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1 Introduction

A material is said to be dichroic when its optical absorption is dependent on the polarization

of the light interacting with it. Linear and circular dichroism simply indicate the dependence

on linear and circular polarization, respectively. Materials displaying dichroic properties are

of significant interest in view of possible future applications, in particular in the field of

valleytronics. A valleytronic device utilizes valleys, i.e. minima in conduction bands or

maxima in valence bands, as additional electronic degrees of freedom. To be able to make

such a device, it must be possible to confine charge carriers in one of the valleys, which can

be achieved via valley-selective circular dichroism (VCD) [1]. This means that two valleys

absorb left- and right-handed photons differently and thus enable the selective population

of these band-edges. An example of a technology based on the valley degree of freedom is

reported in the paper by Zhang et al. [2]. As an instance of a theoretical application, it

possible to classify excitons by their valley configuration, which is mentioned in the paper

by Yu et al.[3]. Materials which are known to display VCD are monolayer transition-metal

dichalcogenides (TMDs).

The ability to control optical excitations by altering the light polarization has therefore

opened new venues to achieve physical properties. Consequently, it may be of interest to

study materials outside of the TMD group in regards to their dichroism more carefully,

in particular two-dimensional semiconductors. It is in light of this that Phosphorene and

monolayer Tin Selenide, both materials that have gained significant attention for their op-

toelectronic properties, shall be examined in the following.

This thesis investigates computationally the linear dichroism in Phosphorene and monolayer

Tin Selenide on the grounds of Density Functional Theory while starting from first principles.

In particular, the investigation is comprised of a band structure calculation, a calculation of

the imaginary part of the dielectric function in the case of x- and y-polarization, a calcula-

tion of the corresponding linear dichroism and an analysis of the angular dependent linear

dichroism. In chapter two, an overview of the necessary theoretical foundation to understand

the results is given, and the results themselves are presented in chapter three.
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2 Theoretical Background

In this chapter, the theoretical framework required to understand the computational results

in the third section is briefly introduced. Most of the ideas presented in this chapter can be

found in the book by Feliciano Giustino [4]; an appropriate citation is given otherwise.

2.1 The Many-Body Problem

Consider a system of N electrons and M nuclei, which can be regarded as the material of

interest. Denote the electronic coordinates with ri, where i ∈ {1, .., N}. The nuclear atomic

numbers shall be designated as ZI and the nuclear coordinates as RI , where I ∈ {1, ...,M}.
To set up the stationary Schrödinger equation for such a system, the Coulomb interaction

between all the involved elements has to be taken into account, as well as their respective

kinetic energies. The resulting many-body equation[
−
∑
i

∇2
i

2
−
∑
I

∇2
I

2MI

−
∑
i,I

ZI
|ri −RI |

+
1

2

∑
i 6=j

1

|ri − rj|
+

1

2

∑
I 6=J

ZIZJ
|RI −RJ |

]
Ψ = EtotΨ,

(2.1)

which is written here in Hartree units, is in the case of real systems for all practical purposes

unsolvable; the storage requirements for the solution would be far greater than what is

currently available on earth. It is therefore necessary to introduce some sort of approximation

to acquire a useful quantitative description of the many-body problem. Fortunately, it is

possible to perform a series of simplifications to generate an easier to handle set of equations,

the Kohn-Sham equations, whose solutions are the core element behind the computational

results in chapter three. However, it is important to mention that the following approach is

a heuristic one and is only presented to formulate and give a qualitative understanding of

the these equations. The rigorous justification behind this set of expressions as well as its

limitations in describing the many-body system will be discussed in section 2.2.
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2.1.1 Hartree-Fock Equations

The materials of interest are solids, and their firm build implies that the associated nuclei

are expected to be mostly static. This means that in (2.1) the masses MI are set to infinity,

which is referred to as the clamped nuclei approximation. The nuclear coordinates RI can

therefore be regarded as external parameters and the interaction term between the nuclei as

a constant energy shift. The many-body Hamiltonian then simplifies to

Ĥ(r1, ..., rN) = −
∑
i

∇2
i

2
+
∑
i

vn(ri) +
1

2

∑
i 6=j

1

|ri − rj|
. (2.2)

