Interpretation - Basics

- What is the mass spectrum and what is it's resolution?
- How do we determine the resolution?
- How do we characterize an error with which we determine the mass?
- Standard interpretation procedure

Literature - Fred W. McLafferty, František Tureček: Interpretation of mass spectra

Mass spectrum

Resolution

Precision/Accuracy

Peak width ($\Delta m_{50\%}$, FWHM) - Full width at half maximum

Mass resolution $(m/\Delta m_{50\%})$

Real mass = 500Measured mass = 500,002Difference = 0,002**Error** = 10^6 x0,002/500 = 4 ppm

Low vs. high resolution

Exact masses of ions with nominal mass 180 D (only C, H, N, O)

Q: What resolution do you need to determine elemental composition of ions with m/z 180?

Hint: minimal $\Delta m_{min} = ?$ R > 180/ Δm_{min}

Interpretation – first steps

- ▶ I have a sample, what am I going to do?
- I will measure an MS spectrum and compare it to a database
- I will measure a high-resolution spectrum → elemental composition
- 3. I will identify the compound according to "Standard interpretation procedure"
- EI database
 - NIST's Chemistry WebBook 6000 molecule, open access (http://webbook.nist.gov/chemistry)
 - ▶ NIST off-line, Wiley order of magnitude more molecules (~10⁵)
- Protein databases, e.g., MASCOT (http://www.matrixscience.com)

Reproducibility and noise

- 1. Signal to noise ratio depends on the instrument
- 2. Spectra are affected by impurities (e.g., air, solvents, etc.)
- 3. Calibration!

Standard interpretation procedure for EI spectra

- Known information (other spectra, history of the sample), clear requirements for the MS measurement, control the m/z assignment (calibration)
- 2. **Elemental composition** isotopic pattern (for all peaks in the spectrum)
- Molecular ion (largest mass in the spectrum, odd number of electrons, logic neutral losses). Comparison with spectra obtained with CI or other soft-ionization method
- 4. Important ions: odd number of electrons, largest abundance, high mass, largest abundance in a group of the peaks
- 5. Appearance of the spectrum: stability of molecular ion, labile bonds
- 6. Possible sub-structures
 - 1. Important series of ions with low masses
 - 2. Important neutral losses from M+• (fragment with high masses)
 - 3. Characteristic ions
- 7. Suggest molecular structure

Comparison with a reference spectrum, with spectra of similar compounds, check with fragmentation mechanisms expected for the suggested molecular ion $\frac{1}{2}$

→ Always step by step!