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Abstract

We estimate the dynamics of markups, marginal cost and prices over the life-cycle of Dan-
ish manufacturing �rms. Markups increase by 8 percentage points over the �rst 20 years of
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discontinuations—among young �rms. We discuss the implications of this �nding for a num-
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that declining business dynamism—a reduction in new entrants and thus an increase in the
average �rm age—led to an increase in the average markup, but �nd no substantial contribu-
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1 Introduction

In many developed economies, �rms’ markups have been rising since the 1980s. Over the same
time period, business dynamism, measured by the rate of �rm entry and exit, has declined and as
a result, the age of the average �rm has increased.1 �ere are several channels through which a
decline in business dynamism can lead to an increase in average markups. Many common pricing
models would predict a direct relationship—that younger �rms charge lower markups than older
�rms. �is includes models in which �rms build up a customer base, or models with strategic
complementarities in price-se�ing (if young �rms produce with higher marginal costs than older
�rms). We focus on this direct link in this paper.2

We estimate life-cycle pro�les of markups, prices and marginal costs to study the relationship
between markups and �rm aging in Danish manufacturing industries. We �nd that markups
increase by about 8pp over the �rst 20 years of an average �rm’s life. �is is a large increase
relative to an average markup of about 12% in our sample. Markups increase due to a decline in
marginal cost as �rms age that is not fully passed-through to prices. In particular, we �nd that
average marginal costs fall by 14% over the �rst 20 years of a �rm’s life, while average prices fall
only by 7%. Beyond age 20, we �nd a slight decrease of markups as �rms become older.

Over the two decades from 2001 to 2022, the average Danish manufacturing markups has in-
creased by about 10%, while the average �rm age has increased from 24 to 41 years. However,
despite the clear age pa�ern in markups, the e�ect of �rm aging on the average markup is small
and does not contribute importantly to the observed time trend. �is is due to two reasons. First,
the aggregate importance of young �rms is limited. Second, the small negative e�ect of age on
markups of older �rms o�sets the larger positive e�ect of of aging on the markups of younger
�rms. We �nd that most of the increase in the average markup is accounted for by time e�ects
that a�ect all �rms equally, rather than age or cohort e�ects.

We also present evidence on some drivers of the age pa�erns we observe. We use our production
function estimates to show that about 60% of the decrease in average marginal cost we observe
over the �rst 20 years of �rms’ life is driven by an increase in �rms’ total factor productivity.

1De Loecker et al. (2020) document an increase in markups in the U.S. De Loecker and Eeckhout (2018) provide
evidence for increasing markups in numerous countries, including Denmark. De Ridder et al. (2024) provide evidence
for French �rms addressing several critiques of the production approach to markup measurement. A decline in
business dynamism and the entry of new �rms in the U.S. has been documented by Decker et al. (2014), Decker et
al. (2016) and Pugsley and S, ahin (2019). Calvino et al. (2018), Calvino et al. (2020) and Biondi et al. (2025) document
declines entry rates and the employment share of entrants in several European countries, including Denmark.

2In addition, a decrease in business dynamism could lead to an increase in average markups indirectly if decreased
competitive pressure from (potential) entrants entices incumbent �rms to increase their markups.
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�e remainder can be a�ributed to a combination of scale e�ects and more e�cient input bun-
dles. Moreover, we show that product turnover could contribute to age pa�erns in markups and
marginal cost. Young �rms introduce and discontinue products more frequently than older �rms,
and we show that both introduction of new and discontinuation of existing products is associated
with an increase in �rm-level markups in our data.

We estimate �rms’ markups following the production approach of De Loecker and Warzynski
(2012). We use �rms’ physical output (rather than sales) to estimate the output elasticities re-
quired for this approach. Our markup estimates are thus not subject to the identi�cation issues
raised in Bond et al. (2021) and De Ridder et al. (2024). We use administrative micro-data on �rms’
balance sheets that contain detailed information on nominal �rm-level sales and input expendi-
tures. In addition, we use micro-data underlying the Danish Producer Price Index (PPI) which
allows us to construct �rm-level price indices and correctly de�ate sales to output.

We decompose �rm-level markup developments into �rm e�ects (which nest cohort e�ects), year
e�ects and the age pa�erns that we are primarily interested in. Since the linear components
of those three e�ects are collinear, we impose two alternative structural restrictions to recover
age e�ects. Both restrictions are commonly used in life-cycle analyses. Our baseline restriction
follows Deaton and Paxson (1994) and imposes that �rm e�ects are orthogonal to any linear
cohort trend. Alternatively, we impose the restriction that age e�ects (which we estimate as a
polynomial) have a stationary point at a chosen reference age. �is assumption has been used
by Card et al. (2013, 2016). Most of our results are very similar using either restriction, which we
interpret as an informal over-identi�cation test of the restrictions.

Our main contribution is to document age pa�erns in markups and marginal costs of manufac-
turing �rms. Such pa�erns are an important input for models of �rm dynamics with imperfect
competition. To the best of our knowledge, we are the �rst to show that �rms increase their
markups over the �rst years of their life. A larger literature has documented productivity dif-
ferences between entrants and incumbent �rms (Foster et al., 2001, Melitz and Polanec, 2015).
�is literature usually uses TFP estimates based on revenue data, which con�ates di�erences in
physical productivity and markups. �e exception is Foster et al. (2008), who use data on physical
output and prices of U.S. manufacturing industries from 1977 to 1997 to document the physical
TFP and prices of entrants and young �rms relative to incumbents. Our approach di�ers in several
aspects from the analysis of Foster et al. First, Foster et al. measure TFP using a Cobb-Douglas
production function that is calibrated using cost shares and assumes constant returns to scale,
while we estimate a �exible translog production function. Second, Foster et al. study the life cy-
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cle of manufacturing plants, while we study the life cycle of manufacturing �rms. �ey �nd that
entering plants are more productive and charge similar prices as incumbent plants,3 suggesting
that their markups are higher. In contrast, we �nd that younger �rms are less productive and
charge higher prices than older �rms. Our results are consistent with van Vlokhoven (2021), who
shows that economic pro�ts of public U.S. �rms increase with age. Our data covers both public
and private �rms and thus avoids sample selection issues related to the use of Compustat or sim-
ilar data, which only covers publicly listed �rms. Moreover, we estimate (unit) markups using
the widely used production approach of De Loecker and Warzynski (2012), while van Vlokhoven
employs an alternative methodology that estimates total pro�ts but doesn’t recover markups.

We show that the increasing age pro�le in markups is driven by a decreasing age pro�le in
marginal costs that is not completely passed-through to prices. �is suggests that young �rms are
less productive than older �rms. Given this, the pa�erns in prices and markups can be explained
by strategic complementarity with prices of incumbents that limits the pass-through of variation
in cost. Such a se�ing has been used in Chiavari et al. (2023) or van Vlokhoven (2021). Our �nd-
ings are not consistent with customer-base models such as in Ignaszak and Sedláček (2023), where
an increasing age pa�ern in markups would be driven by increasing age pa�erns in prices. �e
age pa�erns in markups are also consistent with cross-sectional evidence in Conlon et al. (2023),
who show that across U.S. industries, markup growth over the 1980–2019 period is not strongly
correlated with price increases and likely driven by productivity growth that is not passed into
prices.

Our second contribution is to relate the estimated age pa�ern to the time trend of average markups
(see for example De Loecker et al. (2020) for the US or De Loecker and Eeckhout (2018) for a global
comparison). We show that even though young �rms charge lower markups than older �rms
and the �rm distribution is shi�ing toward older �rms, the direct e�ect of aging on the average
markup is small. �is is driven by two factors. First, there are relatively few young �rms in our
dataset overall, limiting the impact of their behavior on the aggregate. Second, for �rms above
age 25 markups slightly decrease with age. As a result, the e�ect of the aging of young �rms is
partially o�set by a counter-acting e�ect from the aging of older �rms. Overall, our decomposi-
tion a�ributes the bulk of the 2001–2021 increase in Danish markups on time e�ects that a�ect
all �rms equally.

�e remainder of the paper is structured as follows. Section 2 introduces the data used to estimate
markups and marginal cost, the estimation approach itself is outlined in Section 3. Section 4

3We refer to the unweighted regressions in their paper.
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identi�es age pa�erns in markups and marginal cost, with Section 5 establishing the robustness of
these results. In Section 6 we explore the sources of these age pa�erns in more detail. Ultimately,
we discuss the implications of our results for a range of macroeconomic questions and conclude
in Section 7.

2 Data

We combine several �rm-level datasets provided by Statistics Denmark to estimate markups at
the �rm level. We use price data from the Producer Price Index (PPI) survey, accounting data
from the accounting statistics (FIRE) and �rm demographics from the business register (FIRM).

Price data Our analysis draws on microdata from the Danish Producer Price Index (PPI), which
provides detailed price information for manufacturing �rms from 2001 to 2022. �e dataset com-
prises approximately 3,000 monthly price quotes from about 600 �rms, with products classi�ed
using 8-digit Harmonized System (HS) codes. Each �rm reports transaction prices in Danish kro-
ner for a stable set of their most representative products. �e dataset includes both domestic and
export prices. We pool them in our dataset, but consider domestically sold and exported ones as
separate products, even if they share the same HS code. One advantage relative to unit value data
used for example in De Ridder et al. (2024), is that the survey is designed to allow adjustments
for quality changes and product substitutions. In the case of changes to the product, �rms report
both the price for the updated product as well as a hypothetical price for the same product in
the previous period. Another advantage relative to unit value data is that the dataset is strongly
balanced, with very few gaps in the price series.

We use this dataset to construct annual �rm-speci�c price de�ators which we then combine with
sales data to measure real �rm output. �e de�ators are computed as the average of quality-
adjusted price changes across all products reported by each �rm.4 On average, the �rm-level out-
put price de�ators computed from the micro data are consistent with readily available industry-
level producer price indices. Details on the construction of �rm- and industry-level price indices
and their correlations are provided in Appendix A.1.

Accounting data We combine �rm-level price de�ators with annual data on sales, purchases
and inventories from the Danish accounting statistics to construct measures of inputs and output.

4�e PPI data does not contain weights that indicate the importance of a product within a �rm.
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�e accounting statistics collect headline balance sheet items such as sales and assets from tax
data and more detailed items such as intermediate purchases and di�erent kinds of inventories in
a large-scale survey of �rms. �e survey population excludes �rms with less than �ve employees
and �rms in some sectors such as agriculture and �nance, but includes all �rms with more than
50 employees. Firms with 20 to 49 employees are included for �ve years every ten years, �rms
with 10 to 19 employees for two years every ten years, and �rms with 5 to 10 employees are
included every 10th year.

We calculate �rms’ output as annual sales plus the change in the �rms’ inventory of �nal goods,
de�ated with �rm-speci�c de�ators constructed from PPI prices. Firms’ material input is com-
puted as annual expenditures for intermediates minus the change in intermediate inventories
de�ated with sector-speci�c input price indices from the Danish national accounts.5 Labor in-
put is calculated from the �rms’ total wage bill de�ated with an aggregate wage de�ator. We
prefer a measure of real labor cost rather than full-time equivalents in the production function,
because it provides a quality-adjusted measure of labor input, but our results are robust to using
full-time equivalents instead. We measure capital used in production as �xed assets, including
both material and immaterial �xed assets, but excluding �nancial assets.

Firm demographics We use information on �rm demographics from the Danish business reg-
ister. �is register contains the date of registration for the universe of �rms. We calculate �rm
age starting with age one in the year of registration. �e business register also contains a sector
code for each �rm, and we will de�ne a sector as a 2-digit NACE code throughout the paper.

Final sample and characteristics Our �nal sample contains 800 manufacturing �rms that we
can match between the PPI and accounting statistics. Firms in the sample operate in 15 di�erent
2-digit NACE sectors.6 Table 1 contains the most important summary statistics for the panel of
�rms. �e median �rm in our sample has 100 employees, is observed for 11 (out of 22) years and
did not grow over the sample period. �e �rms in the sample are highly heterogeneous in terms
of age. �e median �rm is 22 years old when we �rst observe it. As is crucial for our analysis,
there is a substantial share of young �rms in the sample. For example, we observe around 10%
of all �rms at least once before they reach age 5 and around 20% of �rms before age 10. On the
other hand, we observe several �rms that are well above 50 years old. �e full distribution of age

5We refer to Appendix A.1 for details on all factor price de�ators.
6Because we estimate production function coe�cients separately by industry, we only consider sectors with at

least 20 �rms. �e sector distribution is shown in Figure A.2 in the appendix.
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Table 1: Firm characteristics

Mean p5 p25 p50 p75 p95
Employment (�rm average) 217.5 25.7 55.4 100.9 206.2 628.4
Employment growth (�rst to last obs., %) 9.6 -72.0 -37.0 -8.6 18.0 124.6
Number of years observed 12.2 2 6 11 19 22
Age at �rst observation 24.7 2 12 22 33 61
Material input share (�rm average, %) 51.1 28.0 41.7 50.4 60.3 76.2
Labor input share (�rm average, %) 24.8 9.0 18.3 24.5 30.7 39.9

Notes: �e panel data is at the annual frequency covering the years 2001–22 with a total of 9,700 observations, but
the table shows characteristics at the �rm level, with a sample size of 798. Factor input shares are relative to nominal
sales in the given year, corrected for the change in inventories of �nal goods.

across �rms is shown in Figure A.3 in the appendix.