The first term in the brakets is responsible for the kinetic energy of the electrons, the second

potential contains the term

vn(r) = −
∑
I

ZI
|r−RI |

, (2.3)

which is the Coulomb potential of the nuclei experienced by the electrons, and the third term

represents the Coulomb repulsion between the electrons. Let’s ignore the spin for simplicity

and regard the electrons as being independent of each other, i.e. that the probability of

finding an electron in one place does not depend on the position of the other electrons. In

principle, this would imply leaving out the last term in (2.2) and writing the many-body

wavefunction in the form of a Slater Determinant:

Ψ (r1, r2, . . . , rN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1 (r1) ψ2 (r1) · · · ψN (r1)

ψ1 (r2) ψ2 (r2) · · · ψN (r2)
...

...
. . .

...

ψ1 (rN) ψ2 (rN) · · · ψN (rN)

∣∣∣∣∣∣∣∣∣∣
, (2.4)

where each electron is described by a single-particle wavefunction {ψi}i∈{1,...,N} and Pauli’s

exclusion principle is satisfied. The states ψi would then be obtained from the single-particle

Schrödinger equations [
−1

2
∇2 + vn(r)

]
ψi(r) = εiψi(r), (2.5)

and the solution would be thus considerably more accessible than in the case of (2.1). It may

be therefore of interest to keep the form (2.4) and apply it to (2.2) as an approximation. By

minimizing the expected value of (2.2) in the state (2.4), i.e. the total energy, with respect

to all possible choices of orbitals ψi, and requiring the orbitals to be orthonormal, the best

possible approximation of the many-body wave function as a Slater Determinant is obtained.

This is the so-called Hartree-Fock method which leads to the Hartree-Fock equations:[
−∇

2

2
+ vn(r) + vH(r)

]
ψi(r) +

∫
dr′vX (r, r′)ψi (r

′) = εiψi(r). (2.6)
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The first additional potential, named the Hartree potential, is given by

vH(r) =
∑
i

∫
|ψi(r)|2

|r− r′|
dr′. (2.7)

The following physical meaning may be attributed to it. If the electrons are regarded as

independent of each other, the total electron charge density is the sum of the individual

charge densities:

n(r) =
∑
i

|ψi(r)|2 . (2.8)

In this case, the potential energy experienced by an electron in the electrostatic field gener-

ated by n(r) is exactly VH(r), since VH(r) is the solution to the Poisson’s equation describing

this field:

∆vH(r) = −4πn(r). (2.9)

The second potential, the exchange potential

vX(r, r′) = −
∑
j

ψ∗j (r
′)ψj(r)

|r− r′|
(2.10)

arises from the exclusion principle and physically prevents two electrons from having the

same state.

2.1.2 Kohn-Sham Equations

The Hartree-Fock equations are based on the independent particle approximation and there-

fore do not exactly describe the many-body system. However, the idea of simplifying the

many-body problem by using a framework of non-interacting particles is attractive, since

it enables the calculation of a solution through iterative means. It may be thus tempting

at this point to add yet another potential to each electron that takes care of the remaining

physics not incorporated into the Hartree-Fock equations. The electrons can then be thought

of as each experiencing a number of potentials, which are either electrostatical or quantum

mechanical in nature. Instead of having a 3N -dimensional many-body differential equation

as in (2.1), one is left with the following set of N three-dimensional single particle equations[
−∇

2

2
+ vn(r) + vH(r) + vxc(r)

]
ψi(r) = εiψi(r), (2.11)

named Kohn-Sham-equations. They implicitly include the correlation potential vc, for which

a general analytical expression doesn’t exist. The potential vc takes care of the fact that

the movement of an electron is influenced by the presence of all the other electrons. The

exchange potential is non-local, i.e. it is evaluated by an integral over the additional variable
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r′, and is usually replaced by the simpler local exchange potential Vx, which leads to the

term vxc = vx + vc incorporated in (2.11). It may be worthwhile to emphasize here that vH

and vxc both stem from the Coulomb repulsion between the electrons. In the future, the

wave-functions ψi will be referred to as Kohn-Sham-states and their respective eigenvalues

εi as Kohn-Sham-energies. The calculation of these physical quantities is the subject of the

next section.

