,uh, ηh(uh, ph))ΓS
:=

∫
ΓS

(
uh ·Λ0

)
(n ·Λ0)Λ0 ·

(
2ηh(uh, ph)ε(vh)

)
Λ0 dS (34)

BS
S(u

h, qh)ΓS
:= −

∫
ΓS

(
uh ·Λ0

)
(n ·Λ0) q

h dS (35)
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and in the linear form by

FS
Sv
(vh, ηh(uh, ph))ΓS

:=

∫
ΓS

ḡ(n ·Λ0)Λ0 ·
(
2ηh(uh, ph)ε(vh)

)
Λ0 dS (36)

FS
Sq
(qh)ΓS

:= −
∫
ΓS

ḡ (n ·Λ0) q
h dS. (37)

Finally, the complete discrete weak form for generalised Navier-slip conditions is given

by

AV (v
h,uh, η(uh, ph))Ω − B(uh, qh)Ω − B(vh, ph)Ω −AS(v

h,uh, η(uh, ph))ΓS
+Ap(v

h, ph)ΓS

−AS
S(v

h,uh, η(uh, ph))ΓS
− BS

S(u
h, qh)ΓS

+Ah
γ

(
vh,uh

)
ΓS

= F(vh)Ω + FS(v
h)ΓS

−FS
Sv
(vh, ηh(uh, ph))ΓS

−FS
Sq
(qh)ΓS

+ Fh
γ (v

h)ΓS

(38)

5. Residual form

To solve the problem described by Eq. (38) with iterative methods we express the problem

in term of residual. First, using the finite element method to discretize Eq. (38) we define

uh =
∑

iϕiui, ph =
∑

i φipi, vh =
∑

iψivi, qh =
∑

i ζiqi

with uh, ph the discrete solution for velocity and pressure respectively, ϕi, ψi the element

basis functions and ui, pi the coefficient of the trial functions for velocity and pressure

respectively. The same decomposition holds for the test function with vh, qh the discrete

test functions for velocity and pressure respectively, ψi, ζi the element basis functions and

vi, qi the coefficient of the test functions for velocity and pressure respectively.

5.1. Linear residual

From the weak form defined at Eq (38) the linear residual for velocity (Ru) and pressure

(Rp) can be written as Ru

Rp

 =

A(ψ,ϕ)u+B(ψ, φ)p− fu(ψ)

C(ϕ, ζ)u− fp(ζ)

 (39)
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where

Aij(ψi,ϕj) := AV (ψi,ϕj)Ω −AS(ψi,ϕj)ΓS
−AS

S(ψi,ϕj)ΓS
+Ah

γ

(
ψi,ϕj

)
ΓS

, (40)

Bij(ψi, φj) := −B(ψi, φj)Ω +Ap(ψi, φj)ΓS
, (41)

Cij(ϕi, ζj) := −B(ϕi, ζj)Ω − BS
S(ϕi, ζj)ΓS

(42)

and

fui
(ψi) := F(ψi)Ω + FS(ψi)ΓS

−FS
Sv
(ψi)ΓS

+ Fh
γ (ψi)ΓS

(43)

fpi(ζi) := −FS
Sq
(ζi)ΓS

. (44)

Note that for the volumetric part C = BT and that the symmetry of the saddle point

problem is conserved.

5.2. Non-linear residual

As introduced in Eq. (3), common Earth Sciences problems involve non-linear Arrhenius

viscosity laws that can depend on both the velocity (u) and pressure (p) e.g., Eq. (94). To

solve these non-linearities using iterative method, at iteration k+1 with the previous guess

(uk, pk) we define the non-linear residualRk
u

Rk
p

 =

A(ψ,ϕ, η(uk, pk))uk +B(ψ, φ)pk − fu(ψ)

C(ϕ, ζ)uk − fp(ζ)

 (45)

with

Aij(ψi,ϕj, η(u
k, pk)) := AV (ψi,ϕj, η(u

k, pk))Ω −AS(ψi,ϕj, η(u
k, pk))ΓS

−AS
S(ψi,ϕj, η(u

k, pk))ΓS
+Ah

γ

(
ψi,ϕj

)
ΓS

(46)

6. Benchmarking

6.1. 2D Rotated Couette Flow

Couette flow describes the flow between two plates moving relatively to each others

(Figure 2a 2c). In the following experiments we use a constant viscosity η = 1. First, we
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η = 1