On average, the �nal sample accounts for 39% of total manufacturing employment in Denmark.
In the beginning of the sample period, this share is lower at 29%, increases in subsequent years
and plateaus at over 40% from 2013 onward. Firms in the sample are thus responsible for an
important share of overall manufacturing employment (and output).7

However, our sample is not necessarily representative for the typical manufacturing �rm, as we
require �rms to be sampled simultaneously in the PPI and accounting statistics surveys. We de�ne
a benchmark sample of �rms which consists of all manufacturing �rms in the �rm register that at
one point over the sample period reach at least 50 employees, but is not subject to the constraint
of being included in the PPI or accounting statistics. �is benchmark population contains 2,000
�rms. In Figure A.4 in the appendix, we compare the 800 �rms in our sample to the benchmark
sample. As one would expect with a size-dependent likelihood to be covered in either the PPI or
accounting statistics surveys, our sample is skewed towards larger and older �rms. In robustness
checks we re-weight �rms in our sample to be representative and show that this does not a�ect
our results.

A notable feature of the data illustrated in Figure 1 is that the average age of �rms increases
strongly over the 22 years covered in the data. �e average �rm age in the sample is 24 years in
2001 and increases by 17 years to 41 years in 2022 (blue solid line). A similar trend is visible in the

7We document that the Danish manufacturing sector is comparable to that in other European countries in two
dimensions. First, the �rm size distribution is similar to that in other European countries, as we document in Table
A.2 using data from Kalemli-Ozcan et al. (2022). Second, Renkin and Züllig (2024) show that Danish producers sell
product categories that have a similar demand structure compared to other EU producers. As is standard in the
literature, we do not estimate markups for service �rms.
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median age, which increases by 18 years over the same period. �is increase in the average age is
representative for manufacturing �rms in Denmark. �e dashed lines in Figure 1 show the mean
and median age in the benchmark sample described above. While �rms in the benchmark sample
are younger, they age at a similar pace to �rms in our merged estimation sample. We show in the
Appendix (Figure A.5) that this aging is a result of a decreasing share of startup �rms, and that
the decline in business dynamism documented in the literature for other countries also occurs in
Denmark.

Figure 1: Firm age trends
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Notes: �e sample consists of 800 manufacturing �rms for which we have full price and production data, i.e., for which
we are able to estimate markups. �e benchmark sample is a broader set of approximately 2,000 manufacturing �rms.

3 Estimating �rms’ markups and marginal cost

We estimate �rm markups following the production function approach of De Loecker and Warzyn-
ski (2012). Bond et al. (2021) and De Ridder et al. (2024) have recently highlighted the limitations
of markup estimation when production functions are estimated using sales. Our estimates are not
subject to these limitations, since we use �rm-speci�c prices to construct measures of quantities
instead of sales. Moreover, the combination of price data with our markup estimates allows us
to recover marginal cost, and to discuss joint dynamics in markups, prices and marginal cost as
�rms age.
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3.1 Estimation approach

�e production function approach relies on cost minimization and the assumption of competitive
input markets to identify markups, but does not require assumptions on the structure of output
markets or demand. Following standard practice, we assume that ex-post observed output Yit of
�rm i at time t is the combination of planned output Y ∗it and a disturbance εit that is realized a�er
production decisions are made:8

Yit = Y ∗it (Kit, Lit,Mit,Ωit) exp(εit) (1)

Planned output Y ∗it is unobserved by the researcher and is a function of capital Kit, labor Lit,
intermediate material inputs Mit and total factor productivity Ωit. We treat materials input Mit

as a �exible input that can contemporaneously adjust to the current level of productivity Ωit.9

For a given planned output level Y ∗it , the �rm chooses material input (and perhaps other �exible
inputs) in period t to produce at minimal cost, taking factor prices as given. �e �rst-order
condition from this minimization problem together with the de�nition of the markup as the ratio
of the output price over marginal cost (µit = Pit

λit
) yields the ratio estimator for the markup:10

µit =
θMit
αMit

exp(−εit). (2)

θMit =
∂Y ∗

it

∂Mit

Mit

Y ∗
it

denotes the output elasticity with respect to the material input, αMit ≡ PitYit
PM
t Mit

the
share of expenditures for materials in total revenue, Pit the �rm’s output price, and PM

t the input
price for materials.11

Given an estimate for the output elasticity θ̂Mit and the surprise component ε̂it, the estimate for
the markup µ̂it and marginal cost λ̂it are given by:

µ̂it =
θ̂Mit

αMit exp(ε̂it)
, λ̂it =

1

µ̂it
Pit, (3)

where αMit and Pit can be directly measured in the data. �e second equation in (3) shows how
8�e disturbance may simply capture measurement error in output.
9Other inputs may also be �exible, e.g., labor input, but this is not required for the approach to work. Also, for

materials markets the assumption of competitive input markets appears most plausible.
10Notice that λit is also the Lagrange multiplier of the cost minimization problem.
11Because the researcher does not observe the expenditure share in terms of revenue anticipated by the �rm at

the point of the decision but only realized revenues in hindsight, the revenue share has to be corrected for exp(εit).
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we obtain a measure of marginal cost, given the �rm-level markup estimate and the observed
output price. We now describe how we obtain the estimates θ̂Mit and ε̂it.

Production function estimation We estimate the output elasticity of material inputs using
a �exible translog production function (in logarithms):

yit = βkkit + βllit + βmmit + βkkk
2
it + βlll

2
it + βmmm

2
it

+ βklkitlit + βkmkitmit + βlmlitmit + βklmkitlitmit + ωit + εit. (4)

All variables in the estimation are real quantities. Output yit is based on revenues de�ated with
�rm-level output price de�ators as described in Section 2. �e variables on the r.h.s. of Equation
(4), i.e. the inputs capital, labor and materials, are de�ated as described in Appendix A. ωit is
the log of Hicks-neutral productivity. We estimate separate production functions for 16 di�erent
2-digit NACE industries, but suppress industry-level subscripts to keep the notation simple.

Given estimates of the production function coe�cients, the output elasticity of material input is:

θ̂Mit = β̂m + β̂kmkit + β̂lmlit + 2β̂mmmit + β̂klmkitlit. (5)

Equation (5) shows that output elasticities vary across �rms and over time due to the interaction
terms of the translog production function .12

We estimate the production function in (4) in two steps following the literature (see e.g. Olley
and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg et al. (2015)). �e �rst step removes εit
from observed output.13 �e second step addresses the issue of endogeneity. �is is necessary
because realizations of total factor productivity ωit a�ect both the �rm’s choice of material input
mit as well as the resulting output yit. Following standard practice, we address this issue using a
GMM estimator (Blundell and Bond, 2000, De Loecker, 2011).

Purging εit in the �rst step �e �rst step uses the fact that the �rm observes ωit but not εit
when it makes production decisions. If the optimal choice of mit is a monotonic and invertible
function in ωit and potentially other information stacked in the vector Ξit, one can replace ωit =

m−1(mit,Ξit) in equation (4) and thereby consistently estimate εit. Importantly, εit is not a part
12With cross-terms equal to zero, i.e. in the Cobb-Douglas case, we would have βkm = βlm = βmm = βklm = 0,

and the output elasticity of material inputs would be equal to the constant β̂km and equal for all �rms.
13�is is necessary because without additional restrictions, productivity ωit and the shock εit cannot be separately

identi�ed.
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of Ξit. �e variables that are included among the �rst-step regressors Ξit are, as in De Loecker
(2011), third-order polynomials of all production function inputs and their interactions as well as
time �xed e�ects to absorb common variation across periods, e.g. factor input trends.

�e �rst-order condition of material inputs in the cost minimization problem contains marginal
cost and hence this or prices and the markup itself should be part of Ξit if they are heteroge-
neous across �rms, as in the case of imperfect competition (Doraszelski and Jaumandreu, 2021,
De Ridder et al., 2024). To control for the markup, we include two dimensions along which we
conjecture that both markups and prices are heterogeneous. First, we include a �rm �xed e�ect
to absorb variety-speci�c demand that is not accounted for in the data. Second, we include a
polynomial in age, since we conjecture that the �rm life cycle is an important determinant of
markups.14 �e second step uses the ��ed values from the �rst step as the dependent variable,
i.e. estimates the elasticity of y∗it with respect to mit.

Addressing endogeneity of ωit andmit in the second step We follow the standard approach
in the literature by instrumenting mit with with lagged variable input mi,t−1. �is is a relevant
and valid instrument since values of mi,t−1 are predictive of mit but orthogonal to ωit. To ensure
that E[mi,t−1,mit] 6= 0, i.e. the instrument is relevant, one can assume that ωit is persistent, i.e.
ωit = ρωi,t−1 + ξit.15

Crucially for the identi�cation of the production function parameters, our baseline speci�cation
uses �rm-level de�ators from PPI prices, denoted Pit, to de�ate �rm-level sales. De Ridder et
al. (2024) show that the moment condition E(ξ̂it(β)mi,t−1) = 0 only correctly identi�es β if y∗it
measures real output. In many empirical se�ings, however, it is di�cult to estimate physical
output elasticities because only nominal revenues are observed. For example, De Loecker (2011)
de�ate nominal revenues with industry-level de�ators that are common across �rms. Because of
the inclusion of time �xed e�ects in the �rst step, this essentially estimates the revenue elasticity.
In that case, the estimated production function coe�cients (and by extension θ̂Mit and µ̂it) will
contain information on the true markup, but be biased by the covariance between the lagged

14De Ridder et al. (2024) include prices, or in their case unit values, and market shares instead in the �rst step
instead. �ey �nd estimated log markups with their extended controls in the �rst step have a Pearson correlation
of 0.62 with markups estimated without these additional controls for the markup. In our case, it is 0.65. Notice that
due the nonparametric nature of the �rst step estimation, we are not required to know the parameters governing
the structural relationship between our additional control and the markup.

15�is results in the moment conditions E(ξ̂it(β)X) = 0, where X is (kit, lit,mi,t−1, k
2
it, l

2
it,m

2
i,t−1, kitlit,

kitmi,t−1, litmi,t−1, kitlitmi,t−1). Starting with a set of values for the parameters β and ρ, we compute the implied
ω̂it, ω̂i,t−1 and ξ̂it and iterate until said moment conditions hold. �e output elasticities implied by the optimized
β̂’s enters in the numerator of the ratio estimator of the markup.
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input variable with output prices. �e bias might be both positive or negative and wash out in the
aggregate. Since we are interested in �rm-level markups, however, it is crucial that we measure
physical output. We do so by dividing nominal sales by a �rm-speci�c output price de�ator based
on the PPI. �ese output prices are observed directly, and thus more precisely measured than unit
values used in other datasets. We contrast our results to a version where we estimate the output
elasticity using industry-level de�ators Pkt, i.e., e�ectively estimate revenue elasticities. In line
with De Ridder et al. (2024), we �nd di�erences in the level of estimated output and revenue
elasticities, but similar aggregate time trends.

3.2 Results of markup estimation

It is useful to discuss some outcomes of our production function estimation and compare the
resulting markup estimates to the existing literature. Table B.1 in the appendix presents average
material input shares by sector as well as average output elasticities implied by the translog
production function coe�cients. �e mean input share for material inputs over the full sample
is 0.51 and the average output elasticity for material inputs is 0.58. �e la�er compares to an
average value of 0.59 for French manufacturing �rms in De Ridder et al. (2024) and 0.57 for US
�rms in Foster et al. (2024). �e average estimated output elasticities for labor and capital inputs
amount to 0.40 and 0.05, respectively. Following Equation (3), the output elasticity of the �exible
input good – material – should be put in relation to its nominal input share to get an estimate of
the markup. �e resulting average markup over the sample period is 11%.16

�is is on the lower end of the large range of estimates found in the literature. We a�ribute this
to the fact that our sample is based on both public and private �rms as opposed to studies us-
ing Compustat data only and that it only covers manufacturing �rms, which tend to have lower
markups (Marto, 2024). De Ridder et al. (2024) report a baseline log markup estimate of 32%
among (larger) manufacturing �rms in France, which reduces to 11% when estimated with rev-
enue elasticities. As our output elasticity estimates are in line with the literature, they di�erence
in the reported average markups is due to somewhat higher material input shares among Danish
manufacturing �rms.