2.2 Density Functional Theory

In the previous section, the Kohn-Sham equations (2.11) are introduced heuristically as

a simplification of the many-body equation (2.1). In this section, a rigorous approach to

this simplification is given as well as a method to calculate the corresponding eigenstates

and eigenvalues. To achieve this, Density Functional Theory (DFT) is used. Lastly, the

Kohn-Sham equations are adapted to the case of crystalline solids.

2.2.1 Hohenberg-Kohn Theorem

Density functional theory is an exact theory of many-body systems, whose core assertions

are the two Hohenberg-Kohn theorems [5]. The first theorem states that for any system

of interacting particles in an external potential Vext(r), the potential Vext is uniquely deter-

mined, except for a constant, by the ground state particle density n0(r). The second theorem

states that a universal functional for the energy E[n] in terms of the density n(r) can be

defined, valid for any external potential Vext(r). For any particular Vext(r), the exact ground

state energy of the system is the golbal minimum value of E[n] and the ground state density

n0(r) is the density that satisfies
δE[n]

δn

∣∣∣
n0

= 0. (2.12)

If the functional E[n] is accessible, it is therefore possible, in principle, to determine the

exact ground state density n0(r) and thus all properties of the system according to theorem

two, since the Hamiltonian of the system is fully determined by Vext(r).
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2.2.2 The Kohn-Sham Ansatz

To obtain an expression for E[n], a shorthand notation for the many-body Hamiltonian in

the spirit of (2.2) is introduced:

Ĥ = T̂ + V̂n + V̂ee, (2.13)

T̂ = −
∑
i

∇2
i

2
, (2.14)

V̂n = −
∑
i

vn(ri), (2.15)

V̂ee =
1

2

∑
i 6=j

1

|ri − rj|
. (2.16)

The total energy is obtained through the expected value of (2.13):

E[n] = Eext[n] + T [n] + U [n], (2.17)

Eext[n] ≡ 〈Ψ| V̂n |Ψ〉 , (2.18)

T [n] ≡ 〈Ψ| T̂ |Ψ〉 , (2.19)

U [n] ≡ 〈Ψ| V̂ee |Ψ〉 . (2.20)

Except for Eext[n], the exact form of each of these functionals is not known. The idea to

circumvent this is to split the kinetic energy term T [n] and the electron-electron interaction

term U [n] into a contribution from independent electrons and a supplementary term that

accounts for interacting particles:

T [n] = T0[n] + α[n], (2.21)

U [n] = EH[n] + β[n], (2.22)

where α[n] and β[n] are the unknown additional terms. By introducing the exchange and

correlation energy

Exc[n] = α[n] + β[n], (2.23)

the total energy functional becomes

E[n] = T0[n] + Eext[n] + EH[n] + Exc[n] (2.24)

The Hohenberg-Kohn variational principle (2.12) may now be applied:

δ

δn(r)

{
E[n]− µ

[∫
dr′n (r′)−N

]}
= 0, (2.25)
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with µ being the chemical potential. The second term in the brackets assures that the

density integrates to the total number of particles. It can then be shown that the ground

state density for the non-interacting system, which is defined by (2.8) and characterized by

the Kohn-Sham equations (2.11), and the ground state density of the real interacting system

must both satisfy
δT0[n]

δn
+ vKS(r, [n]) = µ, (2.26)

where

vKS(r, [n]) ≡ vH(r, [n]) + vn(r, [n]) + vxc(r, [n]) (2.27)

is the Kohn-Sham potential. The term vH is precisely the Hartree potential (2.7) and the last

term is the exchange and correlation potential vxc(r, [n]) ≡ δExc[n]
δn

. Equation (2.26) implies

that both ground state densities must coincide. A recast of the full many-body problem

introduced in the first section into an independent particle problem has thus been achieved,

since it is now possible to calculate the ground state density from the Kohn-Sham equations,

and therefore all properties of the system in accordance with the second Hohenberg-Kohn

theorem. The non-interacting system, which is referred to as Kohn-Sham system, is described

by the following Schrödinger equation

ĤKSΨKS = EKSΨKS, (2.28)

ĤKS ≡
N∑
i

[
−∇

2
i

2
+ vKS(ri, [n])

]
, (2.29)

ΨKS =
1√
N !

