TELECOMMUNICATIONS, COMPUTER ENGINEERING, AND PHOTONICS INSTITUTE

Information and Communication Technologies for Complex Industrial Systems and Processes

OPTIMIZING INTEGRATED STEELWORKS PROCESS OFF-GAS DISTRIBUTION THROUGH ECONOMIC HYBRID MODEL PREDICTIVE CONTROL AND ECHO STATE NETWORKS

S. Dettori, I. Matino, V. Colla (Scuola Superiore Sant'Anna) A. Wolff, M.J. Neuer (BFI) V. Baric, D. Schroeder, V. Utkin, F. Schaub (Arcelor Mittal Bremen)

Introduction

Methods

- Digital twin
- Economic Hybrid Model Predictive Control
- Control results
- From simulation to online tests
- Discussion, Conclusions and future works

Introduction

Issues:

- Discontinuous POG production and consumption
- Gasholder with limited capacity
- Synchronizing processes/producers/consumers is a difficult task for process operators

State of the art:

Local supervision/control strategy

- Gasholder based ctrl/supervision strategy
- No mutual interaction are considered \rightarrow Non optimal
- Global supervision/control strategy
- Short CTRL/PRED horizons

Introduction

Methods Control / Supervision architecture

Methods Modelling approach

Off-gas producers models

BF model

BOF model

COK model

Consumer #1 model

Consumer #2 model

Consumer #i model

Farget consumption

of off-aases and NG

Electric power consumers

models

CRM

HSM

GASNET Optimization tool

Power Generation scheduling and optimization

variables

Networks controllers

Consumer #1 model

Consumer #2 model

Consumer #i model

Consumer #1 mode

Consumer #2 mode

Consumer #i model

Set-points for control

Aux Boiler #1 model

Aux Boiler #i model

Steam producers and

consumers models

LD Boilers

HWC

RH

Amount of off-gases to PPs & NG total

demand.

tatus

constraint

Electric power

Consumer #1 model

Consumer #2 model

Consumer #i model

production set-point

AND PHOTONICS

IT-Plant

data

roductio

plan

Energy

Data (schedule

& market)

GASNET DB

Prediction and plant models:

- POGs production and consumption
- Electricity consumption and production (e.g. BFG expansion turbines)
- Steam production and consumption (LD steam, RH steam consumption, etc.)
- Power plant, gasholders, boilers, etc.

Methodologies

- Deep Echo State Networks (DESN)
- Moving average models
- Linear correlations and state space models
- Gaussian regression models
- Feed forward neural networks

[1] Dettori, Stefano, et al. "A Deep Learning-based approach for forecasting off-gas production and consumption in the blast furnace." *Neural Computing and Applications* (2021): 1-13.

[2] Matino, Ismael, et al. "Machine Learning-Based Models for Supporting Optimal Exploitation of Process Off-Gases in Integrated Steelworks." *Cybersecurity workshop by European Steel Technology Platform*. Springer, Cham, 2020.

Methods Control approach

AND PHOTONICS

POGs distribution Optimizer

Calculates a possible optimized POG distribution:

- HL Optimizer: up to 1 day ahead, CP 15 minutes
- LL Optimizer: 2 hours ahead, CP 1 minute

[3] Lofberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. In 2004 IEEE international conference on robotics and automation, IEEE. 284-289.

Methods Control approach

AND PHOTONICS

Control actions:

- POG + NG mixture to Power Plant (setpoints for electricity production scheduling)
- POG + NG mixture in walking beam furnaces and modality of the furnace's zones
- POG + NG mixture to Steam Boilers and modalities
- Steam condensed in the condenser
- POG transfer between different networks
- POG burned in the torches

Methods Control approach – High Level Controller

The High-Level Optimizer solves a "simplified" problem

Costs: $\sum_{k=t}^{t+N_p} \gamma^k \left(c_{NG} E_{NG}(k) + C_{EP}(k) E_{EP}(k) - C_{ES}(k) E_{ES}(k) + C_T E_T(k) + C_{CS} V_{S_{CS}}(k) \right)$

