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Key Points:12

• We propose and verify a 3D discontinuous Galerkin method for nonlinear seismic13

wave propagation on high-performance computing systems.14

• The 2015 Mw 7.8 Gorkha earthquake simulations show co-seismic wave speed re-15

ductions from <0.01% to >50%, varying with fault slip and geology.16

• The nonlinear model captures low-frequency ground motion amplification in soft17

sediments, highlighting key effects for seismic hazard analysis.18
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Abstract19

The nonlinear mechanical responses of rocks and soils to seismic waves play an impor-20

tant role in earthquake physics, influencing ground motion from source to site. Contin-21

uous geophysical monitoring, such as ambient noise interferometry, has revealed co-seismic22

wave speed reductions extending tens of kilometers from earthquake sources. However,23

the mechanisms governing these changes remain challenging to model, especially at re-24

gional scales. Using a nonlinear damage model constrained by laboratory experiments,25

we develop and apply an open-source 3D discontinuous Galerkin method to simulate re-26

gional co-seismic wave speed changes during the 2015 Mw7.8 Gorkha earthquake. We27

find pronounced spatial variations of co-seismic wave speed reduction, ranging from <0.01%28

to >50%, particularly close to the source and within the Kathmandu Basin. The most29

significant reduction occurs within the sedimentary basin and varies with basin depths,30

while wave speed reductions correlate with the fault slip distribution near the source.31

By comparing ground motions from simulations with elastic, viscoelastic, elastoplastic,32

and nonlinear damage rheologies, we demonstrate that the nonlinear damage model ef-33

fectively captures low-frequency ground motion amplification due to strain-dependent34

wave speed reductions in soft sediments. We verify the accuracy of our approach through35

comparisons with analytical solutions and assess its scalability on high-performance com-36

puting systems. The model shows near-linear strong and weak scaling up to 2048 nodes,37

enabling efficient large-scale simulations. Our findings provide a physics-based frame-38

work to quantify nonlinear earthquake effects and emphasize the importance of damage-39

induced wave speed variations for seismic hazard assessment and ground motion predic-40

tions.41

Plain Language Summary42

Earthquakes cause significant changes in the mechanical properties of rocks and43

soils, including reductions in seismic wave speeds. These changes, recorded over the past44

two decades using advanced monitoring techniques, such as ambient noise analysis, re-45

veal valuable information about underground conditions. However, existing models can-46

not fully capture the complex nonlinear behavior of rocks and soils during an earthquake47

from source to site. To address this, we extend SeisSol, an open-source software for sim-48

ulating seismic waves, to model 3D nonlinear wave propagation. We demonstrate the ef-49

ficient execution of the code on powerful computers. This enhancement allows us to study50

co-seismic wave speed changes while accounting for complex fault geometry and surface51

topography. We apply this tool to the 2015 Mw Gorkha, Nepal, earthquake and find sig-52

nificant variations in wave speed reductions, ranging from less than 0.01% to over 50%,53

with the largest reductions concentrated in sedimentary basins. Comparisons with other54

models demonstrate that the nonlinear damage model employed in this study effectively55

captures the amplification of low-frequency ground motions by soft sediments, a key fac-56

tor in understanding earthquake impacts. These insights improve our ability to assess57

seismic hazards and guide the design of infrastructure better equipped to withstand earth-58

quakes.59

1 Introduction60

Large earthquakes generate strong ground motions that pose a significant threat61

to civil structures and human life (Ben-Zion et al., 2022). Physics-based models of rocks62

and soils are essential for simulating potential ground motions from earthquakes in nu-63

merical simulations that can account for the spatial heterogeneity and complex surface64

topography of the Earth’s lithosphere (Cui et al., 2010; Taufiqurrahman et al., 2022; Roten65

et al., 2023). Linear models have successfully explained key phenomena in seismic wave66

propagation, such as wave field amplification in soft sediments (Moczo and Bard, 1993;67

van Ginkel et al., 2022), directivity effects of large earthquakes (Boatwright and Boore,68
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1982; Roten et al., 2014; Wollherr et al., 2019), and resonance in near-surface structures,69

including surface topography (Lee et al., 2009; Hartzell et al., 2014) and sedimentary basins70

(Castellaro and Musinu, 2023).71

In recent decades, nonlinear mechanical responses of rocks to seismic waves have72

been widely observed, covering distances from a few kilometers to over one hundred kilo-73

meters from the source (Sens-Schönfelder and Wegler, 2006; Gassenmeier et al., 2016;74

