I controlli ambientali legati alla gestione integrata dei rifiuti: dalla raccolta differenziata all'incenerimento, dai TMB alla discarica

Gaetano Settimo gaetano.settimo@iss.it

II problema

La gestione integrata dei rifiuti urbani

La prima Direttiva è la 75/442/CEE del 15/7/1975

Comprende:

Ancora oggi dopo 49 anni

I nostri Amministratori sono concentrati esclusivamente su una sola fase

la raccolta differenziata (Comuni raccoglioni)

come panacea della complessa gestione dei rifiuti urbani. Tutti noi tendiamo a dimenticare le cose che abbiamo buttato......

Mitizzazione della strategia rifiuti zero/zero waste

Opposizione e totale avversione alla costruzione di qualsiasi tipologia di impianti: di selezione, di compostaggio-TMB, di smaltimento mediante incenerimento

Problemi irrisolti ed emergenze in alcune regioni

Politica UE: gestione integrata dei rifiuti

Raccolta, riciclaggio, <u>recupero e smaltimento</u> quali elementi di un sistema integrato che comprende tutte le tecnologie e le procedure sotto varie forme

La <u>raccolta differenziata</u> è <u>uno dei tantissimi parametri</u> ma non <u>il solo (non è prioritario)</u> da considerare per valutare la bontà/qualità delle azioni in tema di corretta gestione integrata dei rifiuti urbani.

Raccolta differenziata ed incenerimento non devono entrare in conflitto tra di loro, ma si devono completare perché tutti e due fanno parte della corretta gestione dei rifiuti urbani.

Mentre è chiara la posizione UE

L'incenerimento <u>è</u> <u>riconosciuto come uno strumento necessario per progredire</u> <u>verso un'economia circolare</u>, <u>più</u> sostenibile, in quanto consente di evitare il conferimento in discarica e genera energia.

Bruxelles, 26.1.2017 COM(2017) 34 final

COMUNICAZIONE DELLA COMMISSIONE AL PARLAMENTO EUROPEO, AL CONSIGLIO, AL COMITATO ECONOMICO E SOCIALE EUROPEO E AL COMITATO DELLE REGIONI

Il ruolo della termovalorizzazione nell'economia circolare

La situazione in Europa

				Percentuale di F	RU trattato (%)	
Paese/ Raggruppamento	RU prodotto (kg/abitante per anno)	RU trattato (kg/abitante per anno)	Riciclo di materia	Compostaggio e Digestione anaerobica	Recupero di energia (R1) e Inceneri- mento (D10)	Discarica e altre operazioni (D1-D7, D12
UE27	527	519	31%	18%	27%	23%
Austria	835	835	41%	21%	36%	2%
Belgio	755	755	34%	20%	44%	0%
Bulgaria	445	442	26%	2%	3%	29%
Cechia	570	581	30%	12%	12%	45%
Cipro	633	506	17%	2%	3%	78%
Croazia	447	403	29%	6%	0%	65%
Danimarca	769	769	31%	26%	41%	1%
Estonia	395	389	27%	3%	49%	20%
Finlandia	630	630	27%	12%	61%	0%
Francia	565	560	25%	19%	32%	23%
Germania	620	620	49%	19%	31%	1%
Grecia	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Irlanda	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Italia	495	452	30%	26%	21%	21%
Lettonia	461	461	36%	8%	3%	53%
Lituania	480	460	27%	19%	37%	16%
Lussemburgo	793	793	30%	25%	41%	4%
Malta	611	626	13%	0%	4%	83%
Paesi Bassi	515	515	28%	30%	41%	1%
Polonia	362	362	27%	13%	21%	39%
Portogallo	513	548	13%	16%	22%	50%
Romania	302	280	7%	5%	6%	81%
Slovacchia	497	488	34%	16%	8%	41%
Slovenia	511	405	59%	18%	14%	8%
Spagna	472	472	19%	18%	11%	52%
Svezia	418	418	20%	20%	60%	1%
Ungheria	416	416	25%	9%	12%	51%
		Paesi della Regi	one Europea n	on UE		
Albania	311	311	19%	0%	2%	79%
Bosnia Erzegovina	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Islanda	659	659	22%	4%	8%	40%
Kosovo	270	270	2%	0%	0%	97%
Macedonia del Nord	459	324	n.a.	n.a.	0%	n.a.
Montenegro	515	503	5%	0%	n.a.	94%
Norvegia	799	799	29%	10%	46%	2%
Serbia	442	424	17%	0%	n.a.	n.a.
Svizzera	704	704	30%	23%	48%	0%
Turchia	416	389	13%	0%	0%	87%

- 26% a compostaggio e digestione anaerobica;
- ✓ 21% smaltiti mediante incenerimento;
- ✓ 21% smaltiti in discarica.

<u>La più alta quota di RU in discarica</u>: Malta (83%), Romania (81%), Cipro (78%), Croazia (65%): ITALIA (21%).

Riciclo: Slovenia (59%), Germania (49%), Austria (41%), Francia (25%): ITALIA (30%).

<u>Compostaggio:</u> Olanda (30%), Danimarca (26%): ITALIA (26%).

<u>Incenerimento:</u> Finlandia (61%), Svezia (60%) Estonia (49%), Austria (36%), Francia (32%), Germania (31%): ITALIA (21%).

lote: "0" valore inferiore a 0,5%; (q) i dati riportati sono arrotondati all'unità, per cui la somma delle percentuali delle quattro forme di gestione non sempre eguagli.

RU = rifiuti urbani

Fonte: elaborazioni ISPRA su dati Eurostat

^{√ 30%} dei RU è stato avviato a riciclaggio;

