1

Transition metal organometallics

Reading: Crabtree, pages 69 - 162

Going down				
 1st row: often unpaired electrons different spin states (HS/LS) accessible 		 2nd and 3rd row: nearly always "closed shell" virtually same atomic radii highest oxidation states fairly stable 		
 Mighted possible oxidation states not very stable MnO₄⁻ is a strong oxidant ReO₄⁻ is hardly oxidizing 2nd row often more reactive than 3rd row 			nan 3 rd row	
$\begin{array}{c} \text{Fe} \rightarrow & \text{figh} - & \text{figh} & \text{figh} \\ \text{S}^{1} & \text{S}^{2} & \text{Maximum ox} \\ \hline 1 & \text{S}^{2} & \text{Maximum ox} \\ \hline 1 & \text{Be} & \text{Early} \\ \hline 1 & \text{Mg} & \text{d}^{3} & \text{d}^{4} & \text{c} \\ \hline 1 & \text{Mg} & \text{d}^{3} & \text{d}^{4} & \text{c} \\ \hline 1 & \text{S}^{2} & \text{Ca} & \text{S}^{2} & \text{c}^{2} & \text{c}^{2} \\ \hline 1 & \text{S}^{2} & \text{Ca} & \text{S}^{2} & \text{c}^{2} & \text{c} \\ \hline 1 & \text{S}^{2} & \text{S}^{3} & \text{S}^{9} & \text{f} \\ \hline 3 & \text{S}^{3} & \text{S}^{9} & \text{f} \\ \hline 5 & \text{S}^{6} & \text{S}^{7} & \text{s}^{*} & \text{f}^{2} & \text{f} \\ \hline 5 & \text{S}^{6} & \text{S}^{7} & \text{s}^{*} & \text{f}^{2} & \text{f} \\ \hline \end{array}$	Middle V Late $\frac{1}{5}$ $\frac{1}{6}$ $\frac{2}{6}$ $\frac{2}{6}$ $\frac{2}{7}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 2 5 He 10 Ne 7 Ar 3 36 8 54 8 86	
Noble Coinage metals metals				

Metallacycles

- Cyclic alkyls
- Often intermediates (dimerization and trimerization reactions)
- β-hydrogen bonds are not accessible in small metallacycles

What did you learn today?

- Early-middle-late TMs different reactivity, different use
- Metal-alkyls
 - β-elimination
 - agostic bonds
 - synthesis (nucleophilic attack, electrophilic attack, insertion, oxidative addition, cyclometalation)
 - decomposition (β-hydrogen elimination, homolysis, reductive elimination)
 - reactivity (insertion, reductive elimination)
- Metal-hydrides
 - synthesis (protonation, hydride transfer, H_2 addition, β -hydrogen elimination)
 - reactivity (H⁺ and H⁻ transfer, hydrogenation)
- Other ligands:
 - CO, π -complexes, σ -complexes, phosphines
 - synthesis, properties
 - σ -bonding, π -back-bonding (σ -basicity, π -acidity)