In Figure 2, we show distributions of our markup sample in time and in the cross-section. Panel (a)
shows the development of the aggregate (log) markup. We report the unweighted mean, the me-

16Henceforth, we follow the convention that we winsorize the resulting markup estimates at the 5th and 95th
percentiles and report them in percent above 1, i.e. 100 · log µ̂it. We will show that winsorizing markups has no
impact on their trends over the �rm life in Section 4.
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dian and the employment-weighted mean. All three measures of the aggregate markup increase
considerably over time: the mean markup, whether unweighted or employment-weighted, in-
creases by around 10 percentage points (pp) over the sample period, from a level of around 5% in
2002 to around 15% in 2015, a�er which it moves sideways. �e median markup, while consis-
tently below the mean, increases by a similar amount, indicating that the average increase is not
driving by just a few superstar �rms.

�at there is a seminal trend of increasing markups is consistent with De Loecker et al. (2020) and
De Loecker and Eeckhout (2018). �e la�er �nd an even stronger increase for European �rms of
roughly 20pp over the same sample period. However, Marto (2024) recently documented that a
large part of the increase in the average markup documented in this literature is due to services
�rms. As our sample only covers manufacturing �rms, it is plausible that we �nd a �a�er time
pro�le. Our �rms are more comparable to De Ridder et al. (2024), whose sample covers French
manufacturing �rms from 2010 to 2019. �ey �nd that the average markup does not increase
signi�cantly over that time frame, mostly because there is a reduction in markups during the
Eurozone crisis in 2011-12, with a subsequent recovery. Denmark was much less exposed to this
crisis than France was, so it is not surprising that our time pro�le is more upward-sloping than
theirs.

Besides the increasing trend, there are interesting insights on the cyclicality of markups. First,
deviations from the increasing time trend appear to be slightly procyclical, as is con�rmed in
appendix Figure B.3. However, the decrease in markups during recessions is small and brief. Fol-
lowing the global �nancial crisis, markups appear to even increase disproportionately, especially
among large �rms, as indicated by the dashed line.17 Additionally, there is a temporary spike in
markups of manufacturing �rms of around 4pp in 2021, i.e., during the fast recovery from the
Covid recession.

Figure 2(b) shows the cross-sectional distribution of markups. We report the full distribution
of markups over the entire sample (grey shaded are) as well as kernel estimates of the markup
distribution for the �rst two years of the sample (blue solid line), two years in the middle (red
dashed line) and the two last years of the sample (orange do�ed line). �e �gure illustrates that
most of the markup distribution has shi�ed toward higher markups over the sample period, in
line with the parallel increase of the mean and median markup.

When investigating the life cycle pa�erns of markups over the �rm age, we will test our results
17Gilchrist et al. (2017) and Renkin and Züllig (2024) show that �rms that lose access to external liquidity increase

prices beyond credit cost, i.e., increase the markup to generate liquidity internally. Our �ndings are consistent with
this, even though our markup estimation abstracts from �nancial frictions entirely.
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Figure 2: Estimated markups
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Notes: Aggregated markups estimated using the production function approach outlined in Section 3. Unbalanced
sample of a total of 800 manufacturing �rms. In panel (a), we �rst winsorize estimates at the 5th and 95th percentiles,
then calculate 100 · log µ̂it and subsequently depict the (weighted/unweighted) mean (or median).

with a range of alternative estimates for which we vary choices in the production function es-
timation. In particular, we estimate a version that is not based on �rm-level de�ators but uses
industry-level de�ators to calculate output. Furthermore, we vary the de�nition of inputs (e.g.
using employment instead of de�ated labor cost as the labor input or material inputs that are not
corrected for the change in inventories) and of the �rst stage (following De Ridder et al. (2024)).
In appendix Table B.2 and Figures B.1 and B.2, we show distributions and time trends of these
alternative estimates as well as pairwise correlations with our main estimates. �ese correlations
range from 0.66 to 0.91.

We �nd a consistent increase in markups over the sample period (2001-22) across all speci�ca-
tions of the production function estimation. Across all alternatives, the increase is on average
10pp, ranging from 5pp for the speci�cation with the lowest increase to 15pp for that with the
highest. However, the level of estimated markups di�ers, and markup estimates based on �rm-
level de�ators are more dispersed than estimates based on industry-level de�ators which ignore
price dispersion between �rms (even a�er winsorizing the estimated markups).
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4 Markups over the �rm life cyle

We now turn to our main analysis of how markups evolve over the life of the �rm. Figure 3 shows
averages and interquantile ranges of markups for di�erent age groups, pooling cohorts over the
whole 2001-22 sample period. Younger �rms charge markups that are 5-10pp lower than those
of older �rms.

Figure 3: Markups by �rm age
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Notes: We estimate markups using the production function estimation approach where �rm-level output is de�ated
using �rm-level price de�ators. �e �gure shows the mean and interquartile range of the markup distribution by
age bin comprising two years each, but spanning the full sample period.

However, the averages shown in Figure 3 re�ect a mixture of age e�ects, time e�ects and a �rm
composition changing over time. To address these issues, we estimate a standard additively sepa-
rable decomposition of the log markup – or other �rm-level outcomes such as prices or marginal
costs – into contributions of age e�ects f(a), sector-time e�ects τ and �rm e�ects χ (which nest
birth-cohort e�ects):

100 · log µit = β0 + f(ait) + τk(i),t + χi + εit . (6)

We estimate age e�ects f(a) as a 4th-degree polynomial in our main speci�cation. �is allows
for smoothly evolving age pa�erns with enough �exibility to potentially show various nonlinear
pa�erns of markups over the life of �rms. �ese age e�ects are not necessarily all-else-equal
causal relationships, but might re�ect variation of other variables that evolve with �rm age, such
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as �rm size. In robustness checks further below, we control for some of these variables to identify
age pa�erns holding other factors constant.

Our sample covers 22 years, but we observe starting dates for �rms founded outside of the sample
period and can thus identify age pa�erns for �rms older than 22 years. However, di�erent ranges
of the age pa�erns that we estimate will be identi�ed by di�erent �rms aging over this 22-year
period.

4.1 Identi�cation and estimation of age patterns

�e central problem in estimating decomposition (6) is the collinearity of the linear components of
age, time and cohort e�ects. Age is mechanically a linear combination of a �rm’s birth cohort and
the current year—for any �rm-year observation, a �rm’s age is equal to the current year minus
the �rm’s birth cohort. As a result, any linear age trend α ·a is indistinguishable from a time trend
α · t that is o�set by a negative cohort trend −α · c for entering �rms. To estimate unrestricted
cohort, time and age e�ects separately, it would be necessary to observe �rms of the same cohort
at di�erent ages at the same time. Clearly, that is not possible and we require further restrictions
to identify (6). As discussed in more detail in McKenzie (2006), Fosse and Winship (2019) or
Schulhofer-Wohl (2018), the collinearity problem applies speci�cally to the linear components of
age, time and cohort e�ects and we need to place a restriction on one component to identify the
other two. Nonlinear components can be pinned down from naturally occurring variation.

We employ two di�erent complementary identi�cation strategies that each place one restriction
on the linear components. Both are commonly applied in age-time-cohort decompositions in
di�erent contexts, notably when estimating life cycle pa�erns in workers’ earnings. �e two
restrictions yield very similar results on the evolution of markups over �rms’ lives, but leave
some more uncertainty when applied to the dynamics of marginal cost and prices. In addition to
the two identifying restrictions below, we always impose the normalization that �rm e�ects sum
to zero in the sample, and sector-time e�ects sum to zero within sectors (i.e. permanent markup
di�erences between sectors are captured in �rm e�ects).

Cohort trend restriction �e �rst restriction is that �rm e�ects in markups—χi in Equation
(6)—are orthogonal to any linear cohort trend. Formally, we impose that E(χiNici) = 0, where
ci denotes the birth cohort of �rm i and Ni the number of years the �rm is in the sample. �is
restriction enables us to identify unrestricted age and time e�ects, as well as the orthogonal cohort
or �rm e�ects. Markups might still systematically vary between cohorts—for example, �rms that
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enter during a recession might have permanently di�erent markups from those that enter during
a boom.

An important possibility precluded by not allowing linear cohort trends in �rm e�ects is a con-
stant rate of selection on �rm e�ects. For example, constant di�erences in exit rates between
high- and low-markup �rms would result in a linear cohort trend in the markups of surviving
�rms that we observe over the 2001–22 sample and that linear cohort trend could not be esti-
mated without restrictions. In contrast, di�erences in exit rates between high- and low-markup
�rms that vary over �rms’ life would result in a non-linear pa�ern in cohort e�ects. For example,
if low-markup �rms exhibit a higher exit probability only during the �rst 10 years of life, the re-
sulting cohort e�ects would be �at for �rms born before 2012 and exhibit an exponential decrease
for �rms born during the last 10 years of our sample period. Such e�ects can be captured by our
restricted estimates.

�e same type of restriction is used in the context of estimating life cycle pa�erns in labor earn-
ings by Deaton and Paxson (1994) or medical expenses by De Nardi et al. (2010). To estimate
the coe�cients in Equation (6) under the restriction that E(ciNiχi) = 0 in practice, we adapt a
procedure from Deaton (2019) that we explain in detail in Appendix C.1.

Age polynomial restriction To show that our results are not driven by the particular identi-
�cation restriction chosen, we use an alternative restriction that constrains the age polynomial
to have a stationary point at a chosen reference age, i.e f ′(ā) = 0. �is can be achieved by a
simple variable transformation, because the restriction pins down the linear coe�cient of poly-
nomial f(a), α1, as a function of the higher-order terms. We describe further details on the exact
implementation in Appendix C.1.

�e age polynomial restriction has been used by Card et al. (2016, 2013) in the context of es-
timating life cycle pa�erns in labor earnings. It is in some ways more �exible than the cohort
trend restriction. It enables us to identify unrestricted cohort and time e�ects, while still leaving
a wide range of possible age pa�erns. �e restricted age pro�le can be �at over the full life cycle,
increasing or decreasing over the whole range of age except for ā, or feature di�erent kinds of
U-shapes or inverse U-shapes.

Our baseline choice of ā is 25 years. �e reference age should be high enough to guarantee that
�rms have matured and do not systematically grow towards their steady-state size. Based on the
age pro�le of the size of Danish �rms, the reference age should thus be at least 15 years (Andersen
and Rozsypal, 2021). At the same time, ā should be low enough to guarantee su�ciently many
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observations in the region where the �at age pro�le is imposed, i.e., no higher than 40 years (cf.
Figure A.3). Additionally, we have deliberately chosen a reference age which is not equal to a
(local) minimum or maximum of the age pa�ern in markups when estimating them subject to
the cohort trend restriction.

Intuitively imposing two alternative restrictions can be seen as an informal over-identi�cation
test. If at least one of the restrictions is valid (i.e. not in con�ict with the true parameters we would
like to estimate), and estimation using both delivers similar results, then we can be con�dent in
the validity of both restrictions.

4.2 Main results

We estimate regression (6) under both restrictions with log markups as the dependent variable,
and repeat the same analysis with the same restrictions with log marginal cost and log prices as
outcomes. We de�ne marginal cost as the di�erence between estimated markups and observed
price indices, but do not impose restrictions that would require the estimated age polynomials for
markups and prices to sum up to the age polynomial for marginal cost. We show the estimated
age pro�les in Figure 4 and summarize the results by estimating the average changes over the
�rst and second 20-year periods of the �rm life in Table 2. Note that Figure 4 and subsequent
�gures plot the expected markup of �rms by age relative to the sample average.

Markups Markups of new entrants are about 6pp below the sample average and signi�cantly
lower than those of older �rms. Markups then increase and reach a maximum a�er about 20
years. In total, average markups increase by around 8pp over the �rst two decades of a �rm’s
life. �is is an economically large increase, given an average markup of 11% in the sample, and
an increase of the average markup of 10pp over the 2001–2022 period. Once �rms reach age 20,
markups begin to stagnate or even fall slightly. �ese pa�erns are remarkably consistent between
our two identifying restrictions, shown in panels (a) and (b).

Marginal cost We repeat the estimation with log marginal cost as the dependent variable. In
contrast to markups, marginal cost are a nominal outcome, but factors a�ecting marginal cost of
all �rms in a given year—such as changes in input prices—should be captured by time e�ects. �e
estimated age pa�erns for marginal cost are illustrated by orange lines in Figure 4 and shown in
the bo�om panel of Table 2.