Lu and Ben-Zion, 2022). Temporal variations in seismic wave speeds during and after75

earthquakes have been observed using techniques such as repeating earthquakes (Poupinet76

et al., 1984; Bokelmann and Harjes, 2000; Schaff and Beroza, 2004), cross-correlation of77

the ambient noise or aftershock recordings between seismic station pairs (Sens-Schönfelder78

and Wegler, 2006; Brenguier et al., 2008; Qiu et al., 2020), and auto-correlation of data79

at individual stations (Bonilla et al., 2019; Qin et al., 2020; Li and Ben-Zion, 2023). In80

these observations, rocks typically exhibit a rapid co-seismic reduction in seismic wave81

speeds, followed by long-term recovery (Gassenmeier et al., 2016). Measured magnitudes82

of such co-seismic wave speed reduction range from less than 1% up to over 10%, depend-83

ing on factors such as rock type, distance from the source, depth of interests, and the84

temporal resolution of the monitoring technique (Brenguier et al., 2014; Wang et al., 2021).85

Notably, auto-correlation analyses at single stations reveal that co-seismic reductions in86

wave speed up to 8% are possible at depths between 1 km and 3 km within 20 minutes87

after an earthquake (Bonilla and Ben-Zion, 2021). Co-seismic wave speed changes un-88

der dynamic perturbation are sensitive to rheology, ambient stress, and thermal and hy-89

draulic conditions (Manogharan et al., 2022; Lu and Ben-Zion, 2022). Such changes are90

potentially new observables that can be extracted from seismic waves to probe subsur-91

face structure and rheology. However, observations of co-seismic wave speed changes may92

not be adequately captured by linear elastic or visco-elastic models (Johnson and Sutin,93

2005; Rivière et al., 2015; Manogharan et al., 2022), indicating the need for more advanced94

physics-based frameworks.95

The nonlinear mechanical responses become most prominent when seismic waves96

propagate through soft sediments, typically located a few hundred meters below the ground97

surface (Wang et al., 2021). Soft sediments typically exhibit low seismic wave speeds,98

amplifying the strain field to values exceeding 10−3 and reducing the shear modulus by99

more than 50% (Roten et al., 2012; van Ginkel et al., 2022). This behavior is accompa-100

nied by the damping of ground motion amplitudes (Rajaure et al., 2017) and a change101

in the frequency components of seismograms toward lower values (Bonilla et al., 2011;102

Castro-Cruz et al., 2020). Accounting for such nonlinear mechanical responses is cru-103

cial for modeling ground motions at both low frequencies (≤1 Hz, Roten et al., 2014)104

and high frequencies (Roten et al., 2016).105

Capturing co-seismic wave speed changes relies on adequate nonlinear rock mod-106

els. Some of such nonlinear models originate from thermodynamic processes at the mi-107

croscopic scale (Iwan, 1967; Delsanto and Scalerandi, 2003; Lebedev and Ostrovsky, 2014).108

These models usually introduce more parameters than those constrained by observations109

(Wang et al., 2021). As a practical compromise, continuum damage mechanics (CDM)110

models are based on simplified assumptions about microscopic material deficiencies and111

describe macroscopic stress-strain relationships using fewer parameters (Kachanov, 1986;112

Desmorat, 2016; Gabriel et al., 2021). Within this framework, the CDM model by Lyakhovsky113

et al. (1997a) and the internal variable model (IVM) by (Berjamin et al., 2017) have been114

shown to reproduce laboratory measurements of co-seismic wave speed changes in rocks115

(Renaud et al., 2012; Feng et al., 2018; Manogharan et al., 2022; Niu et al., 2024). For116

unconsolidated sediments, such as soil, the loss of stiffness under cyclic loading is effec-117

tively described by a hyperbolic shear modulus reduction curve (Kramer and Stewart,118

2024; Vardanega and Bolton, 2013).119

Previous studies have developed numerical methods for modeling co-seismic wave120

speed changes in 1D (Remillieux et al., 2017; Berjamin et al., 2017) and 2D (Berjamin121
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et al., 2019; Niu et al., 2024), which have been validated through laboratory experiments.122

The fourth-order staggered-grid finite difference method, implemented in the software123

AWP-ODC, resolves shear modulus reduction using the IWAN model (Iwan, 1967) in124

3D, with a focus on capturing nonlinear effects in soft sediments for ground motion sim-125

ulations (Cui et al., 2010; Roten et al., 2023). Consolidated rocks, such as granite, also126

experience co-seismic wave speed reductions (Shokouhi et al., 2017), which remain mostly127

smaller than 1%. Resolving such small changes is computationally expensive using the128

IWAN model (Roten et al., 2023). Leveraging this phenomenon as a probe for rock types129

and subsurface physical conditions (Rivière et al., 2015; Manogharan et al., 2022) requires130

the development of a numerical framework capable of resolving 3D co-seismic wave speed131

changes in consolidated rocks. Such a framework would act as a critical bridge, enabling132

realistic regional-scale modeling of co-seismic wave speed changes directly informed by133

laboratory data. However, to the best of the authors’ knowledge, this approach remains134

unrealized to date.135

To fill this gap, we here propose and validate a novel algorithm based on the dis-136

continuous Galerkin method (Cockburn and Shu, 1989; Dumbser and Käser, 2006; Dumb-137

ser et al., 2008) for modeling seismic wave propagation in 3D nonlinear rock rheologies.138