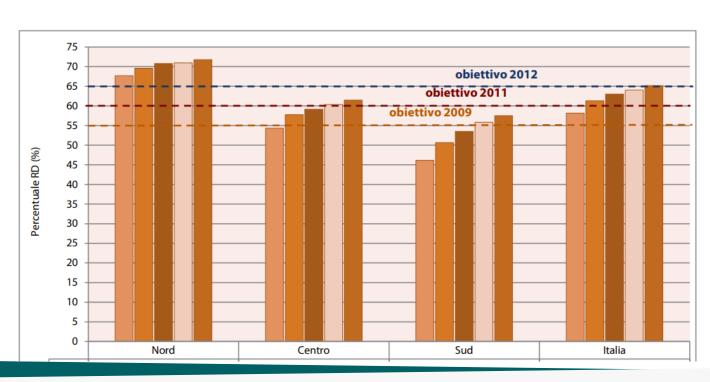
Produzione media nazionale di RU

Danisma	2018	2019	2020	2021	2022
Regione			(t)		
Piemonte	2.162.096	2.143.652	2.075.790	2.134.953	2.107.724
Valle d'Aosta	75.056	75.825	75.887	74.242	75.746
Lombardia	4.810.952	4.843.570	4.680.306	4.774.012	4.617.814
Trentino-Alto Adige	543.626	546.636	512.341	542.792	522.980
Veneto	2.363.232	2.403.335	2.320.680	2.368.470	2.309.796
Friuli-Venezia Giulia	595.729	603.107	597.621	599.862	589.473
Liguria	832.333	821.949	791.481	822.293	813.782
Emilia-Romagna	2.945.291	2.960.609	2.844.728	2.839.418	2.803.812
Nord	14.328.313	14.398.682	13.898.833	14.156.042	13.841.126
Toscana	2.284.143	2.277.254	2.153.388	2.199.464	2.153.005
Umbria	460.610	454.254	438.903	445.321	442.039
Marche	810.118	796.289	753.387	785.640	764.224
Lazio	3.026.441	2.982.549	2.815.268	2.883.852	2.861.424
Centro	6.581.313	6.510.346	6.160.946	6.314.278	6.220.692
Abruzzo	603.838	600.278	585.046	587.165	577.428
Molise	116.491	111.241	109.137	112.195	108.581
Campania	2.602.769	2.595.166	2.560.489	2.652.820	2.613.566
Puglia	1.898.348	1.871.828	1.851.161	1.864.835	1.829.588
Basilicata	199.425	197.214	188.717	193.214	191.815
Calabria	785.414	767.270	723.486	758.516	739.278
Sicilia	2.292.421	2.233.279	2.151.927	2.209.545	2.200.814
Sardegna	749.947	737.730	711.634	746.912	728.425
Sud	9.248.654	9.114.005	8.881.597	9.125.202	8.989.496
Italia	30.158.280	30.023.033	28.941.376	29.595.522	29.051.314

Produzione media nazionale di RU

494 kg/anno per persona Ovvero circa 1,3 kg/giorno per persona

Obbligo di legge: raccolta differenziata


DLgs 152/2006

Entro il 31/12/2007 40 %

Entro il 31/12/2009 50 %

Entro il 31/12/2011 60 %

Entro il 31/12/2012 65%

La situazione in Italia

Regione	Produzione annua RU (1.000 t)	Produzione pro capite (kg/ab)	RD (%)	Incenerimento (%)	Smaltimento in discarica (%)	N° impianti incenerimento
Piemonte	2.108	497	67	26	13	1
Valle d'Aosta	75	616	66	-	59	-
Lombardia	4.618	464	73	40	3,5	12
Trentino A. A.	523	486	75	19	5,3	1
Veneto	2.310	477	76	10	18	3
Friuli V. G.	589	494	67	20	5,0	1
Liguria	814	542	57		36	
Emilia R.	2.803	633	74	32	5,2	7
Toscana	2.153	590	66	10	36	4
Umbria	442	517	68	-	35	-
Marche	764	516	72	-	50	-
Lazio	2.861	501	54	10	16	1
Abruzzo	577	455	64	-	23	-
Molise	108	375	58	80	77	1
Campania	2.513	467	56	28	0	1
Puglia	1.829	469	59	3,6	25	1
Basilicata	192	357	64	2,5	46	1
Calabria	739	401	55	5,9	26	1
Sicilia	2.200	458	51	•	40	•
Sardegna	728	458	76	10	25	1
ITALIA	29.051	494	65	18	18	36

www.iss.it/ambiente-e-salute

La situazione in Italia

36 inceneritori per RU attivi; trattano approssimativamente 5,3 Mt/anno di RU

29 impianti (80%) sono localizzati nelle regioni del nord

Procurano il maggiore smaltimento e recupero energetico:

- ✓ recupero energia elettrica 4,5 GWhe
- ✓ recupero energia termica 2,3 GWh

Evoluzione della situazione impiantistica negli ultimi 40 anni:

dismissione e chiusura di vecchi nuovi impianti maggiore potenzialità, recupero energetico, BAT

Tecnologie di incenerimento in Italia

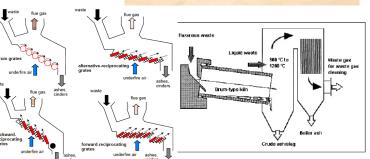
62 con Forno a griglia

(trattano circa 86% del totale incenerito)

6 con Forno a letto fluido

(trattano circa il 8% del totale incenerito)

4 con Forno rotativo


(trattano circa il 6% del totale incenerito)

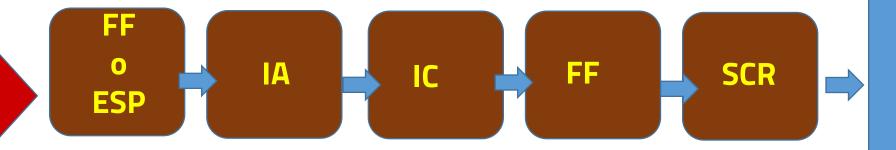
Tutti sono equipaggiati con sistemi di abbattimento:

minimo 3 stadi (filtrazione polveri, neutralizzazione gas acidi, adsorbimento diossine, PCB e mercurio)

fino a 5 stadi (2 filtrazione polveri, neutralizzazione gas acidi, adsorbimento diossine, PCB e mercurio, deNOx catalitico o non catalitico).

Sequenza tipo di sezioni di abbattimento

FF: filtro a maniche


ESP: elettrofiltro

IA: iniezione di alcali (calce, bicarbonato)

IC: iniezione carboni attivi

SCR: riduzione ossidi di azoto (deNOx)

Le emissioni da impianti di incenerimento

?????

- ✓ COSA ESCE (macro e micro significativi, POPs) e QUANTO NE PUO' USCIRE (limiti/autorizzazioni)
- ✓ QUANTO NE USCIVA E QUANTO NE ESCE ORA (vecchi e nuovi, BAT, regime e transitori)
- ✓ DOVE VA A FINIRE (altezza efficace emissione, orografia e meteorologia)
- ✓ QUANTO NE VA A FINIRE (destino ambientale)
- ✓ COSA VUOL DIRE IN TERMINI AMBIENTALI E SANITARI (linee guida, epidemiologia,)

Inquinanti nelle emissioni in atmosfera dalla combustione di rifiuti

(similitudine con altri combustibili solidi)

inorganici

COx, NOx, SOx, H2O (vapore), prodotti di incompleta combustione: silicati, ceneri, fuliggini, metalli (ossidi o sali), HCl, HF,

organici

COV, PCDD e PCDF, PCB, IPA, ...

Le emissioni

definizione di emissione e valore limite

Direttiva 2010/75, 2008/1, 96/61/CE sulla prevenzione e la riduzione integrate dell'inquinamento.

DLgs 46/2015 Attuazione della direttiva 2010/75/UE relativa alle emissioni industriali (prevenzione e riduzione integrate dell'inquinamento).

DLgs 59/05 sulla prevenzione e la riduzione integrate dell'inquinamento.