N !∑
i1...iN

(−1)P (i1,...,iN ) [ψi1 (r1) . . . ψiN (rN)] , (2.30)[
−∇

2

2
+ vKS(r, [n])

]
ψi(r) = εiψi(r), (2.31)

EKS =
N∑
i

εi. (2.32)

Calculating the expected value 〈ΨKS| ĤKS |ΨKS〉 and comparing it to (2.24) leads to the

following expression for the total energy of the many-body system:

E[n] = EKS −
∫
vxc(r)n(r)dr + Exc[n]− EH[n]. (2.33)

It is crucial to remember at this point that an explicit form of the correlation and exchange

energy functional is unknown and an approximation is necessitated to be able to obtain

the ground state density. More on that in the section below. Once an approximation for

Exc[n] is given, the Kohn-Sham potential (2.27) is fully determined by the density n. The

Kohn-Sham equations are self-consistent, i.e. the density (2.8) calculated from the orbitals
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obtained through (2.30) must coincide with the density used to determine the Kohn-Sham

potential. This means that a solution for the Kohn-Sham equations may be obtained by

starting from a guess for the ground state density, solving (2.30), comparing it with the final

density

n(r) =
N∑
i

|ψi(r)|2 , (2.34)

and repeating the process until a value that is accurate enough is attained. This iterative

process is used to gain the results in chapter three. It is noted that only the ground state

at T = 0 K is considered in the rest of this thesis.

2.2.3 Local Density Approximation

In the case of a homogeneous electron gas, an explicit expression for the exchange energy

functional per unit volume exits:

εHEG
x [n(r)] = −3

4

(
3

π

) 1
3

n(r)
4
3 . (2.35)

For the correlation energy, however, no simple analytical expressions exists, but an accurate

approximation can be acquired through stochastic numerical methods. The idea behind the

local density approximation (LDA) is to treat each region dr of slowly varying density as a

homogeneous electron gas with the local density n(r) at the point r. The exchange energy

in such a region is then given by

dEx[n(r)] = εHEG
x [n(r)]dr, (2.36)

and integration over the entire volume of the material leads to

Ex[n] = −3

4

(
3

π

) 1
3
∫
n(r)

4
3dr. (2.37)

The correlation energy Ec[n] obtained via numerical calculations can then be added to

(2.37) to obtain Exc[n]. The functional derivative of Exc[n] with respect to the density then

finally gives the exchange and correlation potential functional vxc[n] required to solve the

Kohn-Sham equations. Since the results in chapter three are all based on LDA, it may be

appropriate to give some information about the accuracy of this approximation. The error

of atomic and molecular energies can be expected to be lower than 0.5% and for lattice

constants less than 3%. Band structure calculations can therefore be expected to have a

high accuracy, but some issues exists which are addressed in the next section.
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2.2.4 Application to Crystalline Solids

In the case of crystals, the Block Theorem states that the single-particle electronic wave-

functions can be expressed as the product of a function periodic in the unit cell and a plane

wave

ψik(r) = eik·ruik, (2.38)

uik(r + T) = uik(r), (2.39)

where T is the lattice translation vector. Replacing ψi with ψik in (2.30) gives the following

modified Kohn-Sham equations

Ĥkuik(r) = εikuik(r), (2.40)

Ĥk = −1

2
(∇+ ik)2 + vKS([n], r). (2.41)

The focus is switched to the periodic function uik instead of the full Kohn-Sham orbital