Ω
Ω

η = 1

u = 1
0 

u = -1
 0 

Rotation
angle θ = 36°

ΓD

ΓD

ΓSΓS

uy = 0 uy = 0
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Figure 2: (a) Couette flow setup. The black lines represent two plates moving relatively to each others. The

green square represent the domain Ω in which we solve for u. The grey arrows show the flow field outside

the domain Ω. (b) Rotation of the system represented in (a) of an angle θ = 36◦. The grey arrows show the

rotated flow field outside the domain Ω. The orange arrows show a representation of t̂ and n̂, the special

direction describing the Navier-slip boundary conditions. (c) Solution for u in the non-rotated system. The

grey arrows show the velocity field along the vertical section. (d) Solution for u in the rotated system. The

grey arrows show the velocity field along a section oriented at θ = 36◦. The orange arrows show the velocity

field along the vertical section located at x = 0.5.
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consider a domain Ω = [0, 1]2 with the following boundary conditions:

u =

−1

0

 ∀y = 0 (47)

u =

1
0

 ∀y = 1 (48)

uy = 0 ∀x = {0, 1} (49)

Without pressure gradient imposed, such conditions reduce the conservation of momentum

to a single variable problem:
∂2u

∂y2
= 0. (50)

Integrating twice and using the boundary conditions to determine the integration constants

gives

u =

2y − 1

0

 . (51)

Rotating the whole system by an angle θ (Figure 2b) while staying in the same coordinate

system transforms u to

uR(x) = R(θ)u
(
RT (θ)x

)
(52)

with the rotation matrix given by

R(θ) =

cos θ − sin θ

sin θ cos θ

 . (53)

Numerically solving the rotated Couette flow with generalised Navier-slip boundary con-

ditions using Nitsche’s method must verify the same solution than the solution given by

Eq. (52). Thus, we consider a domain Ω = [0, 1]2 crossed by the rotated Couette flow

(Figure 2b). To numerically solve this configuration we impose the following boundary

conditions:

u = uR(x) ∀x ∈ ΓD (54)

u · n̂ = 0 ∀x ∈ ΓS (55)

G
S
= H⊙

(
ΛTτ

R
Λ
)

∀x ∈ ΓS (56)
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with

H =

0 1

1 0

 , (57)

Λ =
[
Λ0 Λ1

]
=

[
n̂ t̂

]
(58)

and

t̂ = R(θ)

1
0

 (59)

n̂ = R
(π
2

)
t̂. (60)

To obtain the stress τ
R

we first rotate the constant strain rate tensor ε:

ε
R
= R(θ) εRT (θ) (61)

and compute

τ
R
= 2ηε

R
. (62)

Figure 2d shows the solution of the rotated Couette flow using Nitsche’s method to

impose Navier-slip boundary conditions along ΓS. The solution obtained exactly reproduces

the analytical solution of the rotated flow down to machine precision error.

6.2. 3D oblique stretching

The following experiments aim to demonstrate the application of the generalised Navier-

slip boundary conditions to the scale of 3D geodynamics models.

We consider a domain Ω = [0, 1000]3 km3 with a constant density ρ = 3300 kg.m3 and

a gravity acceleration vector g = [0,−9.8, 0] m.s−2. We provide experiments using two sets

of boundary conditions (Figure 3 and Figure 6). Each set of boundary conditions is applied

to a constant viscosity domain and a variable viscosity domain especially designed as an

extreme case implying stress discontinuity between faces.
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Modelled region

Idealised line of velocity direction change

Far field velocity

Velocity vector

θ = 45°
(a)

x

z
Lx

Lz

ГD

ГD

ГS

ГS

(b)

Rotation of far field 
velocity θ = 45°

Figure 3: Map view representation of a far field velocity field containing the region of interest to be modelled.

(a) Pure extension in z direction, constant velocity along x direction. (b) Rotated velocity field with an

angle θ = 45◦, velocity vectors are rotated but not the regional domain. ΓD and ΓS represent the Dirichlet

and the Navier-slip boundaries respectively. Lx and Lz represent the length of the domain in x and z

directions respectively.