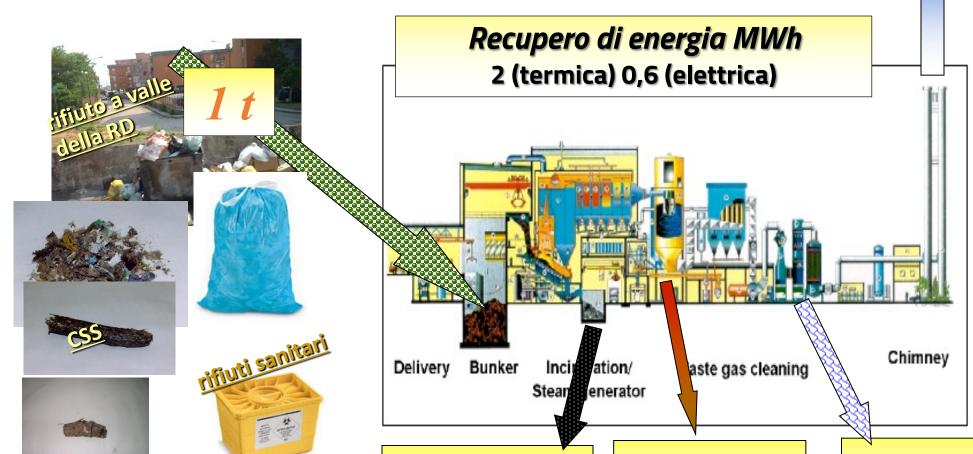
lo scarico diretto o indiretto da fonti puntiformi o diffuse dell'impianto, di sostanze, vibrazioni, calore o rumore nell'aria, nell'acqua ovvero nel terreno.

il valore limite dovrà garantire un livello equivalente di protezione dell'ambiente nel suo insieme e di non portare a carichi inquinanti maggiori nell'ambiente.

Best Available Techniques BAT

Best: le più efficaci per un alto grado di protezione dell'ambiente inteso in senso generale.

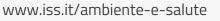
Available: <u>sviluppate e sperimentate per il settore industriale specifico</u>, anche al di fuori dagli stati membri, e che siano valide tecnicamente ed economicamente, "ragionevolmente" accessibili agli operatori del settore.


Techniques: comprendono sia le tecnologie che i processi: riguardano <u>la progettazione, la costruzione, la manutenzione, la conduzione e la dismissione degli impianti</u>.

LE EMISSIONI SECONDO IPPC

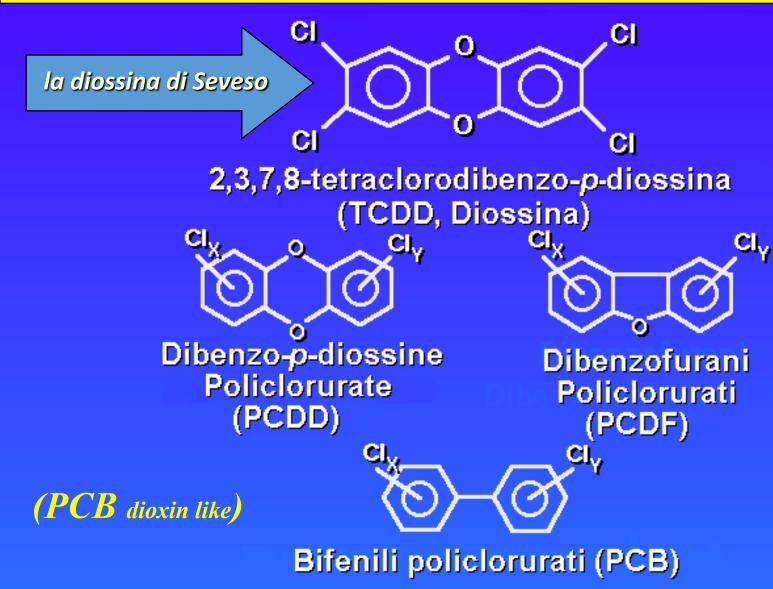
6.000-10.000 Nm³

input: tal quale, frazioni, CSS, ecc


bottom ash 0,15-0,30 t

fly ash 0,02-0,03 t **acque** 0,15-0,30 m3

Limiti alle emissioni da impianti di incenerimento: direttive europee e legislazione nazionale


Inquinanti mg Nm ⁻³ s 11 % O ₂	DLgs 152/06	46/2014 Rifiuti *	DLgs 11/5/2005 n.133 Rifiuti *	DM 25/2/2000 n. 124 rifiuti pericolosi *	DM 19/11/1997 n. 503 RU e RS *	Linee guida DM 12/7/1990 (vecchi impianti) *	Direttiva 2000/76/CE Rifiuti *	Direttiva 94/67/CE rifiuti pericolosi *	Direttiva 89/369/CEE RU *
Polveri	10 – 30	10 – 30	10 – 30	10 – 30	10 – 30	30 – 100	10 – 30	10 – 30	30 – 200
HCI	10 – 60	10 – 60	10 – 60	10 – 60	20 – 40	50 – 100	10 – 60	10 – 60	50 – 250
HF	1-4	1-4	1-4	1-4	1 – 4	2	1 – 4	1-4	-
SO ₂	50 – 200	50 – 200	50 – 200	50 – 200	100 – 200	300	50 – 200	50 – 200	300
NO ₂ > 6 t h ⁻¹ < 6 t h ⁻¹	200 – 400 400	200 – 400 400	200 – 400	200 – 400	200 – 400	500	200 – 400	-	-
СО	50 – 100	50 – 100	50 – 100	50	50 – 100	100	50 – 100	50	-
TOC	10 – 20	10 – 20	10 – 20	10 – 20	10 – 20	20	10 – 20	10 – 20	-
Cd + Tl Hg	0,05**	0,05**	0,05**	0,05 **	0,05 **	0,2	0,05 **	0,05 **	0,2
Totale altri metalli	0,5	0,5	0,5	0,5	0,5	5	0,5	0,5	5
IPA	0,01	0,01	0,01	0,01	0,01	0,1	-	-	-
PCDD/F (ng Nm ⁻³)	0,1***	0,1***	0,1***	0,1 ***	0,1 ***	4 000	0,1 ***	0,1 ***	-
PCB-DL (ng Nm ⁻³)	0,1***	0,1***	-	-	-	-	-	-	-

^{*}Valori medi giornalieri e valori medi di punta (orari o semiorari);

^{**}Il limite si riferisce al Cd e Tl come somma e al Hg separatamente;

^{***} Il limite viene espresso in termini di tossicità equivalente (TEQ), riferita alla 2,3,7,8 T₄CDD; si vedano le tabelle dell'allegato che riportano i fattori di tossicità equivalente (TEF) relativi ai singoli congeneri.