18



Figure 4: Age trends in markups, prices and marginal cost

(a) with cohort trend restriction
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(b) with age polynomial restriction

-10

-5

0

5

Pe
rc

en
ta

ge
 p

oi
nt

s

1 10 20 30 40
Firm age

Markup Price Marginal cost

Notes: �e �gure plots estimated age pa�erns as 4th-order polynomials in markups, prices and marginal cost rela-
tive to the sample mean, based on estimates of Equation (6). As discussed in Section 4.1, two separate identifying
restrictions are imposed to disentangle age, time and cohort e�ects in the panel. �e �gure includes 95% con�dence
intervals based on Driscoll-Kraay standard errors.

Marginal cost of entrants are signi�cantly higher than the sample average and depending on
the identi�cation restriction, 9 to 14% higher than those of 20-year-old �rms. �e estimated age
pa�erns are similar with both identifying restrictions over the �rst 20 years of a �rm’s life, but
slightly �a�er with the age polynomial restriction. For older �rms, the two restrictions produce
somewhat di�erent pa�erns. If we restrict cohort trends, marginal cost falls by a further 4%
between age 20 and age 40 and stagnates a�er. If we restrict the age polynomial, marginal cost
increases by 2% between age 20 and age 40. �is leaves some uncertainty over the marginal cost
dynamics for �rms above age 20.

Prices When we apply the cohort trend restriction to the evolution of quality-adjusted prices,
we �nd that prices are monotonically decreasing in age. Relative to industry-time averages, prices
fall by about 7% over the �rst two decades and another 5% in the subsequent two (see Table 2),
by an average annual rate of 0.3%. �is is consistent with Adam and Weber (2023), who �nd
decreasing age trends in relative prices for consumer items. When we impose this relative price
trend to be �at at the reference age, the decreasing age pa�ern during the �rst 20 years of a �rm’s
becomes much �a�er (red dots in Figure 4(b)) and there is an increasing age pa�ern for prices of
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Table 2: Changes of markups, prices and marginal cost among young and mature �rms

(1) (2)
Identi�cation Cohort trend restriction Age polynomial restriction
Markups
Change from age 1 to 20 7.50∗∗∗ 7.83∗∗∗

(1.26) (1.79)
Age 20 to 40 -1.26 -0.91∗∗∗

(0.80) (0.15)
Prices
Change from age 1 to 20 -6.89∗∗∗ -1.26

(1.29) (1.42)
Age 20 to 40 -4.87∗∗∗ 1.04∗∗∗

(0.92) (0.22)
Marginal cost
Change from age 1 to 20 -14.38∗∗∗ -9.10∗∗∗

(1.63) (1.59)
Age 20 to 40 -3.61∗∗∗ 1.95∗∗∗

(0.31) (0.19)
Observations 9,700 9,700
Firms 798 798

Notes: Estimates of Equation (6) under two di�erent restrictions to identify the age polynomial f(a). We report the
implied percentage point change of markups from age 1 and 20, i.e. 100 · log µ̂(a = 20) − 100 · log µ̂(a = 1) and
from 20 to 40 years, respectively. Marginal cost are de�ned as the log di�erence between the �rm price de�ator
and the estimated markup. Driscoll-Kraay standard errors in brackets; signi�cance levels: ∗p < 0.10, ∗∗p < 0.05,
∗∗∗p < 0.01.

�rms above age 20.18

Taken together, our main results show that young �rms have steeply increasing markups, and
declining marginal costs that are only partially passed through to prices. We show in Section
5 that this result is robust to a range of alternative choices in our estimation. Markups stop
increasing around age 20 and slightly decline for older �rms. �e results for marginal cost and
prices of older �rms are less clear. Under both restrictions marginal cost and price dynamics
become more similar for older �rms, consistent with relatively stable markups.

18Note that the case that the restriction of a �at age pro�le at age 25 holds for prices is theoretically much weaker
than it is for markups and we therefore put more weight on the results using the cohort trend restriction in panel
(a).
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Cohort trends Our �rst identi�cation restriction requires absence of a cohort trend in �rm
e�ects. In Figure D.1 in the appendix, we test for the presence of this (linear) cohort trend when
we impose the age polynomial restriction, where the cohort trends remain unrestricted. �e result
is that the restriction is violated at the 95% signi�cance level, indicating that our two identi�cation
strategies are to some extent complementary.

4.3 �e contribution of �rm aging to the increase of the average markup

�e average �rm age increased by around 15 years over the course of the 22-year sample period,
while the average markup has increased by around 10pp. In this section, we ask whether and to
what extent the former trend directly contributed to the la�er.

Our estimates of identi�ed age, time(-sector) and �rm (which nests cohort) e�ects now allow us
to decompose changes of the average markup over time into these three components. Figure
5 decomposes the ��ed values of our two models (with di�erent identi�cation restrictions) into
contributions by, i.) changes in the age composition of �rms (blue), ii.) entry and exit of �rms with
heterogeneous �rm e�ects (red) and iii.) time e�ects that a�ect all active �rms equally (orange).
�e la�er is estimated separately for each industry and then averaged across industries using the
number of observations in each year.

Despite the clear age pa�erns presented before, the role of �rm aging for average markups is close
to zero. We investigate this more closely by further decomposing the age e�ect into contributions
from �rms below the age of 20 whose aging should— according to our estimations—have an
unambiguously positive e�ect on the average markup. In appendix Figure D.2, we show that
their contribution is around 1pp, still falling short of the increase of the average markup of 10pp
by an order of magnitude. On the other hand, the further aging of the �rms older than 20 years
contributes negatively to the average markup, as some of them have decreasing markups. �e
net age e�ect of the two age groups is then very close to zero.

We �nd that the �xed �rm e�ects contribute to a continuously increasing markup, in total about
2pp over the sample period. �is indicates that over time, high-markup �rms replace low-markup
�rms.

�e largest share of the markup increase is explained by time-sector �xed e�ects. We present
them at the sector level in Figure D.3 in the appendix. All of the 15 sectors have a clearly visible
increasing time trend under both identi�cation restrictions. �erefore, the aggregate increase
is not driven by a changing sector composition. In fact, the contribution from reallocation from
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Figure 5: Decomposition of the average markup increase
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(b) with age polynomial restriction

-2

0

2

4

6

8

10

12

14

Av
er

ag
e 

m
ar

ku
p 

(re
l. 

to
 s

am
pl

e 
st

ar
t, 

%
)

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

Total Age effect
Firm effect Time(-sector) effect

Notes: Having identi�ed the age, �rm and time e�ects in Equation (6) under two di�erent identi�cation restrictions,
we decompose the change in the average markup into these three components by taking ��ed values of the compo-
nents in our two estimated models and aggregate them over all �rms by year.

low- to high-markup sectors is virtually zero in our sample. Another interesting �nding is that the
time e�ects are more strongly pro-cyclical than the aggregate markup itself—from 2007 to 2009,
it decreased by 2pp. �is is partially o�set by a composition e�ect, as �rms with low markups
were more likely to exit over the Great Recession, which drove up the average markup.

5 Robustness checks

Our key �ndings are that marginal cost decline over the �rst 20 years of �rms’ existence, and that
this cost advantage does not (fully) pass through to price changes, but instead markups rise. In
this section, we show that these age pa�erns are robust not only to the identi�cation restriction
needed to identify age pa�erns, as already shown in Section 4.2, but also to numerous alternative
choices in the estimation of markups, speci�cation choices in the estimation of age pa�erns, as
well as several sample restrictions.

Estimation of production functions and markups Our analysis depends on well-estimated
�rm-level markups, the estimation of which requires a multitude of choices (described in Section
3).
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A critical choice is whether or not to de�ate �rm-level sales with �rm- or industry-level prices
to measure �rm output and estimate output elasticities. �e la�er is standard in the literature
following De Loecker and Warzynski (2012), but a number of papers, e.g. Bond et al. (2021), have
highlighted the importance of de�ating with �rm-level prices for the identi�cation of the level of
markups. De Ridder et al. (2024) have documented that observing physical output is much less
important to track markup changes, and since all our speci�cations include a �rm �xed e�ect,
we would not expect sector-level de�ators to have a large impact on our results. �e results in
columns (1) and (2) of Table 3 con�rm this. While qualitatively similar, the magnitudes of the
increasing (decreasing) age pa�ern of markups (marginal cost) is about 2pp weaker over the �rst
20 years.

Table 3: Robustness of age pa�ern in terms of markup estimation

(1) (2) (3) (4)

Identi�cation:
Markup estimates

with industry price de�ator
Markup estimates

as De Ridder et al. (2024)
Cohort trend restriction X X
Age polynomial restriction X X

Markups
Change from age 1 to 20 5.71∗∗∗ 6.01∗∗∗ 4.01∗∗∗ 5.89∗∗∗

(1.15) (1.08) (0.86) (1.05)
Age 20 to 40 -1.05∗∗∗ -0.73∗∗∗ -2.58∗∗∗ -0.61∗∗∗

(0.25) (0.12) (0.49) (0.10)
Marginal cost
Change from age 1 to 20 -12.38∗∗∗ -7.04∗∗∗ -10.90∗∗∗ -7.15∗∗∗

(2.17) (2.09) (1.89) (2.17)
Age 20 to 40 -3.87∗∗∗ 1.75∗∗∗ -2.29∗ 1.65∗∗∗

(1.11) (0.29) (1.33) (0.27)
Observations 9,673 9,673 9,700 9,700
Firms 798 798 798 798

Notes: Percentage point and percent changes of markups and marginal cost with variations in markup estimation.
Columns (1) and (2) use sector-level de�ators to compute �rm-level output instead of our PPI-based �rm-level de-
�ators. Columns (3) and (4) use additional control variables in the �rst stage of the production function estimation,
namely the �rm’s market share and log price. See Table 2 for details. Driscoll-Kraay standard errors in brackets;
signi�cance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

�e second robustness check concerns the �rst stage of the production function estimation, which
purges measurement error and shocks that occur a�er production decisions are made—ε in the
notation of Section 3—from output. Doraszelski and Jaumandreu (2021) show that under certain
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conditions, the markup itself should be part of the control variables to help identify this term.
Because the markup is unobserved in the �rst stage, De Ridder et al. (2024) propose to include
a �rms’ log price as well as its market share as proxies. Our main results are robust to adding
these two variables among the controls in the �rst stage of the production function estimation
(see columns (3) and (4) of Table 3).

We also implement a series of robustness checks related to choices in the production function
estimation. In our main speci�cation, we use de�ated payroll expenditures as a measure of labor
input. Alternatively, we can use full-time equivalent employment, which is directly measured as
a real variable, but the disadvantage that it is not adjusted for the quality of labor input. Addi-
tionally, our main speci�cation uses an inventory correction for material inputs (by the change of
intermediate inputs) and outputs (by the change of �nal-goods inventories) to re�ect production
in a year, rather than sales, as is convention in accounting statistics.19 While more correct, the
role of inventories is o�en disregarded in the markup estimation literature due to data limitations.
In Table D.1 in the appendix, we show that neither the inventory adjustment nor our choice of
labor input have a substantial impact on the estimated age pa�erns.

We also address outliers in our sample of estimated markups. �ese are subject to measurement
error and show a large variance, particularly when estimated with �rm price de�ators (see Figure
B.2). �erefore, we have winsorized le�-hand side variables at the 5th and 95th percentiles in our
main speci�cation. In Table D.2 we include a version with unwinsorized markup and marginal
cost estimates, which leads to somewhat larger standard errors and a version where we winsorize
more strongly, namely at the 10th and 90th percentiles. Both of them con�rm the increasing age
pa�ern of markups and decreasing marginal cost trend for young �rms.

Estimation of age patterns Age correlates with both size and the �nancial position of �rms.
To assess whether our age pa�erns are driven by these factors, we include additional control
variables, for example polynomials of employment and real output as we use it in the production
function estimation, the log market share of the �rm within its 2-digit sector, the leverage ratio
as well as the ratios of cash to sales and cash to total assets. Table D.3 shows that the markup
increase does not diminish with these control variables, i.e., the markup increase among young
�rms is not driven by �rms increasing in size. Interestingly, the decrease in marginal cost becomes
somewhat less pronounced when controlling for �rm characteristics, indicating that decreasing
marginal cost might to some extent root in increasing returns to scale of young �rms.