6.2.1. Rotated pure extension

First we consider a simple case of pure extension in the x − z plane (Figure 3a) with a

vertical velocity inflow at the base and a free surface:

ūz = 1 ∀x = Lx (63)

ūz = −1 ∀x = 0 (64)

ūx = 0 ∀z = {0, Lz} (65)

ūy = 1 ∀y = 0 (66)

σn = 0 ∀y = Ly (67)
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To obtain an oblique extension case we rotate this system of an angle θ in the horizontal

(x− z) plane (Figure 3) using the rotation matrix

R
y
(θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (68)

while keeping the same coordinate system and the same domain coordinates i.e., Ω is not

rotated (Figure 3). In this new configuration we require to impose Dirichlet boundary

conditions on faces of normal z denoted by ΓD and Navier-slip boundary conditions on faces

of normal x denoted by ΓS. The top and bottom boundary conditions are not modified. To

obtain Dirichlet boundary conditions we reduce the problem to a 2D case of pure extension

that we rotate. This choice implies that the vertical motions do not influence the horizontal

components of the flow field. Thus, considering only the horizontal components of the

velocity with the boundary conditions (63)-(65) the non rotated flow field satisfies

∂2u

∂z2
= 0. (69)

Therefore, integrating twice and using the boundary conditions to determine the constants

of integration yields

u =
2

Lz


0

0

z − 1

 . (70)

The rotation of the referential requires to compute a new velocity field uR in that referential

with Eq. (52) using R
y
(θ). Thus, to numerically solve the 3D oblique stretching model we

apply the following boundary conditions:

ūx = uRx ∀z = {0, Lz} (71)

ūz = uRz ∀z = {0, Lz} (72)

u · n̂ = 0 ∀x = {0, Lx} (73)

G
S
= H⊙

(
ΛTτ

R
Λ
)

∀x = {0, Lx} (74)
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with

t̂1 = Ry
(θ)


0

0

1

 , n̂ = R
y
(−π

2
)̂t1, t̂2 = n̂× t̂1, (75)

Λ =
[
Λ0 Λ1 Λ2

]
=

[
n̂ t̂1 t̂2

]
(76)

and

H =


0 1 1

1 1 0

1 0 0

 (77)

To compute τ
R

we define a background virtual flow field based on the Dirichlet boundary

forcing. We then use this virtual flow field to compute a background strain rate ε
b
(u) that

we use to compute the stress boundary values with

τ
R
= 2η

(
R

y
(θ)ε

b
RT

y
(θ)

)
(78)
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Figure 4: (a) Streamlines of the flow field solution, the colour shows the value of ∥u∥ in m.s−1. (b) Total

pressure p solution ×107 Pa. (c) Dynamic pressure |p−ph|×107 Pa with ph the hydrostatic pressure. Values

of the components of the velocity field: (d) ux, (e) uz, (f) uy in m.s−1.
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Figure 4 shows the result of this model with a constant viscosity η = 1021 Pa.s. With

the rotation angle θ = 45◦ the horizontal flow field is symmetric with respect to the diagonal

of the domain (Figure 4a, 4d, 4e). The total pressure field (Figure 4b) shows an increase in

depth while the dynamic pressure is constant over the domain with a value of 2.8× 106 Pa

(Figure 4c). Using the same parameters but changing the rotation angle θ does not affect the

pressure field. The vertical component of the flow field (Figure 4f) is also kept unchanged

with respect to the rotation.
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Figure 5: (a) Viscosity field η × 1022 Pa.s. (b) Streamlines of the flow field solution, the colour shows the

value of ∥u∥ in m.s−1. (c) Dynamic pressure |p− ph| × 107 Pa with ph the hydrostatic pressure. Values of

the components of the velocity field: (d) ux, (e) uz, (f) uy in m.s−1.

Figure 5 shows the result of the 45◦ rotated extension with a variable viscosity structure.

The viscosity structure is imposed with a hyperbolic function from y = 800 km to y =

1000 km. The low and high viscosity regions meet along a vertical diagonal of the domain

perpendicularly to the stretching direction (Figure 5a) and join the corners of the domain

where faces on which we apply Dirichlet and Navier-slip boundary conditions are in contact.

This experiment is designed to obtain a viscosity jump that will enforce a stress discontinuity

between the faces of the domain. Compared to the constant viscosity model the flow field is

asymmetric (Figure 5b). The transition zone where velocity directions change occurs inside
19



the low viscosity zone instead of being located in the centre of the domain (Figure 5d & 5e).