Policlorodibenzodiossine (PCDD) Policlorodibenzofurani (PCDF) Policlorobifenili (PCB)

Equivalence factors for dibenzo-p-dioxins, dibenzofurans and dioxin-like PCBs

For the determination of the total concentration, the mass concentrations of each congener should be multiplied by the following equivalence factors before summing:

TEF schemes for dioxins, furans and dioxin-like PCBs								
Congener	I- TEF(1990)	WH	O-TEF (199)	7/8)				
		Human/	Fish	Birds				
		Mammals						
Dioxins								
2,3,7,8-TCDD	1	1	1	1				
1,2,3,7,8-PeCDD	0.5	1	1	1				
1,2,3,4,7,8-HxCDD	0.1	0.1	0.5	0.05				
1,2,3,6,7,8-HxCDD	0.1	0.1	0.01	0.01				
1,2,3,7,8,9-HxCDD	0.1	0.1	0.01	0.1				
1,2,3,4,6,7,8-HpCDD	0.01	0.01	0.001	<0.001				
OCDD	0.001	0.0001	-	-				
Furans								
2,3,7,8-TCDF	0.1	0.1	0.05	1				
1,2,3,7,8-PeCDF	0.05	0.05	0.05	0.1				
2,3,4,7,8-PeCDF	0.5	0.5	0.5	1				
1,2,3,4,7,8-HxCDF	0.1	0.1	0.1	0.1				
1,2,3,7,8,9-HxCDF	0.1	0.1	0.1	0.1				
1,2,3,6,7,8-HxCDF	0.1	0.1	0.1	0.1				
2,3,4,6,7,8-HxCDF	0.1	0.1	0.1	0.1				
1,2,3,4,6,7,8_HpCDF	0.01	0.01	0.01	0.01				
1,2,3,4,7,8,9-HpCDF	0.01	0.01	0.01	0.01				
OCDF	0.001	0.0001	0.0001	0.0001				
Non-ortho PCBs								
3,4,4',5-TCB (81)	-	0.0001	0.0005	0.1				
3,3',4,4'-TCB (77)	-	0.0001	0.0001	0.05				
3,3',4,4',5 - PeCB (126)	-	0.1	0.005	0.1				
3,3',4,4',5,5'-HxCB(169)	-	0.01	0.00005	0.001				
Mono-ortho PCBs								
2,3,3',4,4'-PeCB (105)	-	0.0001	<0.000005	0.0001				
2,3,4,4',5-PeCB (114)	-	0.0005	<0.000005	0.0001				
2,3',4,4',5-PeCB (118)	-	0.0001	<0.000005	0.00001				
2',3,4,4',5-PeCB (123)	-	0.0001	<0.000005	0.00001				
2,3,3',4,4',5-HxCB (156)	-	0.0005	<0.000005	0.0001				
2,3,3',4,4',5'-HxCB (157)	-	0.0005	<0.000005	0.0001				
2,3',4,4',5,5'-HxCB (167)	-	0.00001	<0.000005	0.00001				
2,3,3',4,4',5,5'-HpCB (189)	-	0.0001	<0.000005	0.00001				

The International Programme on Chemical Safety (IPCS)

Compound	WHO 1998 TEF	WHO 2005 TEF*
chlorinated dibenzo-p-dioxins		
2,3,7,8-TCDD	1	1
1,2,3,7,8-PeCDD	1	1
1,2,3,4,7,8-HxCDD	0.1	0.1
1,2,3,6,7,8-HxCDD	0.1	0.1
1,2,3,7,8,9-HxCDD	0.1	0.1
1,2,3,4,6,7,8-HpCDD	0.01	0.01
OCDD	0.0001	0.0003
chlorinated dibenzofurans		
2,3,7,8-TCDF	0.1	0.1
1,2,3,7,8-PeCDF	0.05	0.03
2,3,4,7,8-PeCDF	0.5	0.3
1,2,3,4,7,8-HxCDF	0.1	0.1
1,2,3,6,7,8-HxCDF	0.1	0.1
1,2,3,7,8,9-HxCDF	0.1	0.1
2,3,4,6,7,8-HxCDF	0.1	0.1
1,2,3,4,6,7,8-HpCDF	0.01	0.01
1,2,3,4,7,8,9-HpCDF	0.01	0.01
OCDF	0.0001	0.0003
non-ortho substituted PCBs		
PCB 77	0.0001	0.0001
PCB 81	0.0001	0.0003
PCB 126	0.1	0.1
PCB 169	0.01	0.03
mono-ortho substituted PCBs		
105	0.0001	0.00003
114	0.0005	0.00003
118	0.0001	0.00003
123	0.0001	0.00003
156	0.0005	0.00003
157	0.0005	0.00003
167	0.00001	0.00003
189	0.0001	0.00003

^{*} Numbers in bold indicate a change in TEF value

Reference - Van den Berg et al :

The 2005 World Health Organization Re-evaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

Inceneritori Italiani

prescrizione AIA

ln:				
Riduzione percentuale dei limiti	sione ⁽¹⁾ rispetto	alla normativa	vigente	
INQUINANTE	u.m.	DIRETTIVA 2000/76/CE	Valori garantiti dall'impianto	Variazione
SO _x (Ossidi di Zolfo) ⁽¹⁾	mg/Nm ³	50	25	-50%
HCI (Acido Cloridrico) (1)	11	10	7	-30%
HF (Acido Fluoridrico) ⁽¹⁾	111	1	0,3	-70%
NO _x (Ossidi di Azoto) ⁽¹⁾	11	200	85	-57,5%
Polveri ⁽¹⁾	п	10	3	-70%
CO (Monossido di Carbonio) ⁽¹⁾	1	50	50	-
TOC (Carbonio Organico Totale) ⁽¹⁾	11	10	5	-50%
Cd + Tl (Cadmio + Tallio) ⁽²⁾	ा।	0,05	0,02	-60%
Hg (Mercurio) ⁽²⁾	11	0,05	0,02	-60%
Metalli pesanti ⁽²⁾⁻⁽³⁾	(11	0,5	0,2	-60%
I.P.A. (Idrocarburi Policiclici Aromatici) (4)	п	0,01	0,01	-
PCDD + PCDF (Diossine e Furani) (4)	ng/Nm³	0,1	0,025	-75%

Concentrazioni medie giornaliere riferite a fumi anidri con concentrazioni di O_2 (Ossigeno) = 11%V0

 $NH_3 mg/Nm^3$

⁽²⁾ Valore medio ottenuto con periodo di campionamento di 1 ora

⁽³⁾ Somma di: Antimonio (Sb) + Arsenico (As) + Piombo (Pb) + Cromo (Cr) + Cobalto (Co) + Rame (Cu) + Mangar ese (Mn) + Nichel (Ni) + Vanadio (V) + Stagno (Sn)