ψik. The periodicity of uik means that it is sufficient to only look for solutions inside one

crystalline unit cell. Similarly, because solutions of (2.40) for Ĥk+G are duplicates of those

for Ĥk, where G is a reciprocal lattice vector, the choice of wavevectors k can be restricted

to the first Brillouin zone. The density (2.34) may then be rewritten as follows:

n(r) =
∞∑
i

∫
BZ

dk

ΩBZ

fik |uik(r)|2 , (2.42)

where ΩBZ is the volume of the Brillouin zone and fik is the occupation number for the

Kohn-Sham state uik, wich can either be 1 for occupied or 0 for unoccupied states. The

total Kohn-Sham energy can be rewritten in the same manner:

EKS =
∞∑
i

∫
BZ

dk

ΩBZ

fikεik, (2.43)

which leads to the modified expression for the total energy (2.33):

E[n] =
∞∑
i

∫
BZ

dk

ΩBZ

fikεik −
∫
vxc(r)n(r)dr + Exc[n]− EH[n]. (2.44)

This expression can be used to show that an electron carries an energy that is approximately

equal to the Kohn-Sham eigenvalue εik it occupies. This establishes the link between func-

tional theory and the band theory usually presented in solid-state physics textbooks, such as

the book by Kittel [], and thus gives a physical meaning for the band structures calculated

in chapter three.
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There is a fairly high level of agreement between DFT and experiment. However, the cal-

culated band gaps seem to generally underestimate the measured gaps by about 40%. It

can be shown that DFT/LDA calculations cannot yield the correct quasiparticle gaps. The

problem lies in the Kohn-Sham formulation of DFT.

2.3 Optical Properties

After having introduced Density Functional Theory and the Kohn-Sham equations in the

previous sections, these concepts are now applied to materials exposed to electromagnetic

fields. This section is mainly based on chapter 12 of the book by Grosso [6].

2.3.1 Dielectric Function

In the following derivation, the CGS system is used. The chosen material shall be described

by the Kohn-Sham equations (2.30). The corresponding single particle Hamiltonian may be

written as

Ĥ0 =
p2

2me

+ vKS(r, [n]), (2.45)

where p is the momentum operator. The coupling of the Kohn-Sham electron to the electro-

magnetic field described by the vector potential A(r, t) and the scalar potential ψ(r, t) = 0

yields

Ĥ =
1

2me

[
p +

e

c
A(r, t)

]2

+ vKS(r, [n]). (2.46)

Let the vector potential describe a transverse electromagnetic plane wave:

A(r, t) = A0πππe
i(q·r−ωt) + A0πππe

−i(q·r−ωt), (2.47)

where A0 is the real amplitude and π is the light polarization vector. By neglecting the

non-linear term A2 in (2.46) and adopting the Coulomb gauge ∇ ·A = 0, the Hamiltionian

becomes

Ĥ = Ĥ0 +
eA0

mec
ei(q·r−ωt)πππ · p +

eA0

mec
e−i(q·r−ωt)πππ · p. (2.48)

Transitions between Kohn-Sham orbitals are now considered in the framework of first order

time-dependent perturbation theory. These transitions result from optical absorption and

emission, for which the first and second perturbative term in (2.48) are responsible, respec-

tively. Assuming the electronic states are occupied according to the Fermi-Dirac distribution

function f(E), and that the transitions each involve a photon with the energy ~ω, Fermi’s
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golden rule gives the following net number of transitions per unit time:

W (q, ω) =
4π

~

(
eA0

mec

)2∑
ij

∣∣〈ψj ∣∣eiq·rπππ · p∣∣ψi〉∣∣2 δ (εj − εi − ~ω) [f (εi)− f (εj)] , (2.49)

with the summation going over all the possible states. The imaginary part of the dielectric

function ε2(q, ω) and W (q, ω) are linked via the expression

ε2(q, ω) =
2π~2

ω2

1

V

W (q, ω)

A2
0

, (2.50)

where V denotes the volume of the material, and thus

ε2(q, ω) =
8π2e2

m2
eω

2

1

V

∑
ij

∣∣〈ψj ∣∣eiq·rπππ · p∣∣ψi〉∣∣2 δ (εj − εi − ~ω) [f (εi)− f (εj)] (2.51)

is obtained. This result may be applied to the Bloch-orbitals introduced in section 2.2.4.

