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Steel Manufacturing Industries
The new era of Industry 4.0
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Case Studies

Steel Manufacturing Context
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Case Studies
Steel Manufacturing Context: Features

& A

Steelworks involve manifold
and complex production steps,
which are closely correlated and

often seamlessly connected

Unexpected events are very

common, which causes e.g.,

delays, waste of materials or
off-spec products

& A\

A variety of legacy systems
needs to coexist in brownfield

sectors

The steel industry is energy
intensive

w

Each production step needs
multiple resources

N\,
Many of these production

cycles are at least partly
continuous

A
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A
A—

The automation structure is not
flexible




Case Studies
Steel Manufacturing Context: Challenges

To enhance communication To handle unexpected events To improve the current process To improve the allocation and
among subprocesses within the process by promptly logistics and the adopted efficient exploitation of plant
reacting to them and optimization solutions resources

mitigating their effects

To support common IT To efficiently manage energy To enable a smooth and To attract and retain qualified
infrastructures and legacy sources and energy carriers economic viable transition personnel
systems towards 14.0 technologies




Case Studies

Steel Manufacturing Context: Barriers

2 2 2 2

Control-centric view is Most IT systems still rely on CPS- and MAS-based solutions and For some sub-processes
deep-rooted inside a ISA95-based pyramidal concepts may be hard to simulation models are still missing
companies architecture understand as well as their potential or lack in accuracy
Skilled people, both workers and A relevant age gap is also foreseen Lacks of internal management
managers, and know how about between workers currently as driving force for
new digital t.ec!mologies are employed and future employees implementing 14.0 projects
missing
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Case Studies
Long Products Manufacturing Processes

Reheating
Furnace

Cooling

Roughing  Intermediate

Mill
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To enhance communication among subprocesses

To improve the current process logistics and the adopted
optimization solutions

To support common IT infrastructures and legacy systems

To enable a smooth and economic viable transition towards
14.0 technologies

Most IT systems still rely on a ISA95-based pyramidal
architecture

Control-centric view is deep-rooted inside companies

CPS- and MAS-based solutions and concepts may be
hard to understand as well as their potential

For some sub-processes simulation models are still
missing or lack in accuracy



Case Studies
Flat Products Manufacturing Processes

Stage 1
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To enhance communication among subprocesses

To improve the current process logistics and the adopted
optimization solutions

To handle unexpected events within the process by
promptly reacting to them and mitigating their effects

To improve the allocation and efficient exploitation of plant
resources

To support common IT infrastructures and legacy systems

To enable a smooth and economic viable transition towards
14.0 technologies

Most IT systems still rely on a ISA95-based pyramidal
architecture

Control-centric view is deep-rooted inside companies

CPS- and MAS-based solutions and concepts may be hard to
understand as well as their potential




Cyber-Physical Production Optimization Systems Platform for Long Steel Factories

Cyber-POS Project
Project name:

Virtual Design of Cyber-Physical Production Optimization Systems for Long Production Factories
(Cyber-POS). The project started on July 15t 2016 and ended on December 315t 2019.

Objective:

Development of a virtual simulation platform for the design of cyber-physical production optimization
systems for long production facilities, with special emphasis to process models, leading to decrease
material and energy consumption, shortened production time and improved product quality.

. -
B I \ 5 I N E u nformation and Communication Technologies for
mplex Industrial Systems and Processes .
e S o s ArcelorMittal
| |

DPNIAL %) Sant’Anna

I Mannstaedt

GMH GRUPPE

COINYX



Cyber-Physical Production Optimization Systems Platform for Long Steel Factories
The Need of Through-Process Optimization and CPS

Reheating Furnace Rolling Mill Transfer Bed Induction

) Cooling
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=0 550 m Oy Simulation models are still
missing or lack in accuracy
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(e.g. thermal evolution)
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! Missing of standardized
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The traditional optimization focused only on r No overall through-process optimisation is
individual process separately - possible due to missing inter-process
communication



Cyber-Physical Production Optimization Systems Platform for Long Steel Factories
CPPOS Platform

CPPOS
ity Platform
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Cyber-Physical Production Optimization Systems Platform for Long Steel Factories
CPPOS Platform Architecture Design

TCP/IP

Process
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Optimization e

Communication e
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Cyber-Physical
Product o Program logic module:

CPPS platform:

- communication
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- killing of aso
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Internet/
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Configuration
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Cyber-Physical Production Optimization Systems Platform for Long Steel Factories
CPPOS Platform Architecture Design: Product and Process Modules
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Cyber-Physical Production Optimization Systems Platform for Long Steel Factories
CPPOS Platform Architecture Design: Optimization Module
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Cyber-Physical Production Optimization Systems Platform for Long Steel Factories
CPPOS Platform Architecture Design: HMI Module
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Cyber-Physical Production Optimization Systems Platform for Long Steel Factories
Induction-Heating System Use Case (ArcelorMittal Gijon, Spain)

Objective T,

Reaching point 4’ at a desired
objective temperature, the same
for the whole rail length °

I

Controlled Thermal

Cooling Cover

Induction
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I Heatin

. Medbille

Constraints
Q  Inductors power
L Temperature error tolerance




Cyber-Physical Production Optimization Systems Platform for Long Steel Factories
Induction-Heating System Optimization Results

( _ 1 N = 2 Input Parameters
minE =- | T(4') —T(4")
2 T(1) 870 °C
\ 0<P, <P, T(4) 710 °C
OSPZ SPmax P . 2 MW
k Pl = P2
Barrier GA Penalty GA
(MATLAB) (MATLAB) (Opt. Module) (Opt. Module)
Up, (W) 0.4416 0.4417 0.4416 0.4416
Op, (W) 0 0.0012 0 0
Hp, (W) 0.4416 0.4417 0.4416 0.4416
Op, (W) 0 0.0013 0 0.0006
UE 0 0.0011 0 0.004
Og 0 0.01 0 0.001
o (s) 0.02 3.66 0.05 0.16




Cyber-Physical Production Optimization Systems Platform for Long Steel Factories
Testbed Architecture
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Cyber-Physical Production Optimization Systems Platform for Long Steel Factories

DynReAct Project
Project name:

Refinement of production scheduling through dynamic product routing, considering real-time plant
monitoring and optimal reaction strategies (DynReAct). The project started on June 1st 2019 and will

end on December 31st 2022.
Objective:

Improve flexibility of production scheduling in flat steel production through embedded real-time
analytics of all available information coming from each plant involved and optimal scheduling.
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Hybrid Approach for Dynamic Scheduling in Flat Steel Production Processes
Flat Steel Production Scheduling

One of the most difficult and

= \ order | GrderB | orderc I @ comple problem (NP-har)
I Om & E

Planning system supported by

{ heuristics, knowledge of planners
and the analysis of order structure
D) A
H [ \

/ Unpredicted events, e.g. breakdowns, orders

Time

xx«s
111

Several production steps, each of which needs multiple cancellations
resources and needs to fulfil critical production
constraints




Hybrid Approach for Dynamic Scheduling in Flat Steel Production Processes
Flat Steel Production Scheduling: State of the Art

[ ———- -9 Authors  Year Process Step Resolution Method Approach
. Lopez et al. 1998 Hot Strip Mi PCTSP + Metaheuristic (TS) Deterministic Scheduling
Anticipate | | p Ml heurist st Schedl
U t . t | Off'llne Zhao et al. 2008 Cold Rolling DTSP + Metaheuristic (DDE) + Heuristic (LS) Deterministic Scheduling
ncertiain
y I Valls et al. 2009 Continuous Galvanizing Line Metaheuristic (TS) Deterministic Scheduling
I Tang et al. 2009 Hot Strip Mill Heuristic (CT) + Metaheuristic (ACO, SS) Deterministic Scheduling
: | , .
Proactive | Hong et al. 2014 Cold Rolling Mill Robust Optimization + Metaheuristic (PSO) Dyna(r'Fr::g;CctT:Sullng
SChEdU“ng | Dynamic Schedulin
— Nastasi et al. 2015 Cold Rolling Metaheuristic (SPEAII) Y ; 9
(Proactive)
Mori et al. 2015 Hot Rolling Artificial Intelligence (BN + DT) Dynamic Schedullng
(Proactive)
Guo et al. 2019 Primary Steel Makl_ng + Cold Rolling MILP+ Metaheuristic (DDE) Dynamic Sc_hedulmg
Mill (Reactive)
Hybrid
Scheduling -
T Iti-Objective MILP + Multi-A S m
—
- | Multi-Objective + Multi-Agent Systems
Reactive -
Scheduling | Authors  Year Process Step Resolution Method Approach
1 Cowling et al. 2004 Continuous Casting + Hot Strip Mill Artificial Intelligence (MAS) Dynamic Sc_hedulmg
I (Reactive)
React to | O l' Tang et al 2008 Color-Coating Heuristic + Metaheuristic (TS) Dynar(r;{lgaifil;tzc)iulmg
- n-iine — , — . .
Unce rtalnty | Wang et al. 5011 Cold Rolling Artificial Intelligence (MAS) + Metaheuristic Dynamic Sc_hedullng
| (ACO) (Reactive)
-———e Hou et al. 2012 Primary Steel Making + Hot Strip Mill Heuristic Dynamic Scheduling