⁽⁴⁾ Valore medio ottenuto con periodo di campionamento di 8 ore

TORINO: GERBIDO

Valori emissivi

PARAMETRO	Unità di misura	Limite di Legge (D.Lgs. 133/2005)	Valori autorizzati in AIA				
	Valori i	Valori medi giornalieri (salvo ove di ersamente indicato)					
Polveri	mg/Nm³	10	5 50%				
Acido Cloridrico (HCI)	mg/Nm³	10	50% 5				
Acido Fluoridrico (HF)	mg/Nm³	1	0.5 50%				
Ossidi di Zolfo (SO ₂)	mg/Nm³	50	10 80%				
Ossidi di Azoto (NO _x)	mg/Nm³	200	70 65%				
Carbonio Organico Totale (TOC)	mg/Nm³	10	10				
Monossido di Carbonio (CO)	mg/Nm³	50	50				
Ammoniaca (NH ₃)	mg/Nm³	-	5				
Idrocarburi Policiclici Aromatici (IPA)	mg/Nm³	0.01**	0.005**				
Diossine e Furani (PCDD + PCDF)	ngTEQ/Nm³	0.1**	0.05** 0.05**				
Cadmio e Tallio (Cd+Tl)	mg/Nm³	0.05*	0.03*				
Mercurio (Hg)	mg/Nm³	0.05*	0.05*				
Zinco (Zn)	mg/Nm³	-	0.5* 40%				
Metalli pesanti (Sb + As+Pb+Cr+Co+Cu+Mn+Ni+V+Sn)	mg/Nm³	0.5*	0.3*				
* Medio su campionamento di 1 ora ** Medio	su campionamento di 8 ore	·					

l valori indicati in tabella si intendono riferiti al gas secco e all'11% di O2

NOTA: La Normativa nazionale non impone la misurazione dei parametri NH₃ (Ammoniaca), Zn (Zinco) e Sn (Stagno); l'autorizzazione concessa a TRM ne prevede cautelativamente la misurazione.

Integrated Pollution Prevention and Control

Reference Document on the Best Available Techniques for

Waste Incineration

August 2006

JRC SCIENCE FOR POLICY REPORT

Best Available Techniques (BAT) Reference Document on Waste Incineration

Industrial Emissions Directive

(Integrated Pollution Prevention and

JOINT RESEARCH CENTRE Institute for Prospective Technological Si Directorate B - Growth and Innovation

Range di valori di emissione in atmosfera da alcuni impianti europei di incenerimento di RU

ng I-TE/Nm3 0,0002 - 0,08

Parameter	Type of Measurement	continuo	Daily averages (where ntinuous measurement used) in mg/m³		r averages ontinuous ment used) ng/m³	Annual averages mg/m³)
	C: continuous N: non-cont.	Limits in 2000/76/ EC	Range of values	Limits in 2000/76/ EC	Range of values	Range of values
Dust	С	10	0.1 - 10	20	<0.05 - 15	0.1 – 4
HC1	С	10	0.1 - 10	60	<0.1 - 80	0.1 - 6
HF	C/N	1	0.1 - 1	4	<0.02 - 1	0.01 - 0.1
SO ₂	С	50	0.5 - 50	200	0.1 - 250	0.2 - 20
NO _X	С	200	30 - 200	400	20 - 450	20 - 180
NH ₃	С	n/a	<0.1 - 3		0.55 - 3.55	
N ₂ O		n/a				
VOC (as TOC)	С	10	0.1 – 10	20	0.1 - 25	0.1 – 5
co	С	50	1 - 100	100	1 - 150	2 - 45
Hg	C/N	0.05	0.0005 - 0.05	n/a	0.0014 - 0.036	0.0002 - 0.05
Cd	N	n/a	0.0003 - 0.003	n/a		
As	N	n/a	< 0.0001 - 0.001	n/a		
Pb	N	n/a	<0.002 - 0.044	n/a		
Cr	N	n/a	0.0004 - 0.002	n/a		
Co	N	n/a	< 0.002	n/a		
Ni	N	n/a	0.0003 - 0.002	n/a		
Cd and Tl	N	0.05		n/a		0.0002 - 0.03
Σ other metals l	N	0.5		n/a		0.0002 - 0.05
Σ other metals 2	N	n/a	0.01 - 0.1	n/a		
Benz(a)рут ene	N	n/a		n/a		<0.001
Σ PCB	N	n/a		n/a		< 0.005
Σ ΡΑΗ	N	n/a		n/a		<0.01
PCDD/F		0.1				0.0002 0.00
(ng TEQ/m³)	N	(ng TEQ/m³)		n/a		0.0002 - 0.08 (ng TEQ/m³)

- In some cases there are no emission limit values in force for NO_x. For such installations a typical range
- 250 550 mg/Nm3 (discontinuous measurement)
- Other metals 1 = Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V
- Other metals 2 = Sb, Pb, Cr, Cu, Mn, V, Co, Ni, Se and Te
- 4. Where non-continuous measurements are indicated (N) the averaging period does not apply. Sampling periods are generally in the order of 4 - 8 hours for such measurements
- Data is standardised at 11 % Oxygen, dry gas, 273K and 101.3kPa.

Table 3.8: Range of clean gas operation emissions levels reported from some European MSWI

[1, UBA, 2001], [2, infomil, 2002], [3, Austria, 2002], [64, TWGComments, 2003]

ASPETTI AMBIENTALI NELLO SMALTIMENTO DEI RIFIUTI SOLIDI URBANI MEDIANTE INCENERIMENTO: LA SITUAZIONE ITALIANA

Gaetano Settimo*¹, Andrea Magrini², Giuseppe Viviano³

- 1. Reparto Igiene dell'Aria, Dipartimento Ambiente e Connessa Prevenzione Primaria Istituto Superiore di Sanità, Roma
 - 2. Università di Roma Tor Vergata, Dipartimento di Biomedicina e Prevenzione, Roma
 - 3. Università di Roma Tor Vergata, Scuola di Specializzazione in Medicina del Lavoro, Roma

Tabella 7: Stima delle emissioni annuali di PCDD/F espresse in I-TEQ da impianti incenerimento di RU in Italia. Valori calcolati mediante fattori di emissione stimati sulla base di dati rilevati su impianti nazionali ritenuti rappresentativi della tipologia considerata. Anno di riferimento 2013.

tipologia linea	numero linee	RU, FS, CDR inceneriti	totale incenerito %	fattore di emissione PCDD/F µg I-TEQ t ⁻¹	emissione PCDD/F g I-TEQ anno ⁻¹	totale emesso %
A	43	2.091.934	38,8	0,30	0,628	83,7
В	20	932.697	17,2	0,08	0,075	10,0
С	27	2.371.810	44,0	0,02	0,047	6,3
Totale	90	5.396.441	100	-	0,750	100

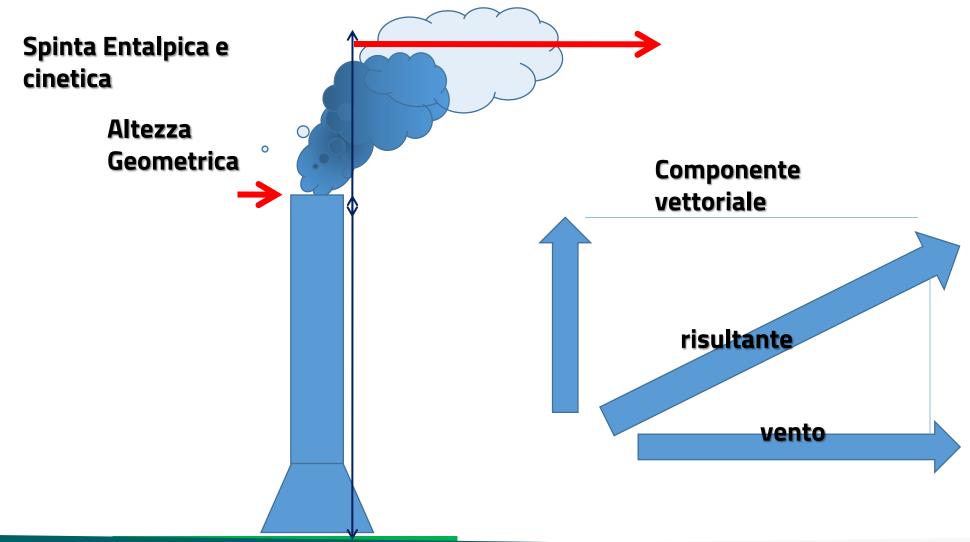
A: linee equipaggiate con filtrazione singola.