19We have shown in Figure B.2 that this can change both the time trend and the cyclical properties of estimated
markups.
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When we identify age pa�erns using the age polynomial restriction, we de�ne a speci�c �rm
age at which the slope of the polynomial is restricted to be zero–25 years in our main speci�ca-
tion. In Table D.4 we report the results for alternative reference ages between 15 and 35 years,
respectively. �e result that markups rise signi�cantly and marginal cost fall is robust to the
choice of the reference age, but the slopes increase (in absolute terms) when the reference age is
increased. In Table D.5 in the appendix we show that our results do not depend on the order of
the polynomial we choose to approximate f(ait).

Sample As we discussed in Section 2, our sample of �rms is not representative for the pop-
ulation of Danish manufacturing–the �rms in our sample are larger and older than the typical
manufacturing �rm. Our sample might also contain more fast-growing young �rms that cross
sampling thresholds quicker than others. To alleviate concerns that this drives our results, we
repeat the estimation with sampling weights that adjust the weight of age-size cells to the correct
weight in the population of Danish manufacturing �rms (see Figure A.4). �e results, shown in
Table 4, show pa�erns among young �rms that are at least as strong as in the unweighted sample.

�e slope of our age pro�les is estimated from piecewise variation in age, i.e., from �rms we
observe in at least two subsequent years. Because �rms have di�erent ages at the start of the
sample, we can estimate an age pa�ern for a long age range, even though we observe each �rm for
a maximum of 22 years. However, each year-on-year change is conditional on the �rm surviving
at least up to that point. For example, �rms which exit between age 10 and age 11 will not be used
to estimate the markup change between these two age points. If exit is dependent on (unobserved)
markup changes, this might bias our age pro�le. Unfortunately, the sample size does not allow to
estimate age pro�les conditional on exit. What we can do, however, is to show estimates based on
a sample of �rms for which we know they eventually reach 20 years of age in columns (3) and (4)
of Table 4. �e markup increase among young �rms is stronger. �is is indicative of some degree
of �rm selection on markup pro�les among young �rms. Interestingly, the estimated pa�ern for
marginal cost is not sensitive to subse�ing our sample to only surviving �rms.

We also make sure that our results are not speci�c to particular large sectors by excluding the
two largest ones—food production and machinery production—from our sample. As shown in
the last two columns of Table 4, excluding these two sectors increases the magnitudes of the age
pa�erns in markups over the �rst 20 years by around 3pp, while leaving the decrease in marginal
cost largely unchanged.

25



Table 4: Robustness of age pa�ern to sample

(1) (2) (3) (4) (5) (6)

Identi�cation:
Sampling
weights

Conditional on
reaching age 20

Excluding
largest sectors

Cohort trend restr. X X X
Age polynomial restr. X X X

Markups
Age 1 to 20 8.66∗∗∗ 8.60∗∗∗ 11.75∗∗∗ 11.03∗∗∗ 10.38∗∗∗ 10.87∗∗∗

(1.32) (1.20) (1.38) (1.87) (1.52) (2.02)
Age 20 to 40 -1.00∗∗ -1.06∗∗∗ -0.61 -1.37∗∗∗ -1.82∗∗ -1.31∗∗∗

(0.47) (0.19) (0.86) (0.15) (0.86) (0.18)
Marginal cost
Age 1 to 20 -15.19∗∗∗ -9.52∗∗∗ -14.06∗∗∗ -7.73∗∗∗ -14.57∗∗∗ -8.53∗∗∗

(1.12) (1.02) (2.26) (1.86) (1.77) (1.30)
Age 20 to 40 -3.93∗∗ 2.04∗∗∗ -4.89∗∗∗ 1.77∗∗∗ -4.30∗∗∗ 2.05∗∗∗

(0.40) (0.16) (0.33) (0.25) (0.50) (0.20)
Observations 9,700 9,700 8,656 8,656 6,086 6,086
Firms 798 798 645 645 501 501

Notes: Percentage point and percent changes of markups and marginal cost with variations in the sample. Columns
(1) and (2) use �rm-level weights to adjust the joint distribution of �rm size and age to that of the overall population
of manufacturing �rms in Denmark, in particular to scale down variation used from large �rms, which are over-
represented. (3) and (4) conditions the sample on �rms for which we know that they become at least 20 years old,
(5) and (6) exclude the food and machinery manufacturing sectors. See Table 2 for details. Driscoll-Kraay standard
errors in brackets; signi�cance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

6 Sources of age patterns

Next, we explore two possible sources for the age pa�erns documented so far. �e �rst one asks
whether they are driven by productivity or scale e�ects; the second one takes a more granular
look at the product level and documents that marginal cost reductions by young �rms coincide
with both the introduction and the discontinuation of new products.

6.1 Production function origins

Minimizing the cost function given output leads to a marginal cost function that negatively de-
pends on TFP. In the case of Cobb-Douglas production with constant returns to scale, logmcit ∝
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−ωit. In our case of the translog production function,

logmcit ∝ −ωit + h(kit, lit,mit,β), (7)

marginal cost depend linearly on the negative of TFP as well as a nonlinear function in the factor
inputs and production function parameters. �e la�er component exists due to non-constant re-
turns to scale stemming from the non-homotheticity of the production function. In the following,
we decompose the decrease in marginal cost into these two components.

Given our estimated production functions, we back out TFP from Equation (4):

ω̂it = yit − ε̂it − f̂(kit, lit,mit). (8)

For these estimates of TFP, we then repeat the age polynomial estimation under the cohort trend
restriction described in Section 4.1.20 �e green line in Figure 6 reports the estimated age pa�ern
inverted–because an increase in TFP decreases marginal cost–and normalized to 0 at age 1.

Figure 6: Age pa�ern in marginal cost and TFP
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Notes: �e orange lines shows estimates of marginal cost over the �rm life, as already shown in Figure 4(a); the
green line repeats the age polynomial estimation with estimates of TFP from the translog production function. 95%
con�dence intervals based on Driscoll-Kraay standard errors.

Firm-level TFP strongly and continuously decreases over the �rm life and �a�ens out only a�er
more than 30 years. �is leads to a direct decrease in marginal cost of about 12%.

20We do not use our second identifying age polynomial restriction because there is no theoretical justi�cation for
a �a�ening of TFP relative to the market average at any reference age.
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�e fact that marginal cost decreases somewhat stronger than TFP increases suggests that there
is a role for non-constant returns to scale. If these are increasing in scale, the decrease in marginal
cost unexplained by TFP, i.e., the di�erence between the orange and green lines, could be driven
by young �rms increasing in size. Beyond size, it could also be that young �rms start using a
more e�cient bundle of inputs, as they learn about the nonlinearity of their production function.

6.2 Product turnover

Finally, we explore whether life cycle pa�erns of markups and marginal cost are associated with
changes of �rms’ portfolio of product produced, i.e., with the introduction of new products and
the discontinuation of previously produced ones.

We link our �rm-level data with survey data on product-level sales of Danish manufacturing
�rms. In this survey (which is the basis of the Danish PRODCOM statistics), manufacturing
�rms with more than 10 employees report their quarterly sales at the level of 8-digit CN codes.
�e advantage of this dataset is that it covers all products of all �rms, rather than a selection of
products for a selection of �rms as in the PPI, allowing us to get a full picture of the products
produced in each �rm and year. �e disadvantage of the data is that it contains more measurement
error, both in the number of products–particularly due to changes in the reported CN codes–and
in the reported sales and quantities (and units).21 Nevertheless, we can measure the approximate
number of products, or CN8 codes, produced by the 800 �rms in our sample of markups. Another
drawback is that we only have the product-level data up to 2019. For these years, we can match
88% of our panel of �rm markups to an observation in the PRODCOM statistics.

�e mean and median numbers of reported CN8 codes per �rm are 5.9 and 2, indicating a highly
skewed distribution of products among a relatively small number of multiproduct �rms. Around
a quarter of all �rm identi�er never report more than one CN8 codes.

We de�ne two new dummy variables, namely dN for new product introductions, equal to one
whenever positive sales of a new 8-digit CN code at the �rm level are reported. �is is the case
for 16% of �rm-year observations.22 Similarly, we de�ne dD for product discontinuations, i.e.,
whenever a CN code is reported by that �rm for the last time and is no longer observed in the
subsequent year, which is the case for 18% of all observations.

Interestingly, product turnover—both introductions and discontinuations—is substantially higher
21�is is why we do not use the unit values we can compute in this data as the �rm-level price de�ators for the

computation of markups.
22We exclude new 8-digit CN codes that might appear due to changes in the CN classi�cation.
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among young �rms. Figure 7(a) shows that among �rms less than 20 years old, around 20% of
�rms introduce a new product in a given year and between 20 to 25% discontinue at least one
product. As a consequence, the number of products that the typical �rm produces decreases in
age. For �rms aged 20 and older, the number of new and discontinued products is about 15% a year.
Panel (b) con�rms higher product turnover among young �rms at the product level: Among very
young �rms, around 7% of all observed product codes are new products, whereas among �rms
above 20 years of age, this share decreases to around 4%.

�e shapes of these age pa�erns roughly coincide with the �rm life-cycle pa�erns of markups
and marginal cost estimated in Section 4.2. �is suggests that a higher rate of product rotation
could be a source of markup increases for young �rms. Young �rms could experiment with dif-
ferent products, and keep those which they are either e�ective at producing, or where demand
conditions allow them to charge high markups. In both cases, we would expect average �rm-level
markups to increase on average a�er a product has been either discontinued or introduced.

To investigate this hypothesis further, we run local projections of the form

100 · (log xi,t+h − log xi,t−1) = βEh d
E
it + τk(i),t+h + ui,t+h , (9)

where x denotes either the �rm-level markup, price, or marginal cost and E = {N,D} is either
a new product introduction or discontinuation event in year t. �e coe�cients βNh and βDh for
h = {−3,−2, ..., 3} trace out the behavior of �rm-level variables around these events. Estimates
from these regressions are purely descriptive and should not be interpreted as causal, as both the
introduction and discontinuation of products are endogenous �rm choices. Aggregate trends are
absorbed by the sector-time �xed e�ects τ .

Panels (c) and (d) of Figure 7 depict estimates of βN (le�) and βD (right) with pa�erns around
events of product turnover. When a new product is introduced, �rm-level markups gradually
rise by around 1pp. Firm-level price de�ators �rst increase by approximately the same amount,
re�ecting the fact that marginal cost do not fall on impact. �ree years a�er, however, marginal
cost fall, such that a 1.5pp increase in the markup leads to a (quality-adjusted) price increase of
1pp.

When a product is discontinued, on the other hand, marginal cost fall and markups increase
immediately. �e size of both e�ects is around 1pp in year t + 1, which is the �rst full calendar
year in which the discontinued product is no longer observed. Prices, however, do not change in
a statistically signi�cant way.
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Figure 7: Product turnover and markup and marginal cost changes

(a) Firms with new/discontinued products

0

5

10

15

20

25

30

Sh
ar

e 
of

 fi
rm

s 
(%

)

1 10 20 30 40
Firm age

New products Discontinued products

(b) New/discontinued products
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(c) µ and mc around new product introductions
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(d) µ and mc around discontinuation of products
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Notes: (a) shows the share of our sample �rms with at least one CN8 code reported for the �rst time by that �rm in a
given year. �e x-axis combines two years of age at a time. �e dummy is not de�ned for �rms of age 1, as all their
products are new. Discontinued products shows the share of �rms which report at least one CN8 code for the last
time. Panel (b) reports the same statistics, but as a share of all products instead of as a share of �rms. �e lower two
panels show local projection estimates (9) for the estimated markups (and prices and marginal cost) on a dummy for
whether or not the �rm has introduced or discontinued at least one product in a given year. 95% con�dence intervals
based on Driscoll-Kraay standard errors.

Together, these results suggest that �rms use both new product introductions and product dis-

30



continuations to upgrade their markup in a statistically and economically signi�cant way.23 �ey
also suggest that higher rates of product introduction and discontinuations among younger �rms
are important factors driving the increase in markups (and the fall in marginal cost) over the �rst
two decades of �rms’ lives.

7 Implications and conclusion

We think that our empirical results have a number of important implications for macroeconomic
research.

Implications for aggregate markup trends A �rst important take-away from our results
follows directly from Section 4.3 and is that �rm aging has at best a small direct e�ect on the
aggregate markup. Even though markups increase substantially over the �rst 20 years of a �rms’
life, young �rms have a small weight in the aggregate. In both our structural decompositions,
the largest part of the increase in markup observed over the sample period comes from time ef-
fects that increase markups for all �rms equally. While this still leaves many possible sources of
increasing aggregate markups, it rules out several explanations that rely on a changing composi-
tion of �rms across sectors, age or cohorts. First and foremost, it rules out that the evident aging
of the average �rm that follows from declining business dynamism was a signi�cant driver of the
aggregate markup. What it does not rule out is indirect e�ects of declining business dynamism,
for example a lower number of competitors, which allows all remaining �rms to charge higher
markups (see e.g. Akcigit and Ates (2021)). Second, it excludes the possibility that the average
markup increase is driven by “superstar �rms”, which in our decomposition would be a�ributed
to the �rm �xed e�ects.