As expected the dynamic pressure field shows variations at interfaces between different

viscosities regions (Figure 5c). However, in one of the corners where the low and high

viscosity regions meet the stress discontinuity leads to a higher but acceptable pressure

value.

6.2.2. Oblique extension

Modelled region

Idealised line of velocity direction change

Far field velocity

Velocity vector

x

z
Lx

Lz

ГD

ГD

ГS

ГS

(b)
α = 45°

Figure 6: Map view representation of a far field velocity field containing the region of interest to be modelled.

The velocity field forms an angle of α = 45◦ with the x and z directions and has a constant norm along

the x direction. ΓD and ΓS represent the Dirichlet and the Navier-slip boundaries respectively. Lx and Lz

represent the length of the domain in x and z directions respectively.

The second set of experiments models an oblique extension in the x − z plane of an

angle α = 45◦ (Figure 6). To impose oblique extension we constraint the two horizontal

components of the velocity on the Dirichlet boundaries as

ūx0 =
√

∥ū∥2 − ū2
z0

ūz0 = ∥ū∥ cosα
(79)
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with ∥ū∥ = 1 m.s−1. Then we use the following analytical function to compute the boundary

velocity value in the required direction:

ū(x) =


z 2
Lz
ūx0 − ūx0

0

z 2
Lz
ūz0 − ūz0

 (80)

The boundary conditions of this model set is thus

ux = ūx ∀z = {0, Lz} (81)

uz = ūz ∀z = {0, Lz} (82)

σn = 0 ∀y = 0 (83)

uy = ∥ū∥ ∀y = Ly (84)

u · n̂ = 0 ∀x = {0, Lx} (85)

G
S
= H⊙

(
ΛTτ

S
Λ
)

∀x = {0, Lx} (86)

In the following experiments, we use

t̂1 =


ūx0

0

ūz0

 , n̂ = R
y
(−π

2
)̂t1, t̂2 = n̂× t̂1, (87)

while Λ and H are similar to Eqs. (76) & (77) respectively.

To obtain the imposed stress value τ
S

we consider a virtual background strain rate tensor

ε
b
(ū) computed from the analytical function (80) yielding

ε
b
(ū) =

1

Lz


0 0 ūx

0 0 0

ūx 0 2ūz

 . (88)

Figure 7 shows the model results for a constant viscosity η = 1021 Pa.s. The total

pressure p (Figure 7b) shows an increase with depth due to the buoyancy forces while the

dynamic pressure (Figure 7c) computed as |p − ph| where ph is the hydrostatic pressure is
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Figure 7: (a) Streamlines of the flow field solution, the colour shows the value of ∥u∥ in m.s−1. (b) Total

pressure p solution ×107 Pa. (c) Dynamic pressure |p−ph|×107 Pa with ph the hydrostatic pressure. Values

of the components of the velocity field: (d) ux, (e) uz, (f) uy in m.s−1.

constant over the domain with a value of 2.8 × 106 Pa. The flow field (Figure 7a, 7d, 7e)

shows a localised transition of the horizontal velocity direction in the central part of the

domain. The vertical velocity (Figure 7f) shows an upward flow from the bottom where

the Dirichlet boundary condition is applied while the free surface goes downward due to the

outflow not being entirely compensated by the bottom inflow.

Figure 8 shows the result of the oblique extension model with a variable viscosity. We

used the same viscosity structure (Figure 8a) than in the rotated extension experiment

(Figure 5a). Results are very similar to the rotated extension model (section 6.2.1) with a

variable viscosity (Figure 5). Indeed the flow field is asymmetric and the transition zone

where the velocity direction changes is also shifted in the lower viscosity zone (Figure 8b, 8d,

8e, 8f). However, the dynamic pressure in the corner is slightly lower than in the previous

experiment (Figure 8c).
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Figure 8: (a) Viscosity field η × 1022 Pa.s. (b) Streamlines of the flow field solution, the colour shows the

value of ∥u∥ in m.s−1. (c) Dynamic pressure |p− ph| × 107 Pa with ph the hydrostatic pressure. Values of

the components of the velocity field: (d) ux, (e) uz, (f) uy in m.s−1.

7. Geodynamic example: oblique continental rifting

7.1. Geodynamic interest

Continental rifting is a major ubiquitous process on Earth. This process is responsible

for the break-up of continents leading to the formation of new oceans. During continental

rifting, the continental crust thins along large scale shear zones, leading to lithospheric and

asthenospheric mantle exhumation that will generate the oceanic sea floor, generally by

melting and producing oceanic crust.