B: linee equipaggiate con doppia o singola filtrazione e deNOx non catalitico.

C: linee equipaggiate con doppia filtrazione e deNOx catalitico.

Tutte le linee effettuano il recupero energetico e sono equipaggiate con sistemi di iniezione di reagenti alcalini (a secco, a semisecco o a umido) e di adsorbenti a carboni attivi.

0,75 g per l'anno 2013, ovvero circa lo 0,3% delle totali emissioni nazionali di PCDD/F



ALTEZZA EFFICACE +le condizioni geografiche e meteorologiche locali, determinano la diluizione della emissione (in generale si possono stimare diluizioni maggiori di 105 - 106 nel punto di massima ricaduta, 1-10 km).

Gli impianti presentano, in genere, camini con altezze di alcune decine di metri (> 70 m); alcuni nuovi grandi impianti presentano altezze superiori ai 100 m.

L'altezza efficace del camino (geometrica + spinta entalpica), le condizioni geografiche e meteorologiche locali, determinano la diluizione della emissione (in generale si possono stimare diluizioni maggiori di 10⁵ - 10⁶ nel punto di massima ricaduta, 1-10 km).

```
1 g
1.000 mg
1.000.000 μg
1.000.000.000 ng
1.000.000.000.000 pg
1.000.000.000.000.000 fg
1.000.000.000.000.000.000 ag
```

Ordini di grandezza di ricadute al suolo di emissioni di inquinanti da un impianto di incenerimento con BAT:

```
POLVERI (nanogrammi 10<sup>-9</sup>) ng/m3 (in aree urbane: decine di μg/m³) METALLI (picogrammi 10<sup>-12</sup>) pg/m3 (in aree urbane: ng/m³) PCDD/F(I-TE) (attogrammi 10<sup>-18</sup>) ag/m3 (in aree urbane: decine fg/m³)
```


"Quinto programma di azione per l'ambiente" "Verso la sostenibilità"

fissa l'obiettivo della riduzione del 90 % nel 2005 (rispetto ai livelli del 1985) delle emissioni di diossine nell'atmosfera provenienti da fonti identificate

European Dioxin Inventory - Stage II

Final report Volume 3

Development of European PCDD/F emissions to ambient air 1985-2005

Annu	al emissions (g I-TEQ/year)		1985		05	Increa	ases %	Trend	90% reduction		
SNAP			upper estimate	min	max	max	min		likely?	4	
01	Power plants	fossil fuels	666	50	67	-92	-90	1111	YES <		
0202	Res. combustion: Boilers, stoves, fireplaces	wood	989	523	969	-47	-2	¥	NO		
0202	Res. combustion: Boilers, stoves, fireplaces	coal/lignite	900	82	337	-91	-63	111	NO		
0301	Combustion in Industry/boilers, gas turbines, stationary engines		238	39		-84	-67	$\downarrow\downarrow\downarrow$	NO		
030301	Sinter plants		1650	383	467	-77	-72	+ + +	NO		
030308	Secondary zinc production		450	20	20	-96		+ + + +	YES <		
030309	Secondary copper production		29	15	17	-49	-40	$\downarrow \downarrow$	NO		
030310	Secondary aluminium production		65	21	60	-68		+	NO		
30311	Cement		21	14	50	-32	+137	€	NO		
030326	Other: metal reclamation from cables		750	40		-95		1111	YES <		
040207	Electric furnace steel plant		120	141	172	+17	+43	↑	NO		
040309	Other: Non ferrous metal foundries		50	38	72	-25	+44	€	NO		
040309	Other: sintering of special materials and drossing facilities *)		200	31	31	-85		111	NO		
060406	Preservation of wood		390	118		-70		+	NO		
0701	Road transport		262	41	60	-84		+++	NO	4	
090201	Inc. of Dom. or municipal wastes	legal combustion	4000	178	232	-96	-94	++++	YES	4	
090201	Inc. of Dom. or municipal wastes	illegal (domestic) combustion	200	116	_	-42	-6	4	NO ri	duz.	42 - 97
090202	Inc. of Industrial wastes	hazardous waste	300	16	45	-95		+ + +	NO		
090207	Inc. of hospital wastes		2000	51	161	-97	-92		YES		6 -
090901	Cremation: Inc. of Corpses		28	13		-55		+	NO		
1201	Fires		382	60	371	-84	-3	¥	NO	N	
Total o	f sources considered		13690	1989	3779	-85			NO		
indust	rial sources		10539	1037	1522	-90			NO		
non-in	dustrial sources		3151	952	2257	-70	-28	+	NO		

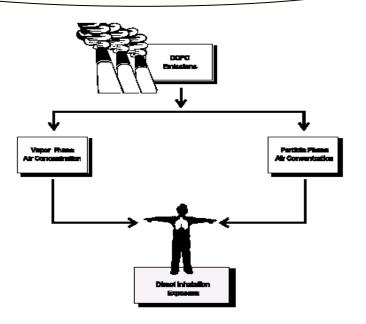
^{`)} emission 2005 for sintering plant 1 g I-TEQ/a, for unknown number of drossing facilities 30 g I-TEQ/a assumed

table 2 1985 upper emission estimate compared to 2005 emission forecast (both in I-TEQ/a) and evaluation of PCDD/F emission reduction trends for the most relevant sources of PCDD/F

[&]quot;⇔":min/max reduction with opposite trend; "↑": min/max both indicating increases of emission

Impianti di trattamento rifiuti Metodologie integrate

EMISSIONI


Emissione (convogliata e diffusa)

ASPETTI TECNOLOGIC

- Popolazione (qualità dell'aria/esposizione)
- **ASPETTI IGIENICO-SANITARI**

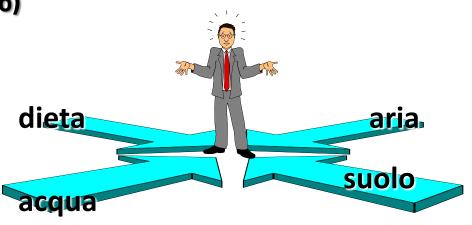
- √meteorologia
- √ clima
- ✓ reazioni
- ✓ inquinanti secondari
- ✓ sinergismi/antagonismi
- √ diffusione e diluizione

√ ecc.

proprietà intrinseche delle sostanze

destino ambientale

(persistenza nel suolo - emivita indicativa: 2,3,7,8-T4CDD = 10 anni)


vie di esposizione

La stima dell'esposizione umana a sostanze inquinanti pericolose è una parte

fondamentale della procedura di valutazione del rischio

Il calcolo dell'esposizione ai diversi inquinanti deve considerare le tre vie, inalazione, ingestione, assorbimento dermico, e i vari comparti ambientali.