Since the materials under consideration are semiconductors in their ground state, only tran-

sitions from fully occupied valence states ψvk to empty conduction states ψck are of relevance.

This means that the difference of Fermi-Dirac distributions functions in (2.51) can be left

out. At the same time, the wavevector q can be neglected, since in typical experimental

situations the wavelength of the incident radiation is much larger than the lattice parameter,

and thus q� k. This implies that only vertical transitions, i.e. transitions where the crystal

momentum ~k is conserved, are taken into account. The final expression for the imaginary

part of the transverse dielectric function then becomes

ε2(ω) =
8π2e2

m2
eω

2

∑
cv

∫
BZ

dk

(2π)3
|πππ ·Mcvk|2 δ (εck − εvk − ~ω) , (2.52)

where Mcvk indicates the dipole matrix element 〈ψck|p |ψvk〉. The delta function in (2.52)

suggests that only contributions from transitions where the difference in energy between

valence and conduction states is ~ω are possible. It may be convenient at this point to give

the relationship between ε2(ω) and the absorption coefficient:

α(ω) =
ω

cn(ω)
ε2(ω) (2.53)

with the refractive index n(ω). The onset of optical absorption thus corresponds to the

smallest energy difference εck − εvk, i.e. the direct band gap, unless the associated dipole

matrix element vanishes due to the symmetry of the wavefunctions. The real part and the
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imaginary part of the dielectric function are linked via the Kramers-Kronig relation:

ε1(ω) = 1 +
1

π
P
∫ ∞
∞

ε2(ω′)

ω′ − ω
dω′, (2.54)

where P denotes the principal part. This property can be used to to acquire the full expres-

sion for the transverse dielectric function:

ε(ω) = 1 +
8π2e2~2

m2
eΩNk

↑↓∑
σ

∑
nm

BZ∑
k

|πππ ·Mnmk|2

(εσmk − εσnk)2

(fσnk − fσmk)

εσmk − εσnk − ~ω − iη
. (2.55)

This expression is precisely the one used for the calculations in chapter three. It involves

an extra summation over the spin states σ, the volume of the unit cell Ω, the number of

k-points in the Brillouin Zone Nk, as well as the intersmear parameter η. The integral in

(2.52) is replaced with a discrete sum, which is necessary for practical calculations and will

be briefly discussed in Section 2.3.3. To separate (2.55) back into real and imaginary part,

the following identity can be used:

lim
η→0+

1

x− iη
= P 1

x
+ iπδ(x), (2.56)

when x = εσmk − εσnk is inserted. The number of valence and conduction band pairs per

energy interval that can contribute to the absorption is given by the so-called joint density

of states:

J(ω) =
∑
σ

∑
cv

1

ΩBZ

∫
δ(εσck − εvkσ − ~ω)dk. (2.57)

In general, the dipole matrix element |πππ ·Mcvk| is a smooth function of k over the Brillouin

zone and it’s average can be factorized out of the integral in 2.52. In this case, the imaginary

part of the dielectric function is proportional to J(ω).

2.3.2 Linear Dichroism

The case of linearly polarized light in the xy-plane is now considered. This means that the

light polarization vector can be written as

πππ = cos θx + sin θy, (2.58)
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where θ ∈ [0, π] is the polar angle and x and y the unit vectors in direction of the x and y

axes, respectively. The shorthand notation for the operator

� =
8π2e2~2

m2
eΩNk

↑↓∑
σ

∑
nm

BZ∑
k

fσnk − fσmk

(εσmk − εσnk)2

1

εσmk − εσnk − ~ω − iη
(2.59)

is defined and the dielectric tensor

εαβ(ω) = δαβ +
4πe2~2

m2
eΩNk

∑
nmkσ

Mα
nmkM

β
mnk

(∆εσmnk)2

(fσnk − fσmk)