As shown by several studies (e.g. Brune et al., 2018; Jourdon et al., 2020, 2021), the

tectonic plate motion generally leads toward oblique velocity vectors with respect to the

rift system. Such obliquity generates non-cylindrical stress field leading to the formation of

shear zones accommodating that stress field. Such a process is known as strain partitioning.

It combines dip-, oblique- and strike-slip shear zones to accomodate the 3D stress field.

A first order question in long term geodynamics is how plate boundaries form and evolve

in three dimensions. Thus, to be able to study this question we need three dimensional
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approaches.

To show the efficiency of the method we propose and its differences with a more classical

approach, we provide two models simulating an oblique extension of 45◦. The first model uses

only Dirichlet boundary conditions (Model D) while the second model uses a combination

of Dirichlet and generalised Navier-slip boundary conditions to impose the obliquity (Model

GNS).

7.2. Physical model

To simulate the long term evolution of the deformation of the lithosphere we use pTatin3D

(May et al., 2014, 2015) a parallel finite element code that solves the conservation of momen-

tum (Eq. 1) and mass (Eq. 2) for an incompressible fluid. The Stokes problem is discretized

using Q2 − P disc
1 basis functions for each element for velocity and pressure respectively.

To model large deformations, an arbitrary Lagrangian-Eulerian approach coupled with the

marker-in-cell method (Harlow and Welch, 1965; Sulsky et al., 1994) is adopted.

In addition, to take into account temperature variations in time and space during geo-

dynamics processes we solve the following time dependant energy conservation:

ρ0Cp

(
∂T

∂t
+ u · ∇T

)
= ∇ · (k∇T ) +H (89)

with ρ0 the reference density of the material, Cp the thermal heat capacity, T the temper-

ature, t the time, u the velocity of the fluid, k the thermal conductivity and H any heat

sources.

Moreover, we use the Boussinesq approximation to vary the density with respect to

pressure and temperature as

ρ(p, T ) = ρ0 (1− α(T − T0) + β(p− p0)) (90)

with T the temperature and p the pressure of the material, T0 and p0 the reference temper-

ature and pressure respectively at which ρ = ρ0 and α and β the thermal expansion and

compressibility coefficients respectively.
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7.3. Rheological model

The long term rheology of the lithosphere can be assimilated to a high viscosity fluid

(e.g. Ranalli, 1997). At low temperatures, the mechanical behaviour of rocks is brittle. In

the following models we use the von Mises plastic yield criterion adapted to continuum

mechanics

ηp =
C

2εII
, (91)

to simulate brittle behaviour. With C the yield stress of the material and

εII =

√
1

2
εijεij (92)

is the square root of the J2 invariant of the strain rate tensor. In addition, to favour strain

localisation and simulate weakening of the rocks in faults we introduce linear plastic strain

softening:

C = C0 −
ϵp − ϵi
ϵe − ϵi

(C0 − C∞) (93)

with C0 the yield stress of the undamaged material, ϵp the plastic strain, ϵi = 0 the amount

of plastic strain at which the softening initiates, ϵe = 1 the amount of plastic strain at which

the softening ends and C∞ the minimum yield stress reached once softening is complete (see

parameters in Table 2).

At higher temperatures, the rheology of rocks is simulated using non-linear Arrhenius

flow law for dislocation creep:

ηv = A− 1
n

(
εII

) 1
n
−1

exp

(
Q+ pV

nRT

)
(94)

where A, n and Q are material dependant parameters, V is the activation volume of the

material, T is the temperature and R is the universal gas constant.