(Reactive)




Hybrid Approach for Dynamic Scheduling in Flat Steel Production Processes
Cold Rolling Process Use Case (thyssenkrupp Rasselstein, Germany)

Constraints
Stocks, process-related idle times, routing, order priorities, ... Objective
Maximization of overall plant utilization to meet the

) [ L monthly planned production volume considering order
. i, MQ . ,

Pickling priorities as well as quality

Hot strip
B e i ul

oo HOEERA @ Degreasing Batch annealing
Cold rolling M_/,\_I_JMN\MUMMML%

Degreasing Continuous annealin
]
P ot -
Temper rolling Tinning/Chromium coating N /
rteoe @ - e e

'n9/ Slitting
Disturbances

+-1- IR gy T mm— Machines breakdowns which cause consequent
lacquering Warehouse loss of production




Hybrid Approach for Dynamic Scheduling in Flat Steel Production Processes
Multi-Objective Mixed-Integer Linear Programming (MOMILP)-Based Approach

Provide a preliminary global optimal resources scheduling under static conditions, L.e. based on production
orders and not considering unexpected events

( min f,,(x) = cLx
A, x =0,Ax <0
1.0 (Ul-)ecf , . MOMILP
X; S X S X l=1,...,N,ijZf0rsome]
\ i) < fi k=1,...,0w—1

where cg,x is the cost function of a N-component vector argument x = (xq, ..., Xy), Aeqx =0 are the equality
constraints, Ax < 0 are the inequality constraints, xi(L) and xi(U) are lower and upper bounds of the i-th component

x;, xj are integer variables, and f; is the optimal value of the problem with w = k.

Lexicographic Method

v Sort objectives according to their importance
v Solve the problem for objective 1
v Solve the problem for objective 2 using the best objective 1 found previously as constraint

—
{
|

>P

)
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Hybrid Approach for Dynamic Scheduling in Flat Steel Production Processes
Multi-Objective Mixed-Integer Linear Programming (MOMILP)-Based Approach

Iterative Strategy

1. Read input data (e.g. stocks, processing times, due dates, etc.).

2. Group coils into jobs.

3. Select a number of jobs to be processed in a desired time window (jobs are
____ranked according to their assigned order due date).
4. Solve the MOMILP optimization problem: 2% Log
' i.  Split jobs in a finite set of iterations. P
. ii. Solve reduced order MOMILP optimization subproblem.

lii. Save optimized plant status and solution.
5. Save the final optimized plant status from solution.
6. Go to step 1.



Hybrid Approach for Dynamic Scheduling in Flat Steel Production Processes
Auction-Based Multi-Agent System (MAS) Approach

Provide enough feasibility and flexibility when uncertainty regarding resource availability is relevant

Negotiation platform uses the Extensible Messaging and
Presence Protocol (XMPP) protocol where different agents
are involved.

Multi-optimization objectives are allowed, where an
equilibrium between benefits for plants and for coils need
to be find incrementally.

Coils can bid to the different auction processes at the
different resources, according to their status.

The bidding process includes intelligence and is sensitive
to the urgency depending on the deadline and the
number of failed auctions already experienced, using a
rule-based approach.

Plant agent is in charge of recruiting transport and
warehouse resources for the operation before launching
the auction itself (pre-auction phase), according to inner
logistic rules.