- Natural gas consumption
- Electric energy purchased
- Revenues of POG based electricity production
- Environmental impact: POG waste in the torches
- Cost of steam waste in the steam network

Constraints:

- Powerplant: min/max power, min/max thermal power, min/max power variation
- S V POGs networks: Energy conservation, Min/max gasholder level, Min/max transferable POG to other networks, Min/max POG flow in the torches
 - Steam boilers: min/max thermal power, min/max steam mass flow
- Steam network: Steam mass conservation, min/max steam mass in the accumulator, min/max condensed steam
- ✓ Dynamics and models in the loop: Power plant, gasholders, boilers

TELECOMMUNICATION COMPUTER ENGINEERING, AND PHOTONICS INSTITUTE

Methods Control approach – Low Level Controller

Distributed Hybrid Economic MPC

Minimize the costs in each specific POG and Steam network while ensuring safe operating conditions.

The optimization is formulated as a **Mixed Integer Linear Programming** (MILP) problem.

Why?

- Manipulable variables are energy flows (continuous var.s) but also integer/Boolean (number of active groups in the power plant, on-off and modalities of steam boilers, on-off zones of Walking Beam Furnaces, etc.)
- MILP can approximate also complex nonlinear behaviors (e.g.: Efficiency of the power plant in function of the operating point, PWA models, etc.)

TELECOMMUNICATION COMPUTER ENGINEERING, AND PHOTONICS INSTITUTE

Methods

Control approach – Low Level Controller

The low-level optimizer implements a detailed representation of POG, steam and electricity networks.

Costs: the economic balance in each specific POG and Steam network + fictious specific operative costs

Constraints:

- POGs Networks: Energy conservation, Min/max gasholder levels, Min/max POG flow in the torches, specific operative conditions
- Electric Network: min/max operative conditions of the power plant
- Steam Networks: Steam mass conservation, min/max operative points of steam boilers, steam accumulators and pressures
- \checkmark Dynamics and models in the loop

DSS application From simulations to online tests

- A simulation phase is needed to test the feasibility of the control approach.
- Several scenarios have been simulated for different periods of steel production
 - Scenarios have been simulated exploiting data of six months
 - Different scheduling of the main processes (BOF, BF, WBF, Vacuum Degasser, etc.)

Control results: Offline simulation – An example (simulated closed loop)

COMPUTER

AND PHOTONICS

Plantwide hierarchical control strategy allows to reduce energy dependence from the extern and significantly reduce environmental

KPI _{torches%}	KPI _{€%}	KPI _{NG%}
[%]	[%]	[%]
96.9	41.56	27.49

DSS application From simulations to online tests

AND PHOTONICS

DSS composed of several tools

- GUIs for Control trends
- GUI for KPIs

mE steam LDboiler1 pred, 1m

mE steam LDboiler2 pred, 1m

- Modelling tools
- Offline gas network optimization tools
- Deployment in the finalization phase
- Online tests in 2 month

Discussion and conclusions

PROS

CONS and issues

ML models are effective at predicting future energy flows (POG, electricity, steam)

Complex industrial implementation through open-source libraries (Google Or-tools, Tensor flow / custom algorithms for ML models)

Real-time control through MILP

Non-Open-source optimization libraries are expensive (CPLEX, Gurobi, etc.)

Plantwide control allows an intelligent exploitation of POGs

Custom DSS requires a long engineering phase

Easy prototyping (matlab/python)

DSS + operators vs **Automatic control**: control action must be applied ASAP

Discussion and conclusions

Future works:

- Deployment and online test of the control/supervision software in the plant
- Sensitivity of control approach to energy media prices
- Study MIQP approach (reference tracking) for Lowlevel controllers
- ML physical based approaches for disturbance modelling

TELECOMMUNICATIONS, COMPUTER ENGINEERING, AND PHOTONICS INSTITUTE

Thank you

e-mail: <u>s.dettori@santannapisa.it</u>

Information and Communication Technologies for Complex Industrial Systems and Processes