We implement this algorithm in the open-source software SeisSol (Heinecke et al., 2014a;139

Uphoff et al., 2017; Krenz et al., 2021; Uphoff et al., 2024), which is specifically suited140

for field-scale seismic wave propagation simulations involving heterogeneous velocity mod-141

els and complex geometries. We verify the implementation by comparison against an-142

alytical solutions and present scaling tests on the Frontera supercomputer (Stanzione et al.,143

2020).144

Using this framework, we simulate co-seismic wave speed changes and ground mo-145

tions during the 2015 MW 7.8 Gorkha earthquake in the Kathmandu Valley. This earth-146

quake occurred directly beneath the Kathmandu Valley (Fan and Shearer, 2015), caus-147

ing over 9,000 fatalities, extensive property damage, and significant loss of life in Nepal.148

Ground motion records reveal that the Kathmandu basin experienced unexpectedly weak149

high-frequency motions but larger low-frequency motions compared to empirical predic-150

tions (Takai et al., 2016). This behavior has been attributed to nonlinear site response151

(Castro-Cruz et al., 2020). To evaluate this hypothesis, we utilize an experimentally con-152

strained nonlinear model, IVM, to simulate the co-seismic wave speed changes in rocks153

(Niu et al., 2024). We also adapt IVM such that it captures the hyperbolic shear mod-154

ulus reduction curve in soft sediments. By integrating laboratory data, our simulation155

results quantify the spatial variability of field-scale co-seismic wave speed changes and156

their impact on peak ground motions, offering important insights for seismic hazard as-157

sessment.158

2 Methods159

When nonlinear rock rheology is incorporated into seismic wave propagation sim-160

ulations, the governing wave equations are classified as nonlinear hyperbolic partial dif-161

ferential equations (PDE, Lax, 2005). A key characteristic of these equations is their po-162

tential for solutions to develop spatial discontinuities, even if the initial conditions are163

smooth (LeVeque, 2002). Solving these equations requires an algorithm that can ade-164

quately resolve discontinuities while maintaining numerical stability. Additionally, to al-165

low realistic large-scale earthquake simulations and energy efficiency, the implementa-166

tion must scale efficiently across a large number of compute ranks (Carrington et al., 2008;167

Cui et al., 2010; Heinecke et al., 2014b; Ilsche et al., 2019; Uphoff, 2020; Krenz et al., 2021).168

This section describes how we formulate the two nonlinear damage rock models em-169

ployed in this work as a system of nonlinear hyperbolic PDEs. We then outline the spa-170

tial and temporal discretization of these PDEs using the discontinuous Galerkin method171

(Hesthaven and Warburton, 2007; Cockburn et al., 2012).172
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2.1 Mathematical framework for nonlinear wave propagation in dam-173

aged rocks174

To model co-seismic wave speed changes and their impact on ground motions, we175

adopt the recent mathematical framework by Niu et al. (2024) that utilizes a continuum176

damage model (CDM, Lyakhovsky et al., 1997a) and an internal variable model (IVM,177

Berjamin et al., 2017). Both models have been shown to quantitatively match labora-178

tory data (Manogharan et al., 2022; Feng et al., 2018; Niu et al., 2024). 2D solutions for179

co-seismic wave speed changes modeled with the IVM implemented in the DG method180

have been validated against the results of the finite volume method (Niu et al., 2024).181

In the following, we present a unified DG algorithm for nonlinear wave propaga-182

tion, designed to accommodate any nonlinear rock model explicitly formulated as a sys-183

tem of hyperbolic equations, including IVM and CDM. This approach extends our pre-184

vious 2D implementation of IVM to 3D and applies our 3D discontinuous Galerkin (DG)185

method to model wave propagation using the CDM nonlinear rock model.186

Hyperbolic PDEs are required for implementation in SeisSol (Uphoff et al., 2024).187

Previous work implemented linear visco-elasticity (Käser et al., 2007; Uphoff, 2020) and188

Drucker-Prager elasto-plasticity (Wollherr et al., 2018) using the DG algorithm for lin-189

ear hyperbolic equations. In contrast, CDM and IVM introduce nonlinear hyperbolic PDEs,190

which we summarize as follows:191

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂εij
∂t

=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)

ρ
∂vi
∂t

=
∂σij(ε

=
, α)

∂xj
∂α

∂t
= rα(ε

=
, α)