(∆εσmnk − ~ω − iη)
(2.60)

is introduced, where α, β ∈ {x, y, z} and M v
mnk ≡ v ·Mnmk with v ∈ {x,y, z}. Let c = cos θ

and s = sin θ. The product of πππ with the dipole matrix element yields

|πππ ·Mnmk|2 = |cMx
mnk + sMy

mnk|
2

= (cMx
mnk + sMy

mnk) (Mx
mnk + sMy

mnk)∗

= |c|2 |cMx
mnk|

2 + |s|2 |My
mnk|

2 + cs
[
Mx

mnkM
y
mnk + (Mx

mnkM
y
mnk)∗

]
= |c|2 |cMx

mnk|
2 + |s|2 |My

mnk|
2 + 2csRe (Mx

mnkM
y
mnk) . (2.61)

The dielectric function (2.55) thus becomes

ε(ω) = 1 + c2� |Mx
mnk|

2 + s2� |My
mnk|

2 + 2cs�Re (Mx
mnkM

y
mnk)

(2.60)
= 1 + c2 [εxx(ω)− 1] + s2 [εyy(ω)− 1] + 2cs�Re (Mx

mnkM
y
mnk) . (2.62)

By using the properties cos2 θ + sin2 θ = 1 and 2 cos θ sin θ = sin(2θ), the imaginary part of

the dielectric function may therefore be written as

εθ2(ω) = cos2 θ εxx(ω) + sin2 θ εyy(ω) + sin(2θ)Im εxyLD(ω), (2.63)

εxyLD ≡ �Re (Mx
mnkM

y
mnk) . (2.64)

As a remark, the frequency dependence of εxyLD results from the operator (2.59). The linear

dichroism (LD) is defined as the change in absorption due to the rotation of the polarization

vector by ninety degrees:

L (ω, θ) = εθ2(ω)− εθ+
π
2

2 (ω)

=
[
cos2 θ − cos2

(
θ +

π

2

)]
εxx(ω) +

[
sin2 θ − sin2

(
θ +

π

2

)]
εyy(ω)

+
[
sin 2θ − sin

(
2
(
θ +

π

2

))]
Im εxyLD(ω). (2.65)
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The following identities may be applied to simplify the above expression:

cos
(
θ +

π

2

)
= − sin θ ⇒ cos2 θ − sin2 θ = cos 2θ,

sin
(
θ +

π

2

)
= cos θ ⇒ sin2 θ − cos2 θ = − cos 2θ,

sin (2θ + π) = − sin 2θ,

which finally yields

L (ω, θ) = Ldia(ω, θ) + Loff(ω, θ), (2.66)

Ldia(ω, θ) ≡ cos(2θ) [εxx(ω)− εyy(ω)] , (2.67)

Loff(ω, θ) ≡ 2 sin(2θ)Im εxyLD(ω). (2.68)

The summand Ldia(ω, θ) is the diagonal component and Loff(ω, θ) is the off-diagonal com-

ponent of the linear dichroism. To study the the angular dependence of L , it may be

worthwhile to consider the functional

F [L ] ≡
∣∣∣∣∫ ω1

ω0

L (ω, θ)dω

∣∣∣∣ , (2.69)

for which an energy range [~ω0, ~ω1] of interest is chosen. The comparison with the associated

functionals F [Ldia] and F [Loff ] may then give an insight into the influence of the diagonal

and off-diagonal components on L .

2.3.3 Computational Methodology

To obtain the linear dichroism (2.66) for a given polar angle θ, a calculation of the dielec-

tric tensor components εxx(ω), εyy(ω) and the off-diagonal expression εxyLD(ω) for a given

frequency range is required. The software package used for this purpose is QUANTUM

ESPRESSO []. The essential ingredients to calculate the tensor components are the Kohn-

Sham states and energies, as can bee seen from (2.60). Therefore, the first step in the

calculation is to solve the Kohn-Sham equations (2.40).

Once the atomic composition and the atomic coordinates are specified, a computational cell,

i.e. a spatial domain where the states ψi(r) are defined, is chosen to perform the calculation.