- ✓ concentrazione ambientale, durata e modalità di esposizione
- √ dose assorbita (Paracelso: è la dose che fa il veleno)
- √ individuo (sesso, età, peso corporeo, patologie)

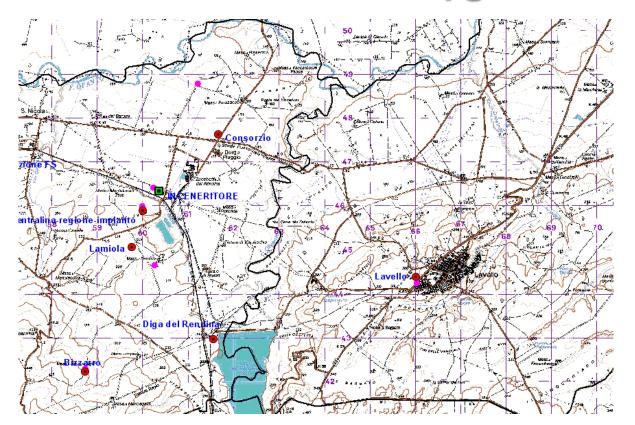
SCIENTIFIC OPINION

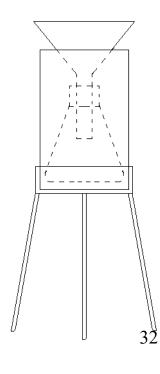
ADOPTED: 14 June 2018

doi: 10.2903/j.efsa.2018.5333

Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food

- TWI rounded to 2 pg TEQ/kg bw/week
 - So sevenfold lower than previous TWI set by SCF

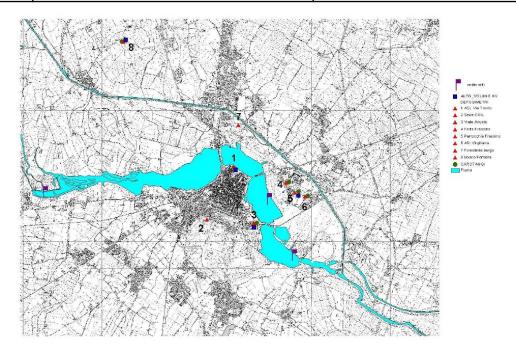




ISS-ARPA Basilicata Area industriale San Nicola di Melfi (PZ)

- ✓ principali sorgenti industriali presenti sul terrritorio (industria dell'auto, industria alimentare, centrali termoelettriche (CTE), due linee di incenerimento)
- ✓ campionamento in sei siti distanti tra 1-5 km ✓ Concentrazioni di PCDD/F nelle deposizioni comparabili con quelle di aree rurali europee e nazionali

1.5 - 2.3 pg WHO-TE/m2d



ISS-ASL Mantova

- ✓ principali sorgenti industriali presenti sul terrritorio (raffineria, petrolchimico, industria della carta, inceneritore di rifiuti industriali)
- ✓ campionamento in sette siti distanti tra 1-3 km
- ✓ Concentrazioni di PCDD/F nelle deposizioni comparabili con quelle di aree rurali europee e nazionali

PCDD/F (pg I-TE/m2d)	postazione: area urbana	postazione: area industriale	postazione: riferimento
Stagione fredda	1,20 – 2,26	1,27 – 4,72	1,28
stagione calda	3,82 – 4,20	2,75 – 5,13	2,71

ISS-Provincia di Roma

- Presenza di un inceneritore di rifiuti industriali)
- campionamento in quattro siti distanti tra 400 m-3 km
 Concentrazioni di PCDD/F+DL-PCB nelle deposizioni comparabili con quelle di aree rurali europee e nazionali

0,88-3,7 pg WHO-TE/m2d

PCDD/F+DL-PCB (pg WHO-TE/m2d)	postazione: area urbana	postazione: area industriale	postazione: riferimento
Stagione fredda	1,6	1,4 – 1,6	0,93
stagione calda	0,91	0,88 – 1,5	1,2

Atmospheric depositions of persistent pollutants: methodological aspects and values from case studies

Gaetano Settimo and Giuseppe Viviano

Dipartimento di Ambiente e Connessa Prevenzione Primaria, Istituto Superiore di Sanità, Rome, Italy Table 4 PCDD/F deposition concentrations in some areas of Italy

Area	PCDD/F (pg I-TE μg m-² d-1)	Reference
Coriano – Rimini (Emilia-Romagna region) (Industrial area – Incineration plants)	0.5-2.9	[38]
Porto Marghera – Venezia (Veneto region) (Industrial area) (Lagoon area)	19.8 28.7	[39]
Taranto (Puglia region) (Industrial area)	0.57-45 WHO-TE μg m-2 d-1	[40]
S. Didero – Torino (Piemonte region) (Industrial area – Steel production)	0.212-3.27	[41]
Brescia (Lombardy region) (Industrial area)	1.6-10.9 WHO-TE μg m² d-1	[42]
Mantova (Lombardia region) (Industrial area) (Background area)	1.20-5.13 1.28-2.71	[28]
S. Nicola di Melfi – Potenza (Basilicata region) (Urban area) (Industrial area) (Background area)	1.76 2.03-2.33 1.47-1.79	[29]

PCDD/F: polychlorinated dibenzofurans.

DOI: 10.4415/ANN_15_04_09

Atmospheric depositions of persistent pollutants: methodological aspects and values from case studies

Gaetano Settimo and Giuseppe Viviano

Dipartimento di Ambiente e Connessa Prevenzione Primaria, Istituto Superiore di Sanità, Rome, Italy

PCDD/Fs in bulk depositions		
Country	Urban sites pg I-TE m-² d-1	Rural sites pg I-TE m-² d-1
Belgium	0.9-12	0.7-3.1
Germany	< 0.5-464	7-17
France	0.5-17	1.0-10
Denmark	300 - 31 600	300-1700
United Kingdom	0.4-312	Nv-517

PCDD/F: polychlorinated dibenzofurans.

www.iss.it/ambiente-e-salute

Ambient air pollution by AS, CD and NI compounds. **Position Paper**

METALLI NELLE DEPOSIZIONI ATMOSFERICHE

inquinante	aree rurali µg/m² d	Aree urbane µg/m² d	aree industriali µg/m² d
Arsenico	0,082 - 0,43	0,22 - 3,4	2,0 - 4,3
Cadmio	0,011 - 0,14	0,16 - 0,90	0,12 - 4,6
Nichel	0,03 - 4,3	5 - 11	2,3 - 22

DOI: 10.4415/ANN 15 04 09

Atmospheric depositions of persistent pollutants: methodological aspects and values from case studies