, (1)

where ε
=
= εij and σij denote, respectively, the total strain and stress tensors, vi is the192

vector for particle velocity, and ρ is the material mass density. α is a damage variable,193

which is 0 for intact rock and 1 for fully damaged rock. rα defines the evolution rate of194

the damage variable α as a function of the strain tensor and the damage variable itself.195

IVM and CDM are both extensions of the classical linear elastic stress-strain re-196

lationship that is parameterized with two Lamé parameters, i.e., λ0 and μ0 (Landau et al.,197

1986). The differences between the two models lie in how they are extended to include198

nonlinear functions of the stress tensor σij(ε
=
, α), and how the source term rα(ε

=
, α) is199

defined.200

For the IVM (Berjamin et al., 2017), we write201 ⎧⎨
⎩
σij(ε

=
, α) = (1− α)(λ0I1δij + 2μ0εij + σmur

ij )

rα(ε
=
, α) =

1

γbτb
[
1

2
λ0I

2
1 + μ0I2 +Wmur − φ(α)]

, (2)

where φ(α) = γb[α/(1 − α)]2 is the storage energy, γb is the scale of φ(α) with units202

in pascals (Pa), and τb is the time scale of damage evolution. I1 = εkk and I2 = εijεij203

are two strain invariants.204

The original IVM framework can incorporate the classical Murnaghan nonlinear205

elasticity (Murnaghan, 1937) with three additional material parameters l0, m0, and n0206

to account for third-order terms in the non-quadratic components of the elastic energy207

function Wmur = (l −m)/3I31 +mI1I2 + nI3, where I3 = δijkεi1εj2εk3. This leads to208

the additional stress component σmur
ij = a0δij+a1εij+a2εikεkj , where the coefficients209

a0 = l0I
2
1 − (m0 − 1/2n0)(I

2
1 − I2), a1 = (2m0 − n0)I1, and a2 = n. δijk denotes the210

Levi-Civita permutation symbol.211
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While Murnaghan nonlinear elasticity is useful for modeling some instances of stress-212

induced anisotropy (Sharma, 2010), it may not adequately explain the observed co-seismic213

wave speed reductions under dynamic stress fields (Gassenmeier et al., 2016; Berjamin214

et al., 2017; Niu et al., 2024). Therefore, in the following, we choose to set l0 = m0 =215

n0 = 0 to exclude the additional terms of Murnaghan nonlinear elasticity in our pro-216

posed algorithm. This also ensures that σmur
ij = Wmur = 0 in Eq. (2). However, in217

Sections 3.1 and 3.2, we demonstrate that our proposed algorithm remains generic and218

can accurately resolve nonlinear effects resulting from a simplified Murnaghan nonlin-219

ear elasticity in 1D.220

For the CDM (Lyakhovsky et al., 1997a, 2016), we write221 ⎧⎪⎪⎨
⎪⎪⎩
σij(ε

=
, α) = λ0I1δij − αγr

√
I2δij + [2(μ0 + αξ0γr)− αγrξ]εij

rα(ε
=
, α) =

{
CdγrI2(ξ − ξ0) , if ξ − ξ0 > 0

0 , if ξ − ξ0 ≤ 0

, (3)

where γr is a third modulus originating from the homogenization of parallel cracks (Lyakhovsky222

et al., 1997b), and Cd is a damage evolution coefficient. ξ = I1/
√
I2 is derived from the223

two strain invariants. It grows from −
√
3 for isotropic compression to

√
3 for isotropic224

extension. The damage α starts to accumulate as the strain state deviates farther enough225

from the isotropic compression. This is expressed as ξ−ξ0 > 0, where ξ0 is a material226

parameter that is usually negative for rocks (Lyakhovsky et al., 2016).227

In this work, we propose a generic algorithm that can be used for either IVM or228

CDM. Both models can generally be formulated as a nonlinear hyperbolic system of con-229

servation laws with an additional source term following Dumbser et al. (2008):230

∂up

∂t
+

∂F d
p (v−

, ε
=
, α)

∂xd
= sp(v−

, ε
=
, α), (4)

where up = (εxx, εyy, εzz, εxy, εyz, εzx, vx, vy, vz, α)
T is a vector of the conservative vari-231

ables. εxx, εyy, εzz, εxy, εyz, and εzx are six components of the strain tensor ε
=
= εij ;232

vx, vy and vz are the three components of the particle velocity vector v
−
. The flux term233

F d
p represents the rates at which the conservative variable up gets transferred through234

a unit area in the direction xd (LeVeque, 2002). The source vector sp = (0, 0, 0, 0, 0, 0, 0, 0, 0, rα)
T

235

with only one non-zero element rα defined in Eq. (2) for IVM or Eq. (3) for CDM.236