To assess which of the plastic (ηp) or viscous (ηv) viscosities is used to evaluate the stress,

the minimum of the two is kept

η = min (ηp, ηv) (95)
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Parameter Units Value

[Ox, Lx] km [0, 1200]

[Oy, Ly] km [−250, 0]

[Oz, Lz] km [0, 600]

[mx,my,mz] - [256, 64, 128]

Table 1: Model dimensions

7.4. Initial conditions

The modelled domain Ω is a rectangular parallelepiped domain of dimensions [Ox, Lx]×

[Oy, Ly]× [Oz, Lz] discretized in mx×my×mz Q2 elements. The material initial distribution

consists of flat layers of different Earth’s material. The continental crust is divided into an

upper crust extending from 0 ⩽ y < −20 km, simulated with a quartz flow law (Ranalli,

1997) and a lower crust extending from −20 ⩽ y < −35 km simulated with an anorthite

flow law (Rybacki and Dresen, 2000). The mantle is also divided into two layers with

the same olivine flow law (Hirth and Kohlstedt, 2003) rheology. The lithosphere extends

at coordinates −35 ⩽ y < −120 km and the asthenosphere at −120 ⩽ y ⩽ −250 km. To

initialise deformation and favour the formation of offset basins we define three areas in which
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a small random amount of plastic strain is set. This initial plastic strain will reduce the

strength of the material due to plastic strain softening (Eq. 93) and initialise deformation.

Moreover, the initial condition for the temperature field is computed using the steady-

state heat equation

∇ · (k∇T ) +H = 0 (96)

with the Dirichlet boundary conditions T = 0◦C ∀y = Ly and T = 1450◦C ∀y = Oy. In

addition, below the lithosphere, the heat transfer are known to be mainly advective due

to active mantle convection leading to an adiabatic temperature gradient of approximately

0.5◦/km. To obtain such adiabatic gradient with the steady-state diffusive heat equation

we enforce a very large thermal conductivity in the asthenosphere (k = 70 W m−1 k−1).

However, for the time dependant solve of the conservation of energy (Eq. 89) we use the

realistic value given in Table 2.

7.5. Boundary conditions

7.5.1. Dirichlet boundary conditions

To model an oblique rift we introduce the obliquity through the boundary conditions as

it avoids using any free-slip condition and allows reaching higher obliquities (Jourdon et al.,

2021). Along faces of normal z we use Eq. (80) to impose the Dirichlet boundary conditions

with ∥ū∥ = 0.5 cm.y−1.

On the face of normal y located at y = Ly we impose a free surface boundary condition

σn = 0.

On the face of normal y located at y = Oy we impose a flow balancing the inflow and

outflow of all the other faces except for the top free surface. To do so we first compute

F =
∑∫

S

u · n dS (97)

of all faces except for the top surface and then we set the bottom velocity as

uy =
F

LxLz

. (98)

In addition, in the model using only Dirichlet boundary conditions (Model D) we impose

the linear velocity function described by Eq. (80) along faces of normal x.
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Parameter Units Upper

crust

Lower

crust

Lithospheric

mantle

Asthenospheric

mantle

A MPa−n.s−1 6.7× 10−6 13.4637 2.5× 104 2.5× 104

n - 2.4 3 3.5 3.5

Q kJ.mol−1 156 345 532 532

V m3.mol−1 0 3.8× 10−5 8× 10−6 8× 10−6

C0 MPa 300 300 300 300

C∞ MPa 20 20 20 20

ϵi - 0 0 0 0

ϵe - 1 1 1 1

β Pa−1 10−11 10−11 10−11 10−11

α K−1 3× 10−5 3× 10−5 3× 10−5 3× 10−5

k W.m−1.K−1 2.7 2.85 3.3 3.3

H µW.m−3 1.5 0.3 0 0

ρ0 kg.m−3 2700 2850 3300 3300

Table 2: Rheological and thermal parameters
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7.5.2. Navier-slip boundary conditions

In the model using the generalised Navier-slip boundary conditions (Model GNS) we

impose, along faces of normal x, the following boundary conditions

u · n̂ = 0 ∀x = {0, Lx} (99)

G
S
= H⊙

(
ΛTτ

S
Λ
)

∀x = {0, Lx} (100)

with

t̂1 =


ūx0

0

ūz0

 , n̂ = R
y

(
π
2

)
t̂1, t̂2 = n̂× t̂1 (101)

and

H =


0 1 1

1 1 1

1 1 0

 (102)

and τ
S

is computed using a virtual strain rate tensor computed from Eq. (80) and described

by Eq. (88). However, to obtain τ
S

we also require a viscosity which is neither constant nor

linear. Thus, we use the viscosity updated after each non-linear iteration.

7.6. Results

7.6.1. Model D

This model uses a linear velocity function along the faces of normal x promoting diffuse

deformation near the boundaries of the model (Figure 10 left column).

During the first 10 Myr of evolution, the initial central weak zone located at x = 600 km

mainly localises extensional deformation in favour of shear zones oriented N20 (Figure 10a).