Since a single particle Kohn-Sham equation is a second-order partial differential equation,

two boundary conditions on the surface of the cell for each Cartesian directions must be

indicated. In the case of solids, periodic boundary conditions, where the wavefunctions and

their respective gradients are forced to repeat themselves outside of the computational cell,

are an appropriate choice.

An approach effective with those boundary conditions is the planewave representation. To

14



this end, a reciprocal lattice to the computational space is introduced, along with the recip-

rocal lattice vector

G = m1b1 +m2b2 +m3b3, (2.70)

where m1,m2 and m3 are integers and b1, b2 and b3 the primite vectors of the reciprocal

lattice. The planewaves eiG·r automatically satisfy the periodic boundary conditions. The

Kohn-Sham eigenstates may thus be written as a linear combination of such waves:

ψi(r) =
∑
G

ci (G) eiG·r, (2.71)

with the planewave coefficients ci(G). The above expression is a Fourier expansion and

the associated coefficients may be evaluated using the standard prescription for the Fourier

series of a periodic function. By inserting (2.71) into the respective Kohn-sham equation,

the following identity, written in Hartree units, can be obtained

|G|2

2
ci (G) +

∑
G′

vtot (G−G′) ci (G
′) = εici (G) , (2.72)

vtot(G) ≡ 1

VC

∫
vKS(r)e−iG·rdr, (2.73)

where the integration is carried over the volume of the computational cell VC . It can be seen

that the unknowns in this case are the coefficients ci (G) instead of the Kohn-Sham states.

The fraction in the first term in (2.72) is the new expression for the kinetic energy. To acquire

the planewave coefficients, the sum
∑

G has to be truncated, which can be accomplished by

imposing the cut-off kinetic energy

Ecut =
|Gmax|2

2
, (2.74)

such that only G-vectors with |G|2 /2 ≤ Ecut are included in the computation. The higher

the cut-off energy, the more accurate the calculation is expected to be, since greater G-

vectors allow for greater detail in the description of the wavefunction.

As it was mentioned in Section 2.2.2, an approximation for the exchange and correlation

energy has to be selected in order to get the full Kohn-Sham potential. The approximation

is included in a file that also contains the so-called pseudopotential. The pseudopotential

replaces the nuclear potential vn and ensures that mainly Kohn-Sham valence states are cal-

culated. This is because, to a certain approximation, only valence states partake in chemical

bonding and are thus considerably more interesting than core electron states. Furthermore,
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the removal of the latter leads to a substantial computational saving.

Another important aspect of the computation is the calculation of integrals, such a the

one incorporated in the electron density (2.42). This can be achieved by discretizing the

Brillouin zone into a mesh of k-points. A grid of N1 × N2 × N3 equally spaced points is

selected for this purpose. However, not all points have to be included in the calculation.

It is possible to use symmetry operations to sample a set of nonequivalent k-points, i.e.

points that cannot be represented between themselves with such operations, which makes

the computation less demanding. Is f(k) a function to be integrated over the Brillouin zone,

then the discretization can be written as follows:

1

ΩBZ

∫
f(k)dk '

∑
k

ωkf(k), (2.75)

where ωk is the weighting factor that takes into account the number of equivalent k-points

for a given k-point.
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3 Results

3.1 Phosphorene

3.1.1 Convergence

Figure 3.1: Comparison of the imaginary part of the dielectric function in the case of x-
polarization for different band parameters.
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Figure 3.2: Comparison of the imaginary part of the dielectric function in the case of x-
polarization for different smearing parameters.

Figure 3.3: Comparison of the imaginary part of the dielectric function in the case of x-
polarization for different k-point grid sizes.

3.1.2 Band Structure
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Figure 3.4: Band structure of Phosphorene for special symmetry points in the Brillouin zone.

3.1.3 Dichroic Properties

Figure 3.5: Joint density of states for Phosphorene.
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3.2 Tin Selenide

3.2.1 Convergence

3.2.2 Band Structure

Figure 3.6: Band structure of monolayer Tin Selenide for special symmetry points in the
Brillouin zone.

3.2.3 Dichroic Properties

20



4 Conclusion and Outlook
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