Insertion and elimination reactions

Robert H. Crabree: The organometallic chemistry of the transition metals: Pages: 183 -206 and 235 - 263

Insertion reactions

- The $\sigma\text{-bound}$ group migrates to the $\,\pi\text{-system}$
- But if you only see the result, it looks like the π -system has inserted into the M-X bond, hence the name insertion
- To emphasize that it is actually (mostly) the X group that moves, we use the term migratory insertion

1,1 insertions

- In a 1,1-insertion, metal and X group "move" to the same atom of the inserting substrate
- X = alkyl \rightarrow retains stereochemistry
- The metal-bound substrate atom increases its valence
- CO, isonitriles (RNC) and SO₂ often undergo 1,1-insertion
- CO insertion
 - Hardly exothermic
 - An additional ligand may be needed to trap the acyl and so drive the reaction to completion.
 - In the absence of added ligands often fast equilibrium.
 - CO insertion in M-H, M-CF₃, M-COR endothermic.
 - no CO polymerization.

Polymerization

Why do olefins polymerize ?

Driving force: conversion of a π -bond into a σ -bond

- One C=C bond: 150 kcal/mol
- Two C-C bonds: 2×85 = 170 kcal/mol
- Energy release: about 20 kcal per mole of monomer (independent of mechanism!)

Many polymerization mechanisms

- Radical (ethene, dienes, styrene, acrylates)
- Cationic (styrene, isobutene)
- Anionic (styrene, dienes, acrylates)
- Transition-metal catalyzed (α-olefins, dienes, styrene)

Transition-metal catalysis provides the best opportunities for tuning of reactivity and selectivity

- In practice one obtains an imperfect polymer containing all possible insertion modes
- Product composition can be tuned by catalyst variation
- Polymer either used as such or (often) after cross-linking and hydrogenation

Elimination reactions

β-elimination:

Previous lectures

α -elimination

- Lack of $\beta\text{-hydrogens}$
- $\alpha\mbox{-elimination}$ can by up to 10 6 faster than $\beta\mbox{-elimination}$
- · Methylene hydride complexes rarely seen, because methyl complexes are thermodynamically preferred
- Methylene intermediate can be trapped by nucleophilic addition or by removing hydride by reductive elimination with a second alkyl

What did you learn today?

- Insertion reactions are usually reversible
- The X ligand migrates to the π ligand (migratory insertion)
- 1,1-Insertion reactions occur for η^1 ligands such as CO (details on CO insertion)
- 1,2-Insertion reactions occur for η^2 ligands such as ethylene (details such as regioselectivity, olefin isomerizations, hydrogenation)
- Insertions are kinetically favored for X = H over X = alkyl
 - Exception: CO insertion into M-H bond is thermodynamically disfavored
- Polymerization, trimerization, hydroformylation
- Elimination reactions α , β , γ , δ
 - end the polymerization and similar reactions,
 - preparation of metal hydrides, metal carbenes