It is surrounded on both sides by two localising shear zones oriented ∼N110 (Figure 10c).

Closer to the boundaries, the most distal initial weak zones located at x = 200 km and

x = 1000 km are connecting to the domain boundaries with weakly localised shear zones

oriented ∼N30-N50 forming a triangular shape (Figure 10c).

From 10 Myr, the deformation in the shear zones joining the central weak zone (x = 600

km) to the distal ones (x = 200 km and x = 1000 km) progressively forms two parallel shear
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the shear zones at the surface of the model in a stereoplot. Left: Model D. Right: Model GNS. SZ: shear
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zones accommodating strike-slip and extensional deformation (Figure 10e, g). It evolves

into an asymmetric system in which the most localised shear zone thins the lithosphere and

exhumes the mantle, marking the separation between an upper plate and a lower plate in

which a thin strike-slip shear zone localises.

In the central part of the domain, the deformation evolves into a network of interlaced
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shear zones exhuming the mantle which generates hard spots around which the shear zones

turn and localise (Figure 10e, g).

Around the weak zones located closer to the boundaries of the domain, the deformation is

partitioned between a thin strike-slip shear zone and a wider extensional shear zone forming

an angle between each other of ∼ 50◦ to 60◦ (Figure 10c, e). The wide extensional shear

zone remains oriented ∼N30 during the whole simulation, forming an angle of ∼ 75◦ with

direction of extension of the boundaries (Figure 10c). In contrast, the thin strike-slip shear

zones developing between the boundaries and the initial distal weak zone are oriented from

N110 near the weak zones to N130 near the boundaries forming an angle of less than 10◦

with the extension direction (Figure 10e).

7.6.2. Model GNS

This model uses the generalised Navier-slip boundary condition to impose an oblique

extension along faces of normal x combined with Dirichlet boundary conditions along faces

of normal z.

During the first 10 Myr strain localises along extensional shear zones oriented between

N40 and N60 forming grabens at the location of the three initial weak zones (Figure 10b).

At the edges of these grabens, deformation starts to localise along shear zones oriented N115

linking the central graben with the distal ones but also linking the most distal grabens with

the domain boundaries (Figure 10d).

From 10 Myr these shear zones start to propagate in the centre of each graben. At 15

Myr in the grabens new shear zones form at their centre as interlaced extensional shear zones

accommodating the thinning of the lithosphere and the exhumation of the mantle between

them (Figure 10f).

Finally, the shear zones between the grabens partition the deformation between strike-

slip to transtensional segments and extensional segments leading to crustal break-up and

exhumation of the mantle (Figure 10h).
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Figure 11: Evolution of u · n̂ in cm.yr−1 through time and space on face of normal x. Non-linear residual

stopping condition: 10−3. Left column: face x = Ox. Right column: face x = Lx.

7.6.3. Behaviour of the solution along boundaries

In Model GNS we weakly enforce that u · n̂ = 0 along the boundaries of normal x.

The solution shows that |u · n̂| < 10−4 cm.yr−1 during the whole simulation (Figure 11).

Moreover, Figure 12 shows that ∥u · n̂∥2L2
⩽ 10−8 at all time on both faces. Figure 12 also

shows that it is more difficult to maintain very low values of u · n̂ during strain localisation

while remaining within acceptable order of magnitudes.

32



Face
Face

Figure 12: Evolution of ∥u · n̂∥2L2
through time on faces of normal x for the model GNS.

7.6.4. Comparison between models

The largest difference between models is located at and near the domain boundaries

where either Dirichlet or generalised Navier-slip conditions are applied. On the bound-

aries, Model D shows a diffuse deformation characteristic of a linear velocity distribution

(Figure 13a). In fact, because the Dirichlet boundary conditions we provide imposes the

horizontal components of the velocity as linear functions, the only component that can ac-

tually generate strain localisation is the vertical one. Indeed, εII on the faces of normal x

shows that strain localises with lenticular shapes stretched in the z direction and shortened

in the y direction (Figure 13e, g) which can be directly related to the linear variation of the

velocity in the z and x direction and to the fact that the vertical component of the velocity

remains unconstrained on these faces.

On the contrary, model GNS shows strain localisation patterns that are almost periodic

i.e., the deformation between the initial weak zones is very similar to the deformation be-

tween the distal weak zones and the boundaries (Figure 10 right column). This result would

also be expected if the domain was larger and contained more equally spaced weak zones.