2.2 Numerical discretization of the nonlinear wave equations237

Our implementation adopts the Arbitrary-accuracy DERivative (ADER) discretiza-238

tion in time (Titarev and Toro, 2002; Dumbser et al., 2008; Gassner et al., 2011), and239

the discontinuous Galerkin (DG) discretization in space (Cockburn and Shu, 1989; Dumb-240

ser et al., 2008). Here, we apply a linearization to the nonlinear hyperbolic PDEs to sim-241

plify the adaptation of the algorithm to both damage models, as outlined in Section 2.1.242

This linearization also minimizes the necessary changes to the existing data structure243

in SeisSol (Uphoff, 2020; Uphoff et al., 2024). We provide a detailed description of the244

method in this section and Appendix A and will demonstrate in Section 3.1 that the al-245

gorithm still converges using linearization.246

We subdivide the computational domain into tetrahedral elements. Within each247

element Tm, we use a modal discontinuous Galerkin approach to approximate the con-248

servative variables as u
−
≈ u

−
h, employing Dubiner’s orthogonal polynomial basis func-249

tions, φl(x−
) (Cockburn et al., 2012). The temporal evolution of the solution is captured250
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using time-dependent coefficients Qlp(t) defined as:251

uh
k(x−

, t) =
L∑

l=1

Ulk(t)φl(x−
), k = 1, 2, ..., K, (5)

where the index l runs from 1 to L = (p+1)(p+2)(p+3)/6 for a polynomial degree p.252

The index k runs from 1 to K, the number of elements in the conservative variables up253

in Eq. (4). We discretize the time-dependent coefficients using the ADER scheme with254

a Taylor series as255

Ulp(t) =

N∑
i=0

(t− tn)
i

i!
Di

lp, (6)

where D0
lp = Ulp(tn), and Di

lp =
∂iUlp

∂ti

∣∣∣∣
t=tn

for i ≥ 1.256

This discretized system is solved in two steps. First, we linearize the nonlinear hy-257

perbolic system and estimate Di
lp using the Cauchy-Kovalevskaya approach (Kovalevskaja,258

1874). In the following, we refer to this step as the “prediction step”. It allows us to ob-259

tain the estimated Ulp(t) within one stage, as opposed to the Runge-Kutta method (Butcher,260

2007; Gassner et al., 2011). In the second step, we use the predicted Ulp(t) to integrate261

the conservative variables over time while adequately addressing spatial discontinuities262

at element interfaces, which we refer to as the “correction step”. In Appendix A, we de-263

tail the algorithm to solve these discretized nonlinear wave equations proposed in this264

work, including how we implement free-surface and absorbing boundary conditions.265

3 Verification against analytical solutions266

In this section, we verify the proposed numerical algorithm by solving three prob-267

lems with known analytical solutions. It is essential to confirm that the proposed nu-268

merical scheme converges to the correct solutions before applying it to large-scale seis-269

mological applications, for which it is impossible to derive analytical solutions for non-270

linear wave equations in 3D.271

We first compare our numerical solutions for plane waves in 3D with two existing272

analytical solutions in 1D: (1) the nonlinear Riemann problem and (2) the generation273

of high-frequency harmonics from a single-frequency source. For 3D analysis, we show274

that the proposed algorithm can accurately resolve stress-induced anisotropy of CDM,275

in agreement with the analytical solutions from Hamiel et al. (2009).276

3.1 The nonlinear 1D Riemann problem277

The Riemann problem is a canonical benchmark with analytical solutions for non-278

linear hyperbolic PDEs in one dimension (LeVeque, 2002). It is defined by initial con-279

ditions with a single discontinuous interface, where the variables have one set of uniform280

values on one side of the interface while having another set of different uniform values281

on the other side. The Riemann problem is widely used to assess whether numerical al-282

gorithms can accurately resolve discontinuities in solutions, which is an important fea-283

ture of nonlinear hyperbolic PDEs.284

We use a plane shear wave in 3D to configure the 1D Riemann problem. The plane285

shear wave comprises εxy and vy. We set the remaining components to zero. We define286

the wavefront as parallel to the y−z plane, such that the domain only varies in the x287

direction, which simplifies Eqs. (1) to:288
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⎧⎪⎨
⎪⎩

∂εxy
∂t

=
1

2
(
∂vy
∂x

)

ρ
∂vy
∂t

=
∂σxy(εxy)

∂x

, (7)

where we define σxy = 2μ(1−βεxy)εxy as a nonlinear function of εxy with β being the289

first order nonlinear coefficient (Landau et al., 1986).290

This formulation is comparable to a 1D reduction of Murnaghan nonlinear elas-291

ticity, as described after Eq. (2). Meurer et al. (2002) provide analytical solutions to the292

Riemann problem for Eqs. (7), incorporating the simplified 1D nonlinear stress-strain293

relationship.294

We choose material parameters and initial conditions to show the accuracy of our295

proposed algorithm for materials with strong nonlinearity. Therefore, we set the follow-296

ing initial conditions for the Riemann problem.297

[εxy, vy]
T =

{
[0.1,−0.5]T for x < 0

[0.2,−1.0]T for x ≥ 0
. (8)