Implications for models of �rm dynamics Many benchmark models of �rm dynamics rely
on borrowing constraints to generate realistic pa�erns of �rm dynamics. Young �rms are typi-
cally constrained, so pro�ts and markups are their primary determinant of growth, as they allow
them to grow out of their borrowing constraints. If markups of young �rms are systematically

23Notice that we estimate changes in markups around product turnover only. Firms might additionally increase
markups on existing products. Decreasing product-level markups can also be consistent with a �rm-level markup
increasing in �rm age, as long they can charge substantially higher markups on new products compared to existing
ones and have a su�ciently high rate of product introduction. However, the data do not allow us to estimate product-
level markups to test this.
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low, as is the pa�ern we document in this paper, it would slow down the rate at which young
�rms grow to their optimal size.

In most �rm dynamics models, markups are constant, and such a channel is absent. Ignaszak
and Sedláček (2023), Roldan-Blanco and Gilbukh (2023) and Chiavari (2024), among others, build
models in which �rms can invest in their customer base. �is yields markup age pa�erns consis-
tent with our results, but in these models, low markups of young �rms are driven by low prices,
rather than high cost as in our results. �e facts we document are rather consistent with a setup
that features strategic complementarity in price-se�ing and young �rms that are less productive
than older �rms. While this is beyond the scope of this paper, it would be interesting to integrate
such a setup in a �rm dynamics models to quantify the impact of age dynamics in markups on
the �rm size distribution.

Implications for models of creative destruction �e link between product turnover, declin-
ing marginal cost and rising markups has implications for Schumpeterian models of innovation.
In these models (see e.g. Kle�e and Kortum (2004), Akcigit and Kerr (2018)), innovation happens
when a �rm improves an existing product, introduces a new one (both internal innovation) or
when a new �rm adds a new product to the market to compete with existing ones (creative de-
struction). Garcia-Macia et al. (2019) argue that incumbents are responsible for an outsized share
of innovation, and within incumbent �rms, improving existing products is more important than
introducing new ones. �e la�er is challenged by empirical evidence in Argente et al. (2024),
which shows that new products are the main source of sales growth at the �rm level and that
sales within existing products decline over time. Our �nding of persistent declines in �rm-level
marginal cost supports the view that internal innovation is indeed important. However, we show
that within �rm-level developments, changes in the product portfolio are an important contribu-
tor. When �rms decide whether to introduce a new product, they face a trade-o� between being
able to be�er compete for market share and cannibalizing their own existing products (Argente et
al., 2024). Our �nding is that a�er events of product introductions actually observed in the data,
i.e. considered optimal by the �rm, the �rm-level price and markup both increase persistently,
indicating that new products do not necessarily cannibalize the existing product portfolio.

Implications for optimal in�ation Our empirical �ndings even have implication for mone-
tary policy. Adam and Weber (2019) show that in an economy with heterogeneous �rms whose
marginal cost decrease in age and who face nominal rigidities, the optimal in�ation target is pos-
itive. �e intuition is as follows: In an e�cient economy, the allocation of production is such that
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relative prices re�ect the relative marginal cost of �rms. If marginal cost of �rms are decreasing
over a �rm’s life, this can happen in two ways. First, if the aggregate price level is constant (i.e.,
there is no aggregate in�ation), the nominal price of each �rm relative to the aggregate must de-
cline over time. New �rms charge a higher price than the average �rm. Over time, they lower it,
but the new higher prices of entrants keeps the aggregate price level unchanged. �e second case
is that the nominal price of a �rm is constant over time (and thus in its age), but in that case, the
aggregate price level increases. Under sticky prices, the second solution is the more optimal one,
as no nominal prices need not be changed. �is �nding stands in sharp contrast to a canonical
literature which �nds a zero-in�ation steady state to be optimal.

To estimate the optimal in�ation target implied by their theory, Adam et al. (2022) and Adam
and Weber (2023) estimate (linear) age trends of relative prices in CPI micro data for the UK,
Germany, France and Italy. However, these relative price trends only act as a proxy for trends in
(unobserved) relative marginal cost. Our consistent result is that markups increase in age, at least
for large parts of the �rm age distribution. �is means that relative price age trends overestimate
trends in relative marginal cost.24 As a consequence, estimating the optimal in�ation target based
on relative price trends alone likely underestimates the optimal in�ation target.

Conclusion Using price and production data, we have estimated markups for manufacturing
�rms in Denmark. We have documented the evolution of markups, prices and marginal cost over
the life of these and found strongly decreasing age pa�erns in marginal cost over the �rst two
decades, which is partially re�ected in an increasing markup. �ese �ndings are important for
several �elds studying either �rm behavior or macroeconomic outcomes and policy.
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Melitz, Marc J. and Sašo Polanec, “Dynamic Olley-Pakes productivity decomposition with en-
try and exit,” RAND Journal of Economics, 2015, 46 (2), 362–375.

Nakamura, Emi and Jón Steinsson, “Five Facts about Prices: A Reevaluation of Menu Cost
Models,” �arterly Journal of Economics, 2008, 123 (4), 1415–1464.

Nardi, Mariacristina De, Eric French, and John B. Jones, “Why Do the Elderly Save? �e
Role of Medical Expenses,” Journal of Political Economy, February 2010, 118 (1), 39–75.

Olley, Steve G. and Ariel Pakes, “�e dynamics of productivity in the telecommunications
equipment industry,” Econometrica, 1996, 64 (6), 1263–1297.

Pugsley, Benjamin Wild and Ays, egül S, ahin, “Grown-up Business Cycles,” �e Review of Fi-
nancial Studies, March 2019, 32 (3), 1102–1147.
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Appendices

A Details on the data

A.1 Firm- and industry-level output and input de�ators

A.1.1 Firm-level output de�ators from PPI data

In the PPI survey, producers report each month the transaction price quote of a representative and
time-consistent set of their products, including temporary sales.25 We refer to P̃jim as the reported
nominal transaction price for good j of �rm i in month m. Over the sample we use (2001–22),
the raw PPI data covers 1,220 �rms and 8,512 products in total. �is covers both the domestic and
export waves of the PPI survey. If a good is sold both domestically and internationally, we treat
them as separate products.

One advantage of this data is that price of individual products is tracked for a relatively long
time, i.e., we have few gaps in the individual price series. �e average length of a product spell
we observe is 122, i.e., longer than 10 years out of the 22 years of the sample period.

Another advantage–for example relative to unit value data–is that in the case that any feature
of the product such as size or quality is changed, �rms are also asked to report the hypothetical
price of the exact same product in the previous month. We refer to quality-adjusted prices as
Pjim. �is allows us to compute quality-adjusted �rm level in�ation rates at monthly frequency:

∆pjim = log P̃jim − logPji,m−1. (A.1)

One drawback of the data is that we do not observe within-�rm quantities or product weights.
�e mean �rm reports prices for 7 products in total over the sample period. As �rms are asked to
report prices for a “representative” sample of products, we assign uniform weights across products
within a �rm when computing �rm-level in�ation rates

∆pim =
1

J

∑
j

∆pjim. (A.2)

25When applying sales �lter “B” of Nakamura and Steinsson (2008) to the raw data, 0.3% of price quotes are
identi�ed as sales (see Dedola et al. (2019)). Temporary sales are not a prominent feature in the Danish PPI.
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Subsequently, we generate �rm-level price de�ators as

Pim =
m∏
1

Pi,m−1(1 + ∆pim) (A.3)

and then average over all monthly observations in a calendar year. Finally, we index the resulting
price levels at the annual frequency Pit to a base year (2015). For �rms not reporting prices in
2015 but in other years, we let their de�ators in the �rst year of observation take the average
value of the de�ators of all other �rms. However, as all our regressions include �rm �xed e�ects,
the level of prices of each �rm will not be important.

A.1.2 Industry-level output de�ators

Much of the literature on production function and markup estimation de�ates nominal sales using
industry-level price de�ators, Pkt. We do this as well in robustness checks and in order to verify
(the mean of) our �rm-level prices.

Sector-level PPIs are published by Denmark Statistics in di�erent datasets, two of which are rel-
evant for us: PRIS4215 and PRIS4015. �e advantage of the former is that it contains consistent
time series for the entire time span, starting in 2000. However, it has the disadvantage that it
groups together certain industries even at the two-digit NACE levels. For example, basic metals
(NACE 24) and fabricated metal products (NACE 25) are collected in one index (CH). In the sec-
ond dataset–PRIS4015–all series are published at the 2-digit NACE level, but start only in 2005.
Wherever a series is available at the 2-digit level, we use data from PRIS4215. If not, we use the
2-digit series starting in 2005 from PRIS4015 and link it to the slightly more aggregated series
from PRIS4215 in the years prior to 2005. For two sectors, namely food manufacturing (NACE
10) and manufacturing on other non-metallic mineral products (NACE 23), the PRIS4215 dataset
allows us to match price series at a slightly �ner level of granularity. �e complete list of NACE
codes we match to price series from any of the PPI datasets is contained in Table A.1.

A.1.3 Veri�cation of �rm-level output de�ators

As the estimation approach discussed in Section 3 hinges on a reliable measure of real output, we
show that our �rm-level output de�ators on average accurately re�ect industry price dynamics
which are published by Statistics Denmark.

We �rst show that annual in�ation rates of our own �rm-level output de�ators (∆pit) and the
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Table A.1: Sources for industry-level output de�ators

NACE Industry Time PPI dataset Series

10.1 Food: Meat 2000- PRIS4215 10001 Meat
10.2 Food: Fish 2000- PRIS4215 10002 Fish
10.3 Food: Fruit and vegetables 2000- PRIS4215 10005 Other food products
10.4 Food: Oils and fats 2000- PRIS4215 10005 Other food products
10.5 Food: Dairy products 2000- PRIS4215 10003 Dairy products
10.6 Food: Grain mill, starch prod. 2000 PRIS4215 10004 Grain mill a. bakery
10.7 Food: Bakery 2000- PRIS4215 10004 Grain mill a. bakery
10.8 Food: Other 2000- PRIS4215 10005 Other food products
10.9 Food: Prepared animal feeds 2000- PRIS4215 10005 Other food products
13 Textiles -2005 PRIS4215 CB Textiles and leather

2005- PRIS4015 13 Textiles
16 Wood -2005 PRIS4215 CC Wood, paper a. print.

2005- PRIS4015 16 Wood
17 Paper -2005 PRIS4215 CC Wood, paper a. print.

2005- PRIS4015 17 Paper
20 Chemicals 2000- PRIS4215 CE Chemicals
22 Rubber and plastic 2000- PRIS4215 22000 Rubber and plastic
23.1 NMM:∗ Glass 2000- PRIS4215 23001 Glass and ceramic
23.2 NMM: Refractoryproducts 2000- PRIS4215 23001 Glass and ceramic
23.3 NMM: Clay building materials 2000- PRIS4215 23001 Glass and ceramic
23.4 NMM: Porcelain, ceramic prod. 2000- PRIS4215 23001 Glass and ceramic
23.5 NMM: Cement, lime and plaster 2000- PRIS4215 23002 Concrete and bricks
23.6 NMM: Articles of concrete 2000- PRIS4215 23002 Concrete and bricks
23.7 NMM: Stone 2000- PRIS4215 23002 Concrete and bricks
23.9 NMM: Abrasive and other 2000- PRIS4215 23002 Concrete and bricks
24 Basic metals -2005 PRIS4215 CH Basic and fabr. metals

2005- PRIS4015 24 Basic metals
25 Fabricated metal products -2005 PRIS4215 CH Basic and fabr. metals

2005- PRIS4015 25 Fabr. metals
26 Computers and electronics 2000- PRIS4215 CI: Electronic components
27 Electrical equipment 2000- PRIS4215 CJ Electrical equipment
28 Machinery and equipment 2000- PRIS4215 CK Machinery
29 Motor vehicles 2000- PRIS4215 29000 Motor vehicles
31 Furniture -2005 PRIS4215 CM Furniture and other

2005- PRIS4015 31 Furniture
32 Other manufacturing -2005 PRIS4215 CM Furniture and other

2005- PRIS4015 32 Other manuf.