Moreover, the strain localisation and the shear zones formation on the boundaries of normal
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Figure 13: Active deformation (Eq. 92) along the face x = Ox of the model D (left) and model GNS (right).

x evolve in agreement with the structures formed inside the domain and can migrate and

rearrange themselves during the simulation (Figure 13 right column). However, the back-

ground low strain rate values on the boundaries remain higher than the low values inside

the domain due to the stress boundary data introduced by the method with the G
S

tensor.

Finally, on the boundaries, the generalised Navier-slip boundary conditions allow local-

ising strain in agreement with the system evolution while Dirichlet boundary conditions

impose the solution once and for all.

Nevertheless, as showed on Figure 10 the differences between models are not only confined

to the boundaries of the domain. While the central initial weak zone area (around x = 600

km) shows a close evolution between models, the linkage between grabens and the distal
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Generalised Navier-slip Model Dirichlet Model

Saddle point

solve
A solve

Saddle point

solve
A solve

# time steps 1,427 1,479

Total solves 7,310 64,103 7,540 64,132

Total its 64,103 679,382 64,132 546,784

min. its 1 1 2 4

max. its 20 31 14 25

Average its 8.77 10.60 8.50 8.52

std. dev. its 4.19 2.65 2.60 2.93

var. its 17.58 7.02 6.75 8.58

Table 3: Statistics of the saddle point and the viscous block A solves of Model GNS and Model D.

grabens themselves show a different evolution. On the one hand, in Model D the evolution

of distal grabens is different than the central one due to the boundary conditions influencing

the shear zones orientation and the stress regime. On the other hand, Model GNS shows

a continuity and similarity in the strain pattern in the three grabens and the linking shear

zones between them.

8. Solver performance

To solve the non-linear Stokes problem a Picard linearisation is applied to Eqs. (45)

resulting in an approximate Jacobian matrix equivalent to the linear Stokes problem (May

et al., 2015):

J =

 A B

BT 0

 (103)

forming a saddle point problem. Instead of being solved simultaneously for both velocity

and pressure in a single process the system is first decomposed and solved for the viscous

block A using the Krylov method FGMRES preconditioned with a geometric multigrid.
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In table 3 we compare the solver performance between the model using only Dirichlet

boundary conditions and the model using the generalised Navier-slip boundary conditions.

In both models stopping condition of the residual for the saddle point problem conver-

gence is based on a relative decrease of 10−4 between the first and the last iteration. Table 3

shows that this residual decrease is, in average, achieved between 8 and 9 iterations for each

saddle point solve for both models.

For the solve of the viscous block A, the stopping condition for the residual is based on

a relative decrease of 10−3 between the first and the last iteration. The model using the

generalised Navier-slip boundary conditions shows an average number of iteration between 10

and 11 to achieve this convergence while the model using only Dirichlet boundary conditions

shows an average between 8 and 9 iterations.

While the evolution of the solution during the simulation is very different between the

two models, their performance remains very close. It shows that the use of the generalised

Navier-slip boundary conditions strongly influences the result while poorly impacting the

solver performance.

In addition, from experimental tests it appears that it is necessary to provide at least one

component per stress vector in the stress tensor τ
S

(Eq. 13) to be applied on the boundaries

while using the generalised Navier-slip condition.

9. Conclusion

In this work we introduced a new approach to apply Navier-slip boundary conditions

in arbitrary directions based on Nitsche’s method. These boundary conditions require a

direction in which the velocity is constrained as well as a stress field in the coordinate

system defined by that arbitrary direction. Imposing stress instead of velocity reduces the

impact of the boundary conditions on the solution. The magnitude of the velocity and its

orientation are solved for in agreement with the stress data, the direction imposed and the

evolution of the velocity field inside the domain.

Models results we provide in this study show that along the faces on which generalised

Navier-slip boundary conditions are imposed, the velocity field behaves as if the domain was
36



continuous instead of being bounded. The methods allows applying oblique boundary condi-

tions in regional geodynamic models without having to provide arbitrary velocity functions

that strongly influence the evolution of the deformation in the model. Moreover, we show

that using these boundary conditions does not affect the system stability and that classical

Krylov methods preconditioned with multigrid algorithms can be used efficiently.
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