These initial conditions are also shown as dashed curves in Fig. 1. We set ρ = 1.0,298

μ = 1.0 and β = 10.0. The black curves shown in Fig. 1 are the corresponding ana-299

lytical solutions evaluated after 4 ms. The solutions feature one shock wave (interface300

with sharp discontinuities, marked with red dashed rectangles) and one rarefaction wave301

(a smooth transition from one state on the left to another state on the right, highlighted302

by purple rectangles).303

We compare this analytical solution to several numerical results obtained with a304

polynomial order p = 3 on three mesh sizes: h = 2.5 mm (dashed blue curves), h = 0.5 mm305

(dash-dotted blue curves) and h = 0.1 mm (solid blue curves). Figs. 1c and 1d focus on306

the numerical solutions at the shock wavefront and at the rarefaction wavefront. The shock307

wave exhibits stronger spatial oscillations than the rarefaction wave, primarily due to308

solution variations within each element. The amplitude and wavelength of these oscil-309

lations both decrease as the mesh is refined, indicating that oscillations can be effectively310

suppressed with mesh refinement.311

We analyze the convergence rates for different orders of polynomial basis functions312

and present the results in Fig. 1b. We quantify the L2 errors in our numerical simula-313

tions at t = 4 ms using the L2 norms of the differences between the analytical solution314

uana and the numerical solutions unum. We determine the convergence rate by analyz-315

ing the reduction of L2 errors with mesh size h on a logarithmic scale. The observed con-316

vergence rate remains first order across all polynomial degrees tested (1 to 5), indicat-317

ing that this algorithm does not achieve arbitrarily high-order accuracy at discontinu-318

ities. Nonetheless, we still observe lower L2 errors with higher-order basis functions on319

the same mesh (p-convergence, Wollherr et al., 2018). We will discuss the underlying causes320

and potential improvements in Section 5.1.321
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Figure 1. Comparison of the analytical and the numerical solutions with varying mesh reso-

lution h and polynomial degrees p for the Riemann problem. (a) Comparison of numerical and

analytical solutions of vy and εxy using shape functions of polynomial degree 3 (O4, representing

convergence rate of order 4). We show solutions for three mesh sizes: h = 2.5 mm (dashed blue

curves), h = 0.5 mm (dash-dotted blue curves) and h = 0.1 mm (solid blue curves). The initial

conditions (IC) are illustrated as dashed black curves, and the analytical solutions are given in

solid black curves. (b) Convergence analysis showing the error decay with decreasing mesh size h,

for simulations using basis functions of polynomial degrees 1 (O2, blue dots), 3 (O4, orange rect-

angles), and 5 (O6, green triangles). The dashed black line indicates first-order convergence as

a reference. Panels (c) and (d) highlight specific features of (a): the shock wavefront (inside the

dashed red rectangles) in (c) and the rarefaction wavefront (inside the dashed pink rectangles) in

(d).
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3.2 1D frequency modulation by nonlinear materials322

The generation of harmonics from a single-frequency source is a mathematically323

intriguing problem in nonlinear wave propagation. It is widely used to quantify mate-324

rial nonlinearity in acoustic testing and non-destructive evaluation (Shah and Ribakov,325

2009; Matlack et al., 2015; Jiao et al., 2025). This behavior is a distinctive and general326

feature of wave propagation in nonlinear materials, existing in both the Murnaghan non-327

linear elasticity and the nonlinear stress-strain relationship in Eq. (3) of CDM.328

For the 1D Murnaghan nonlinear elasticity defined in Eq. (7), we use the 1D an-329

alytical asymptotic solutions from McCall (1994) derived using perturbation theory, which330

describes how the amplitudes of generated harmonics depend on the nonlinear param-331

eters of the material, the propagation distance, and the source amplitude. We use this332

analytical reference solution in the following to show that our proposed algorithm can333

accurately resolve the generation of harmonics in 1D nonlinear numerical simulations,334

exemplarily for 1D Murnaghan nonlinear elasticity.335

We adopt the same plane shear wave description as in Section 3.1 for the single-336

frequency source setup and solve the same nonlinear wave equations as in Eqs. (7). The337

simulation is carried out in a cubic domain [-0.025, 0.025] m × [-0.025, 0.025] m × [-0.025,338

0.025] m, with periodic boundary conditions on all faces. We define the initial conditions339

for the plane wave such that the wavelength is 0.05 m, matching the length of the sim-340

ulation domain:341

[εxy, vy]
T = [V0/cs, V0]

