Molecular Ions

Standard interpretation procedure for EI spectra

- **Known information** (other spectra, history of the sample), clear requirements for the MS measurement, control the m/z assignment (calibration)
- **2. Elemental composition** isotopic pattern (for all peaks in the spectrum)
- Molecular ion (largest mass in the spectrum, odd number of electrons, logic neutral losses). Comparison with spectra obtained with CI or other soft-ionization method
- Important ions: odd number of electrons, largest abundance, high mass, largest abundance in a group of the peaks
- 5. Appearance of the spectrum: stability of molecular ion, labile bonds
- 6. Possible sub-structures
 - 1. Important series of ions with low masses
 - 2. Important neutral losses from M⁺⁺ (fragment with high masses)
 - 3. Characteristic ions
- 7. Suggest molecular structure

Comparison with a reference spectrum, with spectra of similar compounds, check with

Literature - Fred W. McLafferty, František Tureček: Interpretation of mass spectra

Molecular ion

- The most important information in the MS spectrum
 - Molecular mass
 - Elemental composition
 - Fragments must be consistent with the above data
- Not always detactable by EI-MS
 - Careful with interpretation
 - Use also soft ionization technique (Be aware of adducts with e.g., Na+)

- Necessary (but not sufficient) conditions on the molecular ion
 - Must be the heaviest ion in the spectrum (with the corresponding isotopic pattern)
 - Must have an odd number of electrons
 - Must yield important fragments by logic losses

Odd vs. even numbers of electrons

- ▶ Ions with an odd number of electrons
 - ► EI: Molecules are ionized by a loss of an electron
 → ions with an unpaired electron radicals
- Ions with an even number of electrons
 - > All electrons paired
 - Usually more stable than radical cations
 - Often, the most abundant fragments

$$CH_4^+$$
 $\rightarrow CH_3^+ + H$

 Most of the soft ionization techniques yield even-electron molecular ions (by protonation)

The nitrogen rule

- Most of the elements in organic compounds have a relation between the mass and the valence (both odd or both even)
- ▶ N is an exception
- If a compound has 0 or an even number of the nitrogen atoms, then the molecular ion will have an even mass

Compound	Formula	Nominal mass		
Ethane	C ₂ H ₆	30		
Octane	C_8H_{18}	114		
Ethanol	C_2H_6O	46		
Propanoic acid	$C_3H_6O_2$	74		
Dichloromethane	CH ₂ Cl ₂	84, 86, 88 (isotopes)		
Hexafluoroethane	C_2F_6	138		
Carbon disulfide	CS ₂	76		
Iodomethane	CH ₃ I	142		
Ammonia	NH ₃	17		
Pyridine	C_5H_5N	79		

Mass	Valence		
1	1		
12	4		
16	2		
19	1		
28 (30)	4		
31	3		
32 (34)	2		
35 (37)	1		
79 (81)	1		
127	1		
	1 12 16 19 28 (30) 31 32 (34) 35 (37) 79 (81)		

Table 3.1. Nitrogen rule.							
Mass values:	Odd	Even					
N ₀ , N ₂ , N ₄ , N ₁ , N ₃ , N ₅ ,	OE ⁺	OE+					

Which ions have an odd/even number of electrons?

Figure 3.2. Mass spectrum of dodecane.

Which ions have an odd/even number of electrons?

- → OE+* are important for fragmentation mechanism (mark them)
- Importance increases with
 - Intensity, m/z, mass in the group of the peaks
- ▶ Important OE+• ions are not probable for low m/z fragments ions

3

Logic neutral losses

- Only a limited number of common small fragments
- ▶ Loss of masses 4 14 and 21 25 are not probable (if such fragments appear, then the largest m/z does not correspond to the molecular ion)