Continuous

Transport

Warehouse

Browser

Log agent . Coil agent
€ 28 Annealing agent agent agent agent B
! E asyncMsg: Inform transaction
HEl 7 :_asyncReply: Inform transaction |
f ! v m
 asyncMsg: | asyncMsg:
Inform status Active coils request N
; N\ > On
asyncReply
Auction asyncMsg: Invitation to bid > Auction
- asyncReply: Bid
asyncMsg: confirmwinner o
” asyncReply: Counterbid
On <
asyncReply: Aceptance on being processed
Stand-by
asyncMsg: Inform status




Hybrid Approach for Dynamic Scheduling in Flat Steel Production Processes
Decomposition Approach Based on Continuous Flow Model (CFM)

Provide a long-term production scheduling

Uy =upg+ -+ Uy

i Demand of
I ! Product 1
|
Product 1 : t11 | 11 :
——————— e e P -+ - - - ——————»
I : I
I I
I : I
_____ S e SN
Product N th1 | Uy : : Demand of
T ‘\\ Product N
// Storage 0 Process 1 Storage 1 Process j Storage j Storage M
\
4
¢ \

) .. —_ .. +r.. U;: — 7 U;:
yij,k+1 — yij,k + di,k — ril,kuil,k yl],k+1 yU,k ij,k%ijk Lj+1,k“%ij+1,k

= where y;; ; Is the amount of product i stored in the storage j at the time step k and 7;;, is the processing rate of
product i on machines j and u;;  is the proportion of product i in the total production on machines j, d; x is the

demand rate of product i at time step k.
= for the upper and lower limit of production on the machine j applies: 0 < ¥, u;; , < U and u;;, = 0 and for the
storage the following limits apply y; . < X;Vijx < Vj k-




Hybrid Approach for Dynamic Scheduling in Flat Steel Production Processes
Decomposition Approach Based on Continuous Flow Model (CFM)

Provide a long-term production scheduling

Uy =Uqgq + -+ U5 Uj =Uyj+ -+ Uy; Demand of

Product1

Product1 tii U1 ulj

________ B e p— e | ) e

ProductN thr | uyq Uzn Demand of

Product N

Storage 0 Process1 Storage 1 Processj Storage j Storage M

n

{2}12 Z ]demand (uij,k) + ]maschine,cost(uij,k) + ]use (uij,k) + ]store (uij,k) + ]change (uij,k)
" k=0

where:

Q Jaemana(ij) = ZiL1 Caemana,illdin — wijull,

d ]machine,cost(uij,k) = Zi,j Cmachine,ij,kuij,k
Q Juse(wijx) = Xij cuse,ije|tijkel
_ N =
Q Jstore (uij,k) =2jCij+ + maX(Zi Yijk — Yjk 0) + ¢jj - max (Xj,k - Zi}’ij,k)

Q Jenange (Uijr) = X j Cijore|tij e — Wij 1]




Hybrid Approach for Dynamic Scheduling in Flat Steel Production Processes
MOMILP Simulation Results

Gantt Chart
w 1m 6m YTD 1y al

» Global scheduling of 705 jobs in a timeframe of 18h.
= 141 jobs are selected at each iteration (5 iterations totally),

C4

= Average gap of 7.5% from the best bound for the first problem

J
eaCh Of WhICh Composed Of 3 CO”S. CI: L ;_ —j0b435
= Jobs are selected according to their due date and are equally CR2  ewm—— - mm - m——" G""—- - = [ob 544
distributed among the production stages. T T = b4
= Average machines processing times are considered. BAI :joilzg
BA2 LI 0
= PrObIem SOIVed through GUROBI SO|Ver W|th|n PULP |Ibral‘y Of CA1 B B 0 0 e == oh 278
Python. CA2 e Y I [0 346
. . HE B IS — i)
= Solver time: 5 minutes for each problem. :2? -___ 0 Jsjgj
= 120 jobs completed at the Tinning/Chromium Coating stage at ' " eSS s B i e mms—"s b 305
. . . TR3 INEEEE B D EEET F s EE EE .
the end of the simulation (improvement of about 33% and | e e ks o 126
25%, respectively, on the daily production volume rate and ¢ e e —— e —— == [ob 618
completion time observed in the real use case respectively). C3 NN S S W S = job 8
J
J

and of 35.2% of average gap from the best bound for the 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00
second problem. Jul 22, 2020 Jul 23,2020