T × sin (2πkx), (9)

where k = 20 m−1 and cs =
√

μ/ρ is the shear wave speed. We set μ = 82.7 GPa,342

ρ = 2473 kg/m3, and vary the wave amplitude V0 and the nonlinear coefficient β to as-343

sess whether the simulation results can quantitatively match the analytical asymptotic344

solutions at a small propagation distance in Eq. (34) of McCall (1994). We note that345

the shear modulus defined here is unrealistically high for rocks; however, these param-346

eters are chosen solely to verify that the numerical solutions are mathematically consis-347

tent with the asymptotic solutions. Additionally, the asymptotic solution from McCall348

(1994) indicates that the amplitude of the second-order harmonics does not depend on349

μ.350

The single-frequency waveform is modulated by the nonlinear parameter β during351

propagation. Fig. 2a shows the modeled time series at distances of 0.0, 0.5, and 1.0 m352

from the source. While the peak amplitude and period remain unchanged, the shape of353

the waveform changes within one period due to the high-order harmonic generation.354

We show the generated harmonics 1.0 m away from the source in Fig. 2b. McCall355

(1994) derived an asymptotic solution for the amplitude of the second-order harmonics356

at small distances away from the source. This analytical asymptotic solution is no longer357

valid at larger distances. As shown in Fig. 2c, these analytical solutions (dashed curves)358

serve as exact asymptotes to the numerical solutions (solid curves) at small distances.359

We present results for three sets of parameters, demonstrating the robustness of the match360

between the analytical asymptotic and our numerical solutions.361
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Figure 2. Comparison between numerical and analytical asymptotic solutions for wave prop-

agation from a single-frequency source. (a) Recorded time series of vy at the source (dashed red

curve) and at distances of 0.5 m (dash-dotted red curve) and 1.0 m (solid red curve) from the

source. (b) The frequency amplitude spectrum of the time series of vy at 1.0 m from the source

shows the generation of high-order harmonics, which are multiples of the fundamental frequency.

(c) Comparison between the analytical asymptotic solutions (dashed curve) and the numerical

(solid curves) solutions. We show three sets of parameters, with variations in the nonlinear mod-

ulus β and the amplitude of the source V0. We note that the analytical asymptotic solutions are

known to be only valid at short distances from the source.
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3.3 3D stress- and damage-induced anisotropy362

Rocks exhibit various types and levels of anisotropy (Nur and Simmons, 1969; Nur,363

1971; Browning et al., 2017). This anisotropy arises from various internal flaws, such as364

cracks, joints, and fabric development due to differential stress and strain during tectonic365

processes (Panteleev et al., 2024). The anisotropy of seismic wave propagation in such366

rocks can depend on the stress state and accumulated damage, a phenomenon referred367

to as stress- and damage-induced anisotropy. This dependence leads to nonlinear stress-368

strain relationships, which are important for capturing path and site effects in earthquake369

simulations. Accurately resolving these effects is essential to advance numerical simu-370

lations of ground motions.371

Both Murnaghan nonlinear elasticity and CDM describe stress-induced anisotropy372

(Johnson and Rasolofosaon, 1993; Hamiel et al., 2009). However, while Murnaghan non-373

linear elasticity may require unrealistically high values for l0, m0, and n0 in Eq. (2), CDM374

provides a physical framework that can describe stress- and damage-induced anisotropy375

and has been experimentally validated (Hamiel et al., 2009). Here, we demonstrate that376

our proposed generic algorithm is suitable for implementing CDM by verifying its abil-377

ity to resolve stress- and damage-induced anisotropy in 3D. We compare the numerical378

results with the analytical solutions derived by Hamiel et al. (2009).379

We set up several plane-wave initial value problems to investigate how the P, S, and380

qS wave speeds depend on the orientation of the initial stress with respect to the nor-381

mal vector of the initial wavefront and the damage level α. The qS wave speed is the ad-382

ditional wave speed resulting from anisotropy (Harris et al., 2009). Without loss of gen-383

erality, we fix the normal vector of the wavefront to (1,0,0) and vary only the initial stress384

field and α. Since CDM represents the seismic wave field using the total strain tensor385

ε
=
= ε

=

pre+ ε
=

dyn, we pragmatically apply initial stress by prescribing initial strain val-386

ues.387

The initial strain field consists of two parts: (i) a uniform strain field ε
=

pre, that rep-388

resents the stress (strain) state of the rocks before dynamic perturbations from seismic389

waves; and (ii) the perturbation field udyn
i = (εdynxx , εdynyy , εdynzz , εdynxy , εdynyz , εdynzx , vx, vy, vz, α)