Notes: To construct Pkt, we use industry-level PPIs published by Denmark Statistics in two datasets (PRIS4215 and
PRIS4015), with di�erent time and industry coverage. See Section A.1.2 for details.
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sector-level equivalent which are publicly available (∆pkt) have a high degree of correlation. In
principle, the la�er are a weighted average of the former, but our main challenge is that we do not
observe any weights of the micro price data used to construct the aggregate PPI and sector-level
subindices. Figure A.1(a) shows a binned sca�er plot and the �t of a linear regression (blue solid
line). �e estimated coe�cient is 0.81 (with a standard error of 0.03). Our PPI micro data thus
accurately re�ects price changes as measured with industry price de�ators, on average.

Figure A.1: Firm- vs. industry-level de�ators
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Notes: Relationship between annual in�ation rates at the �rm level (using the PPI micro data, as explained in Section
A.1.1) and the level of the associated industry (using publicly available PPI indices, as explained in Section A.1.2).

While industry-price de�ators are informative, there is a large degree of price dispersion, even
within sector-years. To show this, we compute, the percentage point di�erence between the
changes of �rm and industry de�ators. In Figure A.1(b), we show moments of this distribution for
each year. �ere are two conclusions that support the validity of our subsequent analysis: First,
there is no systematic bias that would lead to diverting time trends between the average �rm and
industry de�ators (and thus in markups estimated with either �rm- or industry-level price de�a-
tors). Second, it becomes clear that there are large deviations of �rm-level price changes relative
to the weighted industry average. As is shown by the dashed lines, around half the �rms in most
years increase or decrease their prices more than 2pp more than the average industry price. �e
fact that output de�ators behave heterogeneously across �rms highlights the importance of using
�rm-level output de�ators in our production function estimation.
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A.1.4 Factor input de�ators

As is standard in the literature, we de�ate all factor inputs before they enter the production
function. In the following, we discuss the construction of the de�ators for each input factor in
turn. �e price series used for this are uniform within industries, assuming perfect competition
in input markets.

Material We compute material input prices at the sector level from annual input-output tables
at the 2-digit NACE level. Let PM

kltMklt be the nominal input values of sector k purchased from
sector l. Input-output tables are published in current values, as above, and in previous-year prices,
i.e., PM

kl,t−1Mklt. We compute sector-level input in�ation rates as the weighted average of the log
di�erence of the two, whereas the weights are the lagged nominal input shares:

∆pMkt =
∑
l

(
PM
kl,t−1Mkl,t−1∑
l P

M
kl,t−1Mkl,t−1

)(
logPM

kltMklt − logPM
kl,t−1Mklt

)
. (A.4)

Finally, we generate a material input price de�ator as the accumulated product of ∆pMkt .

Labor Our production function features real labor cost as labor input to be�er re�ect quality
di�erences in labor than with simple full-time equivalents (which we use in robustness checks).
To de�ate nominal labor cost, we sum over labor expenses reported in the revenue statement over
all �rms (not just the 800 �rms in our sample) and divide by the sum of full-time equivalents of
these �rms.

Capital Denmark Statistics publishes time series on the capital stock (dataset NAHK) on total
�xed assets (as well as subcomponents such as buildings, structures, equipment and intellectual
property products. We use the ratio of nominal and real total �xed assets to de�ate �rms’ capital
stock.
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A.2 Firm sample

Figure A.2: Industry composition
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Notes: Distribution of 2-digit NACE industry codes in the sample of matched �rms and price quotes.
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Figure A.3: Age distribution
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Notes: Distribution of �rm age in the data, displayed with an Epanechnikov kernel density with a bandwidth of 5
years. While the blue line uses the full panel, the dashed red line uses only the �rst observation of the 800 �rms, i.e.
the observation with their youngest age.

Table A.2: Firm size distribution in Denmark and the rest of Europe

Gross output Employment
Size bin
by employment:

Denmark,
benchmark

Europe,
Orbis

Europe,
Eurostat

Denmark,
benchmark

Europe,
Orbis

Europe,
Eurostat

1-19 0.12 0.07 0.10 0.14 0.10 0.22
20-249 0.34 0.30 0.29 0.41 0.40 0.37
250+ 0.54 0.63 0.60 0.46 0.50 0.41

Notes: Kalemli-Ozcan et al. (2022) compute the distribution of gross output and employment of manufacturing �rms
in the Oribs Global databaset across three size bins, comparing a total of 20 countries: Austria, Belgium, Czechia,
Estonia, Finland, France, Germany, Greece, Hungary, Italy, Latvia, Norway, Poland, Portugal, Romania, Slovakia,
Slovenia, Spain, Sweden and the United Kingdom. �e data only covers the year 2006. We compute a weighted aver-
age across all twenty countries using manufacturing gross value added and manufacturing employment as weights.
Kalemli-Ozcan et al. (2022) compare their data to o�cial statistics they take from Eurostat. To characterize the
Danish manufacturing sector, we compute the same statistics using only the 2006 register (of the full sample of
manufacturing �rms, not our selected regression sample). �e table documents that the size distribution of Danish
manufacturing �rms is similar to that in other European economies in terms of the distribution of employment. In
terms of gross output, large �rms (making up 54% of gross output) are somewhat underrepresented, but this is es-
pecially compared to large economies such as Germany, France and the UK (70, 72 and 74%, respectively) and more
similar to other small European economies.
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Figure A.4: Joint age and size distribution of sample �rms relative to benchmark sample
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�rms in Denmark that have 50 employees at least once. Positive values (shaded red) indicate that �rms of the
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Figure A.5: Declining business dynamism and the increase of average �rm age
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Notes: In panel (a), we show the share of �rms that enter the benchmark sample in a given year (red) and leave the
benchmark sample in the subsequent (yellow), both as a share of all �rms. We use the broader benchmark sample to
compute these entry and exit rates because it is larger and our main sample is constrained by sampling in the PPI and
accounting statistics surveys, i.e., not by �rms actually entering and exiting the market, but to some extent by �rms
entering and exiting the survey. �e benchmark sample uses all �rm observations of manufacturing �rms with at
least 10 employees and reaching at least 50 employees at least once over the course of the sample period. Entry and
exit are thus de�ned for the years where the �rm crosses the 10-employee threshold, i.e., it does not by de�nition
have age 1. In panel (b) we show how entry and exit of �rms a�ect the average age of �rms in the benchmark sample.
�e blue bullets show the change of the average age across all �rms, i.e., �rst di�erences of the dashed blue line in
Figure 1. �e contribution by entering �rms, depicted in dark red, is calculated as φenter

t (āenter
t − āt−1), where φenter is

the share of new �rms. If the average age of new �rms – which is usually 1 – is below the average age of continuing
�rms, i.e., if āenter

t − āt−1 < 0, they contribute negatively. �e contribution by exiting �rms (depicted in orange bars)
is -φexit

t−1(āexit
t−1 − āremain

t−1 ). If the average exiting �rm is younger than the average remaining �rm, the contribution by
exiters on average age is positive. Remaining �rms are depicted in light grey bars. �eir contribution is close to one
as almost all �rms remain and become one year older.
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B Details on estimated production functions and markups

Table B.1: Input shares and output elasticities by industry

Industry N Firms αM αM∗ θ̂M θ̂L θ̂K 100 · log µ̂

Food 1,710 146 0.62 0.62 0.71 0.28 0.06 14.44
Textiles 251 21 0.56 0.56 0.61 0.17 0.10 6.95
Wood 366 31 0.52 0.52 0.59 0.44 0.03 12.48
Paper 314 26 0.50 0.50 0.67 0.27 0.02 30.70
Chemicals 497 38 0.52 0.53 0.54 0.39 0.12 -2.33
Rubber and plastics 795 61 0.48 0.49 0.52 0.48 0.05 3.88
Non-met. mineral prod. 702 54 0.40 0.41 0.46 0.48 0.06 10.51
Basic metals 250 23 0.61 0.61 0.57 0.27 0.09 -6.00
Fabricated metals 810 74 0.47 0.48 0.55 0.43 0.09 16.41
Computer and electronics 531 43 0.43 0.44 0.47 0.57 -0.00 10.22
Electrical equipment 576 50 0.51 0.52 0.50 0.47 0.00 -5.97
Machinery and equipment 1,904 151 0.50 0.50 0.52 0.48 0.03 4.34
Motor vehicles 288 22 0.52 0.54 0.60 0.39 0.05 11.85
Furniture 419 37 0.46 0.46 0.78 0.15 0.11 51.82
Other manufacturing 287 21 0.42 0.43 0.61 0.46 0.03 36.91
All 9,700 798 0.51 0.51 0.58 0.40 0.05 11.10

Notes: Before computing means, all variables are winsorized at the 5th and 95th percentile by industry and year. ∗Our
baseline measure of the material input share is corrected for the change in intermediate goods inventories since the
end of the previous year. In the fourth column, we show the raw input share not corrected for changes in inventories
in order to show that this does not systematically a�ect the level of the nominal input share.
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Table B.2: Alternative markup estimates

Mean
Overall Emp. wt. 2001-02 2011-12 2021-22

Main markup estimate 11.10 11.93 4.99 10.03 15.61
Industry output de�ator 5.79 6.41 -0.09 4.66 1.38
De Ridder et al. �rst stage 2.82 3.04 -4.02 1.54 7.81
Employment as labor input 4.98 10.47 -5.77 3.92 9.97
Uncorrected material input 12.41 13.79 7.59 11.30 14.27
Main, not winsorized 11.24 12.82 2.85 10.46 16.27

Median SD Skew Kurt Corr
w/ main

Main markup estimate 9.80 23.81 0.23 2.80 1.00
Industry output de�ator 7.27 20.37 -0.57 3.37 0.68
De Ridder et al. �rst stage 4.52 23.61 -0.49 3.14 0.66
Employment as labor input 7.47 40.59 -0.21 2.64 0.68
Uncorrected material input 10.40 25.26 0.44 3.08 0.84
Main, not winsorized 10.05 30.82 -1.24 18.73 0.91

Notes: We report moments of the distribution of markups, which we estimate as described in Section 3, then win-
sorize at the 5th and 95th percentile (unless mentioned otherwise) and express in percent over marginal cost, i.e.,
100 · log µ̂it. Deviations relative to the main markup estimate are as follows: �e second row uses industry out-
put de�ators instead of �rm-speci�c de�ator series. �e third row adds two two variables to the �rst stage in the
production function estimation, namely the market share of the �rm and the log price, to control for the markup
itself. �e fourth row uses log employment in full-time equivalents as an input into the production function instead
of de�ated labor cost; the ��h control neither material inputs nor outputs for the change in intermediate and �nal
goods inventories.
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Figure B.1: Pairwise correlations between main markup estimates and alternatives
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Notes: Binned sca�er plots of the main markup estimates (on the x-axis) against two alternative estimates at a time.
Alternatives are described in Section 5.

Figure B.2: Time trend of average markup with alternative markup estimates
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Notes: We report the unweighted average of the distribution of markups, which we estimate as described in Section
3, then winsorize at the 5th and 95th percentile (unless mentioned otherwise) and express in percent over marginal
cost, i.e., 100 · log µ̂it. Besides our main estimates shown in blue dots, we compare the indexed average to a number
of alternatives, the speci�cations to which are described in Section 5. Series are indexed to 0 by subtracting the 2001
values.
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Figure B.3: Business cycle cyclicality of average markup

(a) Main estimate

-1

-.5

0

.5

1

β

-3 -2 -1 0 1 2 3
h

Mean estimate 90% confidence intervals

(b) Alternative estimates

-1

-.5

0

.5

1

β

-3 -2 -1 0 1 2 3
h

Main estimate Industry output deflator
De Ridder et al. first stage Employment as labor input
Uncorrected material input Not winsorized

Notes: We report estimates β̂1,h of the following regression 100 · log µ̄t+h = β0,h+β1,hŷt+γyeart+ut, the dynamic
covariances of the output gap ŷ (which we hp-�lter from annual GDP with a smoothing parameter of 6.25) a�er
accounting for a linear time trend γ. We use Newey-West standard errors to compute con�dence intervals. Positive
coe�cients indicate procyclical markups. With our main markup estimates, we �nd that the average markup is
procyclical and slightly leading the business cycle, as indicated by positive values for h = {−2,−1, 0}. In panel (b),
we con�rm this for most of our alternative estimates of the mean markup. �e only alternative for which markups
are countercyclical is when material input and output are not adjusted for the change in inventories. Markups are
more procyclical when proper inventory adjustments are made.
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C Details on identi�cation restrictions

C.1 Cohort trend restriction

As outlined in section 4.1, the �rst restriction we impose is thatE(ciNiχi) = 0, where ci is a �rm’s
birth cohort, and Ni is the number of observations for that �rm in the sample. We implement
this constraint following Deaton (2019). We derive an auxiliary regression that identi�es the
parameters in the regression:

yit = f(ait) +
∑
t

∑
k

τktmit +
∑
i

χidit, (B.1)

�is is a restatement of decomposition (6) with notation making the included dummy variables
explicit. mit are sector-year dummies, dit are �rm dummies and χi are the associated coe�cients
(�xed e�ects). We impose the normalization that∑

i

Niχi = 0, (B.2)

i.e. the �rm �xed e�ects sum to zero. Moreover, we impose the restriction that∑
i

ciNiχi = 0, (B.3)

i.e. the �rm e�ects are orthogonal to any linear cohort trend.