Hybrid Approach for Dynamic Scheduling in Flat Steel Production Processes
MAS Simulation Results

resource ®cz 01 @ca 02 @tc 01

resource @cz 01 @ca 02

@ auction pre_auction @ processing tr_slotl @tr_slot2 X . -
1-pre_auction ] | pre_auction @processing ¢ tr_slotl @tr_slot2 @ =0
1-auction - t - 6-pre_auction - El
1-tr_slotl - e i = .
1-process wor 5-auction ] g v
-processin g c o 10
1-tr_slot2 - 01 6-tr_slotl % E
2-pre_suction{ | 6-processing @02 S 1 g
2-auction [ 6-tr_slot2 - 2 ZI
2-tr_slotl o te_01 = = k=
2-processing - @oz 7-pre_auction - = 5 B =
2-tr_slot2 - k01 | 7-auction -] 2 . a
3-pre_auction - l - - | 2 .
3-auction - [{ ; 7 "-S|_°u LS 0 -_— salaal2 s 46 Raofl 38
3-tr_slot1 - ol -processing @0l P S =
- ing - . - o 3 a EX ?\o -a*"\ 2 s}
3-processing 201 7-tr_slot2 4 e R .
= o =N 0 5 10
3-tr_siot2 ot 8 tion - fori
. ] -pre_auction auction_id
4-pre_auction £ . task_name
pleprivi ‘ o cer o © TRBockedtime
4-tr_slotl - [ 8-tr_slotl
4-processing - a0z 8-processing — resource @ca 01 @ca_02 task_name @tr_slotl @tr_slot2
4-tr_slot2 - - - 15
5-pre_auction - } s—tr_slll:ltE 1
5-auction | [ 9-pre_auction - e 6
5-tr_slotl wo1 9-auction - E 5.0 5.0 5.0 5.0 5.0
S-processing @0l ‘E @ - - - - -
5-tr_slotz k01 | 9-tr_slotl S0 e i .
6 oraaocton- | o processing wor E ED E A Bl E-L L
) =
] ; 9-tr_slot2 €or £ =
6-tr_slotl - tc_01 . .
s el oz Auction-10-pre_auction L @ £
-processing - . T s s
B-tr_slotZ te 01 Auction-10-auction 2 s,
7-pre_auction i Auction-10-tr_slot1 - tc 01 | £
7-auction 1 Auction-10-processing - @02 £
7-tr_slotl 4 fc_01 .
7-processing - ol Auction-10-tr_slot2 - tc 01 R R
7-tr_slot2 J ' | ! v ! T 1 1 0 5 10 o 5 10
trslot2 g T T T keO1 ] 10:55 11 PM 11:05 11:10 1115 11:20 11:25 11:30 11:35 . . . .
10:45 11 PM 11:15 auction_id auction_id

= Scenario: 2 Continuous Annealing Agents (ca_01, ca_02), 1 Transport Agent (tc_01), 4 Warehouse Agents (wh_01 — wh_04), 10 Coll
Agents (coil_001 — coil_010), Browser Agent and Log Agent.

= The approach provides the best solution depending on status and availability of individual resources by considering local demand and
specific conditions and constraints imposed by the process and the inner logistics.

= Scheduling is carried out in real time, the system is intrinsically flexible to any issue happening either at plant level or coil level due to
quality losses, where relocation of coils inside orders is handled smoothly, avoiding the full rescheduling.




Hybrid Approach for Dynamic Scheduling in Flat Steel Production Processes
CFM Simulation Results

E 1500 |
- - pows L ¥
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= Two steps process in which two different products, &_" ., .« « [ . oo o
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= |t is assumed that each product weights 20 tons per 6 * ufZonm2
: 305~ — 3 " + u22onm2
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Hybrid Approach for Dynamic Scheduling in Flat Steel Production Processes
Summary of Methods Characteristics

MOMILP MAS CFM
Scope/Granularity Orders Coils Material Flow
Modelled Aspects 5 5 1
Modelling Precisi : :
odelling Precision Considered Constraints 4 5 3
- Solution Quality 4 5 4
Reliabil
eliability Solvability 5 4 5
Forecasting Ability 4 2 5
.. Computing Time 3 4 4
Eff
iclency Resourced Used 5 4 5
ope Acceptance 4 2 5
Usability Interpretability 3 2 5
Maintainability Number of Parameters 3 3 5
Setup time 4 3 5
Transf ili
ransferability Application Requirements 3 5 4
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