Δ^s	Mass		is		Formula	Example 6.6		
-4					7	9 Br	R{-Br	
					12	1 C ₂ H ₅ O ₂	Benzoates	
				51	65	C ₂ HN, C ₄ H ₂ N	Some nitrogen heterocyclic compounds	
-3			38			H ₆ O ₂	Some polycarboxylic acids	
-2			39	53	67	C _s H _{2s} ,	Allyl esters and some cyclic carbonates—specific rearrangement loss $(C_nH_{2n-1}-2H)$; some propargyl and allenic derivatives	
-1		26	40	54		C,H2,n-2	Aromatics; alkenyl aryl ethers	
				54	68 8	2 C _n H _{2n-2}	4-Y-cycloalkenyls; M*' - 69 - (68), in polyisoprenes ^c	
				54		C ₃ H ₂ O	Cyclic — CO — CH — CH —	
		26	40			C"H ₂ "CN	R-\$-CN, R-\$-CH ₂ CN (stable R ⁺ only)	
0		27	41	55	69, €	tc. C _n H _{2n-1}	RCOOR'-specific rearrangement loss of $(R-2H)$ or $(R'-2H)+(R-H)$ also from carbonates, amides, larger ketones, etc.; loss of activated $C_nH_{2,n-1}$ groups	
		27				HCN	Nitrogen heterocyclic compounds, cyanides, aryl-NH2, enamines, imine	
+1	(±14: Homologous impurity)				mpurit	y)		
		28	42	56		C _n H _{2n}	RCH_2COCH_2R -specific rearrangement loss of $(R-H)$ or $(R-H)_2$, also from many unsaturated functional groups; retro-Diels-Alder ^c	
	14					N	Aryl—NO	
		28				N ₂	Aryl-N=N-Aryl,>C=N2, cyclic-N=N-	
		28				со	Aromatic oxygen compounds (carbonyls, phenols), cyclic ketones, R → C=O+c	
			42	56	70	C"H"CO	Unsaturated acetamides, alkanoates; di-, cyclic, and complex ketones; specific H rearrangement loss of —CR ₂ —CO—	
+2		29				CH ₃ N	Some unsaturated-, arylN(CH ₃) ₂	
			43	57	71	HNCO, C,H2n-1NC	Loss of-NR-CO-from carbamates, cyclic amides, uracils	
	1					н	Labile H; aryl—CH₂—H, RC≕CH, alkyl cyanides, lower fluorides and aldehydes (stable RCO ⁺), cyclopropyl compounds	
	15	29	43	57	71, (Alkyl loss: α-cleavage or branched site favored (loss of largest R); elimination from cycloalkyl group with H rearrangement ^δ	
		29	43	57		C _a H _{2a+1} CO	C _p H _{2,p+} ,CO ←R (stable R ⁺ only)	

Intensity of molecular peak

- Intensity of molecular peak depends on:
 - ▶ The stability of the molecular ions
 - ▶ Ionization energy (the smaller *IE*, the larger intensity of M+•)
- Generally, chemical stability of M+* correlates with the stability of the molecule M
 - ▶ Intensity of M+ provides a link to the structure of the molecule
 - ▶ Intensity of M⁺⁺increases with unsaturation and with the number of rings
 - ▶ Intensity of M⁺ decreases with chain branching

Which ions have an odd/even number of electrons?

Figure 3.2. Mass spectrum of dodecane.

Which ions have an odd/even number of electrons?

- OE+ are important for fragmentation mechanism (mark them)
- Importance increases with
 - Intensity, m/z, mass in the group of the peaks
- ▶ Important OE+• ions are not probable for low m/z fragments ions

5

m/z	Int.		m/.	z Int			m/z	Int.	
38	0.4		75	5 1	.7		127	0.4	
39	1.1		76	6 4	.3		151	1.1	
50	6.2		77				152	3.4	
51	19.		78	3 4	.2		153	1.8	
52	1.4		104		.4		154	1.4	
53	0.3		105	100			181	7.4	
63	1.3		106		.8		182	55.	
64	0.6		107		.5		183	8.3	
74	2.0		126	6 0	.6		184	0.6	
	100 ¬					105			
	Relative intensity Color Colo	27 39 1 1 1 1 1 2 20 44	1	77 3 	0 10	0 120	140	152 160	182