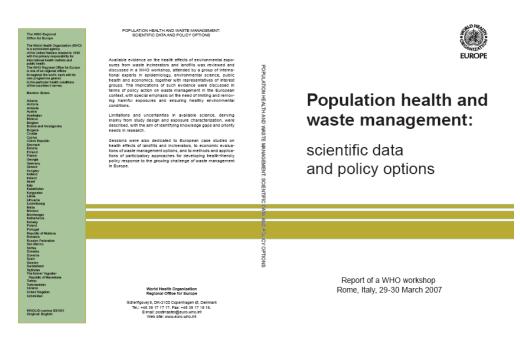
Gaetano Settimo and Giuseppe Viviano

Dipartimento di Ambiente e Connessa Prevenzione Primaria, Istituto Superiore di Sanità, Rome, Italy

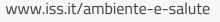
Table 3
Current limit values (annual average) in some European countries for dust deposition (PM = mg m 2 d 4), PCDD/F + DL-PCB (pg WHO-TE m 2 d 4) and metals (μ g m 2 d 4) in atmospheric depositions

Country (reference)	PM	PCDD/F+ DL-PCB	As	Cd	Hg	Ni	Pb	Tİ	Zn
Austria [32]	210	-	-	2	-	-	100	-	-
Belgium [13, 33]	350 650*	8.2 21*	-	2	-	-	250	-	-
Croatia [34]	350	-	4	2	1	15	100	2	-
Germany [14, 17, 18]	350	4	4	2	1	15	100	2	-
United Kindom [35]	200	-	-	-	-	-	-	-	-
Switzerland [36]	200	-	-	2	-	-	100	2	400
Slovenia [37]	200	-	-	2	-	-	100	-	400

PCDD/F: polychlorinated dibenzofurans; DL-PCB: polychlorinated biphenyls dioxin-like compounds.



^{*} Monthly average.


- ✓ La maggior parte degli studi pubblicati si riferisce a vecchi impianti;
- ✓ Fattori di confondimento es. Presenza altre sorgenti industriali;
- ✓ Deprivazione sociale;
- ✓ Distanza dalla sorgente o definizione di aree con modelli di ricaduta
- ✓ Con i nuovi impianti difficoltà a valutare viste le basse concentrazioni

Moniter (Monitoraggio degli inceneritori nel territorio dell'Emilia-Romagna), avente come scopo l'Organizzazione di un sistema di sorveglianza ambientale e valutazione epidemiologica nelle aree circostanti gli impianti di incenerimento rifiuti urbani in Emilia-Romagna.

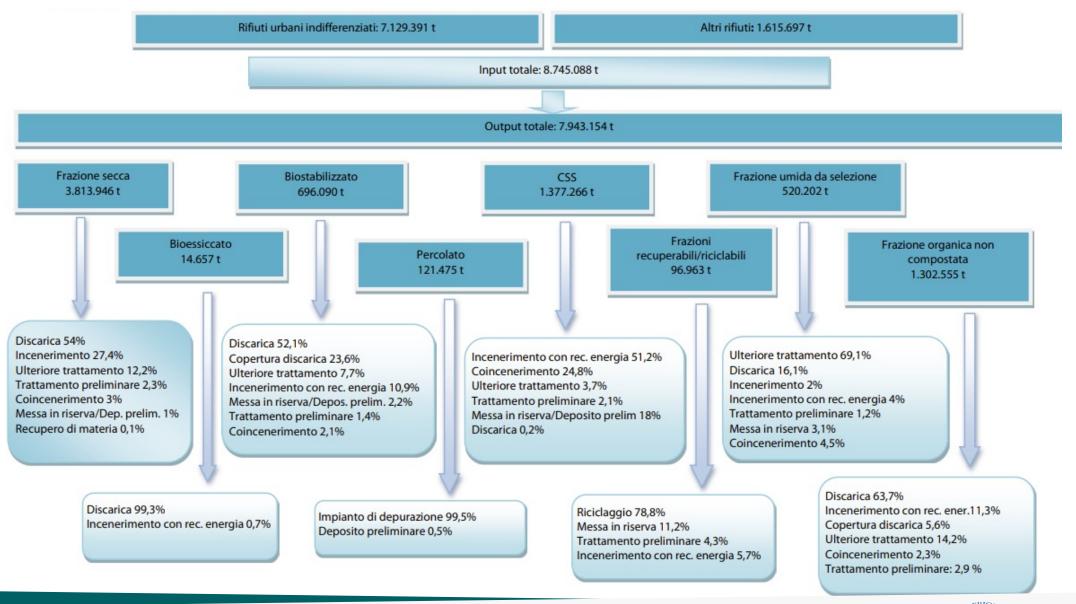
Le determinazioni ambientali e gli studi tossicologici, sono stati principalmente rivolti ad un inceneritore considerato il più avanzato in Emilia-Romagna al momento dell'indagine. Le valutazioni dello studio sull'impatto sulle matrici ambientali vengono considerate dallo studio rassicuranti ed estensibili anche alle vicinanze di altri inceneritori, che abbiano le medesime caratteristiche tecnologiche (ma non ad altri, <u>più antiquati).</u>

Inoltre per quanto riguarda gli effetti sulla salute umana, l'indagine epidemiologica condotta nell'ambito di Moniter non mostra una coerente associazione con le emissioni degli inceneritori di rifiuti né per le patologie tumorali, né per la mortalità in generale.

Anche il modesto eccesso dei linfomi non Hodgkin rilevato a Modena non raggiunge la significatività statistica e non è comunque attribuibile ad esposizioni recenti.

CONSIDERAZIONI

- ✓ Corretta gestione integrata dei rifiuti e localizzazione dell'impianto (VAS, VIA, AIA, VIS);
- ✓ Buona conoscenza delle possibili emissioni e delle possibilità tecnologiche di abbattimento, pur continuando la ricerca sulle BAT;
- ✓ Efficienza di combustione e abbattimento sono punti essenziali (formazione di microinquinanti nel particolato fine e nei vapori);
- ✓ Selezione e raccolta differenziata (mirata) per un miglioramento della qualità del "combustibile" (materiali particolari, es. Hg);
- ✓ recupero energetico che consenta riduzione/sostituzione di emissioni da altre sorgenti industriali e civili;
- ✓ Impianti propriamente progettati e gestiti. Applicazione delle normative e tecnologie di settore (IPPC, BAT, Bref, VIA, AIA) possono ampiamente rispettare i limiti (direttive UE e normativa nazionale);
- ✓ Monitoraggi e controlli (emissioni periodici rilevamenti, processo, conduzione, controllo ambientale);
- ✓ Sorveglianza ambientale (matrici, vie di esposizione);
- ✓ Informazione (educazione ambientale e sanitaria);
- ✓ RECUPERO DELLA FIDUCIA NEI CONFRONTI DEGLI ORGANI DI CONTROLLO.


Gaetano Settimo gaetano.settimo@iss.it www.iss.it/ambiente-e-salute

Il Trattamento Meccanico Biologico dei rifiuti