We can express restriction (B.2) in terms of the �xed e�ect of two (arbitrary) reference �rms 1
and 2 from two di�erent cohorts.

χ1 = −N2

N1

χ2 −
1

N1

(∑
i 6=1,2

Niχi

)
(B.4)

χ2 = −N1

N2

χ1 −
1

N2

(∑
i 6=1,2

Niχi

)
(B.5)
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We do the same for restriction (B.3):

χ1 = −c2
c1

N2

N1

χ2 −
1

c1N1

(∑
i 6=1,2

ciNiχi

)
(B.6)

χ2 = −c1
c2

N1

N2

χ1 −
1

c2N2

(∑
i 6=1,2

ciNiχi

)
(B.7)

To simplify notation, we require that N1 = N2 and use two reference �rms that are present for
the whole sample period. We can then use (B.7) and (B.4) to express χ1 and (B.6) and (B.5) to
express χ2 as a function of the other �xed e�ects and the imposed restrictions:

χ1 =
∑
i 6=1,2

χi

(
ci − c2
c2 − c1

)
Ni

N1

(B.8)

χ2 = −
∑
i 6=1,2

χi

(
ci − c1
c2 − c1

)
Ni

N2

(B.9)

Finally, (B.8) and (B.9) can be plugged into (B.1) to obtain

yit = f(ait) +
∑
t

∑
k

τktmit +
∑
i 6=1,2

χi

(
di + d1

(
ci − c2
c2 − c1

)
Ni

N1

− d2
(
ci − c1
c2 − c1

)
Ni

N2

)
. (B.10)

Consequently, we can run the following regression with properly transformed �rm dummies d̃i
to obtain estimates of f(a), τkt and χi with the constraint imposed:

yit = f(ait) +
∑
t

∑
k

τktmit +
∑
i 6=1,2

χid̃it, (B.11)

with

d̃it = dit + d1t

(
ci − c2
c2 − c1

)
Ni

N1

− d2t
(
ci − c1
c2 − c1

)
Ni

N2

(B.12)

�e estimates for the �nal two �xed e�ects χ1 and χ2 follow from (B.8) and (B.9).
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C.2 Age polynomial restriction

We impose that the age polynomial ful�lls f ′(ā) = 0 for some age ā. �is pins down the linear
coe�cient of f(a) as a function of the higher order coe�cients. For fourth degree polynomial,
the derivative is given by:

f ′(a) = α1 + 2α2a+ 3α3a
2 + 4α4a

3 (B.13)

and with the constraint imposed:

α1 = −2α2ā− 3α3ā
2 − 4α4ā

3 (B.14)

Plugging back into the estimation equation:

yit = α2(a
2
it − 2ā) + α3(a

3
it − 3ā2) + α4(a

4
it − 4ā3) + τs(i),t + χi (B.15)

We can thus identify α2, α3 and α4 from a regression with properly transformed age terms ã2it =

(a2it − 2ā), ã3it = (a3it − 3ā2) and ã4it = (a4it − 4ā3). �e linear coe�cient α1 follows from the
constraint (B.14).
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D Supplementary Results and Robustness Checks

Figure D.1: Cohort trends in estimated �rm e�ects

(a) with cohort trend restriction
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(b) with age polynomial restriction
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Notes: In Section 4.2 we have identi�ed age pa�erns of markups under two separate restrictions, namely the restric-
tion that the linear cohort trend is equal to zero, and that the age polynomial has a slope of 0 at a certain age. �e
�gure plots the identi�ed �rm �xed e�ects χi by �rm birth cohort grouped by decade (and a larger bin for cohorts
before 1950 to guarantee a large enough number of observations) for both identi�cation restrictions. In the case of
the cohort trend restriction, a linear regression of χi on ci yields a precisely estimated 0, by construction. In the case
of the age polynomial restriction, the coe�cient is 0.018 with a p-value of 0.084, giving some evidence that under
this restriction, later-born cohorts have higher markups. �e fact that the restriction placed in panel (a) does not
hold under the restriction placed in panel (b) indicates that our two identi�cation restrictions are, at least to some
extent, complementary and do not mutually depend on one another.
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Figure D.2: Contribution of age composition to average markup: Young vs. old �rms

(a) with cohort trend restriction
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(b) with age polynomial restriction
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Notes: Having identi�ed the age e�ects in Equation (6) under two di�erent identi�cation restrictions, we take ��ed
values of the age component for each �rm and subsequently aggregate them over young �rms (age 1-20) and older
�rms (20 years and older) by year.
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Figure D.3: Contribution of time-sector e�ects to average markup

(a) Cohort trend restriction, e�ects
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(b) Age polynomial restriction, e�ects
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(c) Cohort trend restriction, contribution
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(d) Age polynomial restriction, contribution
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Notes: We have identi�ed sector-time e�ects from age and �rm e�ects in Equation (6) under two di�erent identi�-
cation restrictions. In the top two panels, we show each of the sector-time �xed e�ects, along with the mean and
interquantile range across the 15 sectors. To construct panels at the bo�om, we decompose the sample-average
sector-time �xed e�ect into within-sector and between-sector components relative to the sample start, following
τ̄t =

∑
k sk,01(τk,t − τk,01) +

∑
k(sk,t − sk,01)τk,t, where s is the share of �rms in a speci�c sector k.
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Table D.1: Robustness of age pa�erns to input variables in production function estimation

(1) (2) (3) (4)

Identi�cation:
Employment instead of

de�ated labor cost
No inventory

correction
Cohort trend restriction X X
Age polynomial restriction X X

Markups
Change from age 1 to 20 4.18∗∗∗ 9.72∗∗∗ 6.42∗∗∗ 7.01∗∗∗

(1.50) (1.92) (0.81) (1.46)
Age 20 to 40 -4.10∗∗∗ -0.71∗∗∗ -1.39 -0.77∗∗∗

(0.94) (0.21) (0.97) (0.16)
Marginal cost
Change from age 1 to 20 -10.54∗∗∗ -10.99∗∗∗ -13.27∗∗∗ -8.24∗∗∗

(1.71) (2.10) (1.33) (1.50)
Age 20 to 40 -0.52 1.76∗∗∗ -3.49∗∗∗ 1.81∗∗∗

(0.73) (0.18) (0.43) (0.15)
Observations 9,588 9,588 9,624 9,624
Firms 793 793 795 795

Notes: Percentage point and percent changes of markups and marginal cost with variations in markup estimation.
Columns (1) and (2) use (log) employment in full-time equivalents instead of de�ated labor cost as labor input lit and
columns (3) and (4) use material input mit (output yit) without adjusting them for the change of intermediate (�nal)
goods inventories. See Table 2 for details. Driscoll-Kraay standard errors in brackets; signi�cance levels: ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.01.
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Table D.2: Robustness of age pa�erns to outliers

(1) (2) (3) (4)

Identi�cation: No winsorizing Winsorizing at
10th/90th percentiles

Cohort trend restriction X X
Age polynomial restriction X X

Markups
Change from age 1 to 20 6.16∗∗∗ 9.58∗∗ 6.57∗∗∗ 6.11∗∗∗

(1.89) (2.85) (0.94) (1.43)
Age 20 to 40 -4.24∗∗∗ -0.64∗∗∗ -0.39 -0.87∗∗∗

(1.36) (0.20) (0.83) (0.14)
Marginal cost
Change from age 1 to 20 -12.33∗∗∗ -10.55∗∗∗ -11.89∗∗∗ -6.58∗∗∗

(2.10) (2.38) (1.38) (1.43)
Age 20 to 40 -0.31 1.55∗∗∗ -3.95∗∗∗ 1.64∗∗∗

(0.76) (0.24) (0.33) (0.18)
Observations 9,608 9,608 9,700 9,700
Firms 795 795 798 798

Notes: Percentage point and percent changes of markups and marginal cost with variations in the percentiles at which
we winsorize the estimated markups. See Table 2 for details. Driscoll-Kraay standard errors in brackets; signi�cance
levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table D.3: Robustness of age pa�erns to control variables

(1) (2) (3) (4)

Identi�cation:
Control for

�rm size
Control for additional

�rm characteristics
Cohort trend restriction X X
Age polynomial restriction X X

Markups
Change from age 1 to 20 10.47∗∗∗ 9.51∗∗∗ 9.85∗∗∗ 8.75∗∗∗

(0.91) (1.39) (0.87) (1.33)
Age 20 to 40 -0.05 -1.06∗∗∗ 0.17 -0.98∗∗∗

(0.70) (0.11) (0.70) (0.10)
Marginal cost
Change from age 1 to 20 -11.50∗∗∗ -5.79∗∗∗ -11.70∗∗∗ -5.97∗∗∗

(1.59) (1.54) (1.56) (1.54)
Age 20 to 40 -4.60∗∗∗ 1.41∗∗∗ -4.59∗∗∗ 1.44∗∗∗

(0.34) (0.19) (0.37) (0.18)
Observations 9,699 9,699 9,697 9,697
Firms 798 798 798 798

Notes: Percentage point and percent changes of markups and marginal cost when estimating age pa�erns with addi-
tional control variables. Columns (1) and (2) include a 4th-order polynomial of log employment and log real output
as we use it in the production function estimation. Columns (3) and (4) additionally include the log market share
in the 2-digit NACE sector in Denmark, the leverage ratio and well as the ratios of cash to sales and cash to total
assets. See Table 2 for details. Driscoll-Kraay standard errors in brackets; signi�cance levels: ∗p < 0.10, ∗∗p < 0.05,
∗∗∗p < 0.01.
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Table D.4: Robustness of age pa�erns to reference age in age polynomial restriction

(1) (2) (3) (4)

Identi�cation: ā = 15 ā = 20 ā = 30 ā = 35

Cohort trend restriction
Age polynomial restriction X X X X

Markup
Change from age 1 to 20 3.47∗∗∗ 6.00∗∗∗ 9.05∗∗∗ 9.73∗∗∗

(0.88) (1.44) (1.97) (1.99)
Age 20 to 40 -5.50∗∗∗ -2.83∗∗∗ 0.37∗∗∗ 1.09∗∗∗

(1.06) (0.49) (0.11) (0.18)
Marginal cost
Change from age 1 to 20 -3.53∗∗∗ -6.56∗∗∗ -11.20∗∗∗ -12.93∗∗∗

(70) (1.21) (1.83) (1.97)
Age 20 to 40 7.81∗∗∗ 4.62∗∗∗ -0.27∗∗∗ -2.08∗∗∗

(1.12) (0.58) (0.8) (0.23)
Observations 9,700 9,700 9,700 9,700
Firms 798 798 798 798

Notes: Percentage point and percent changes of markups and marginal cost under the age polynomial restriction to
identify age pa�erns, with variations in the reference age ā. See Table 2 for details. Driscoll-Kraay standard errors
in brackets; signi�cance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table D.5: Robustness of age pa�erns to the order of the age polynomial

(1) (2) (3) (4)

Identi�cation:
3rd-order

polynomial
5th-order

polynomial
Cohort trend restriction X X
Age polynomial restriction X X

Markups
Change from age 1 to 20 3.83∗∗∗ 2.53∗∗∗ 8.26∗∗∗ 9.14∗∗∗

(0.85) (0.63) (1.77) (3.07)
Age 20 to 40 0.65∗∗∗ -0.72∗∗∗ -1.64 -0.72∗

(0.20) (0.15) (1.20) (0.42)
Marginal cost
Change from age 1 to 20 -12.14∗∗∗ -5.86∗∗∗ -16.56∗∗∗ -12.81∗∗∗

(1.12) (0.73) (1.10) (1.41)
Age 20 to 40 -4.78∗∗∗ 1.84∗∗∗ -2.54∗∗∗ 1.41∗∗∗

(0.37) (0.19) (0.61) (0.34)
Observations 9,700 9,700 9,700 9,700
Firms 798 798 798 798

Notes: Percentage point and percent changes of markups and marginal cost with variations in the order of the poly-
nomial to approximate f(ait). See Table 2 for details. Driscoll-Kraay standard errors in brackets; signi�cance levels:
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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