T ,390

substituted into Eq. (4). The expression for udyn
i depends on the wave type and is given391

as392

⎧⎪⎨
⎪⎩
udyn
i = A0r

1
i sin (2πkx) , for P wave

udyn
i = A0r

2
i sin (2πkx) , for S or qS wave

udyn
i = A0r

3
i sin (2πkx) , for S or qS wave

, (10)

where the three vectors r1i , r
2
i and r3i are defined in Eq. (A21). The classification of r2i393

or r3i is either S or qS waves depending on the orientation of the uniform strain field ε
=

pre.394

We list the material properties of the CDM model and the initial values of the PDEs395

in Table 1. The corresponding mathematical formulation is provided in Eq. (3). We adopt396

the same cubic geometry as in Section 3.2.397

We set the initial damage variable α to 0.5. We define ε
=

pre in its principal coor-398

dinate system as (εprexx , ε
pre
yy , εprezz , εprexy , ε

pre
yz , εprezx )T = (1 × 10−3, 0, 0, 0, 0, 0)T . Following399

Hamiel et al. (2009), we initially align the global coordinate system in the numerical sim-400

ulation with the principal coordinate system of ε
=

pre. We then rotate ε
=

pre counterclock-401

wise around the z-axis by an angle φani, which ranges from 0 to 180 degrees.402

Figs. 3a and 3b compare analytical and numerical solutions for P waves and for403

S and qS waves, respectively.404
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Table 1. Summary of the perturbation field and the model parameters of the continuum dam-

age model.

Parameters Values Units Parameters Values Units

perturbations A0 2.5 × 10−6 1 k 20 m−1

model para.
λ0 32 GPa γr 37 GPa
μ0 32 GPa ξ0 -0.75 1
ρ 2760 kg/m3 Cd 0.0 (Pa·s)−1
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Figure 3. Comparison between analytical and numerical wave speeds of different phases for

damage- and stress-induced anisotropy. (a) P-wave speed comparison, where black dots repre-

sent numerical simulation results and the black curve corresponds to the analytical solution. (b)

S-wave (red curve and dots) and qS-wave (blue curve and dots) comparisons, showing numerical

results alongside analytical predictions.

4 Modeling co-seismic wave speed changes during the 2015 Gorkha405

earthquake406

We apply our verified numerical framework to model co-seismic wave speed changes407

during the April 25, 2015, Mw 7.8 Gorkha earthquake in the Kathmandu Valley. We set408

up a geometrically complex 3D simulation of nonlinear seismic wave propagation from409

a finite source model of the 2015 Mw 7.8 Gorkha earthquake. Our setup captures key410

features relevant for modeling earthquake-related ground motions: a geometrically com-411

plex low-velocity sedimentary basin, layered subsurface geometry that represents differ-412

ent geological units, and a finite source model accounting for the directivity effect of a413

large earthquake.414

4.1 Numerical setup, nonlinear parameters and source model415

As shown in Fig. 4b, the 3D computational domain has a size of 440×380×200 km3.416

The velocity model includes five geological units (Table 2). The first unit accounts for417

the surface topography and bathymetry of the shallow sediments within the Kathmandu418

basin with a low S-wave velocity of 200 m/s (Bohara and Ghimire, 2015). The second419

unit captures the strong topographical variation outside of the sedimentary basin within420

the Kathmandu Valley. We sample the surface topography with a resolution of 5 km.421

Units 3 through 5 are derived from a regional 1D velocity model (McNamara et al., 2017).422

We will compare the effects of three inelastic rheologies and elastic behavior us-423

ing otherwise the same model setup: (i) visco-elastic, (ii) elasto-plastic, and (iii) inter-424

nal variable model (IVM). In the visco-elastic case, we adopt the Zener model (Carcione425
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et al., 1988) to describe viscous attenuation in SeisSol (Uphoff and Bader, 2016; Uphoff426

et al., 2024). We list the visco-elastic quality factors for the P-wave (QP ) and the S-wave427

(QS) inside each layer in Table 2. The effective quality factors approximate the target428

quality factors well within the frequency range of 0.03 to 3 Hz. They increase asymp-429

totically to infinity outside this frequency range, yielding close to linear elastic behav-430

ior. We set the quality factors as QP = 0.1VS and QS = 0.05VS for VS measured in m/s431

following Olsen et al. (2003). In the elasto-plastic setup, the inelastic behavior is only432

effective inside the sedimentary basin (unit 1). We adopt the Drucker-Prager plasticity433

(Wollherr et al., 2018) and provide the material parameters in the footnote of Table 2.434

We employ the IVM (Berjamin et al., 2017) to investigate nonlinear co-seismic wave435

speed changes outside the fault core and extending over 100 kilometers from the fault.436

The model has been validated in Niu et al. (2024) against two sets of laboratory exper-437

iments, which demonstrates its ability to quantify nonlinear co-seismic wave speed changes438

in granite samples (Manogharan et al., 2022) and sandstone samples (Feng et al., 2018).439

The mathematical description of IVM nonlinearity is summarized in Eq. (2). We refer440

to Berjamin et al. (2017) and Niu et al. (2024) for more details. The chosen model pa-441

rameters of the IVM within each region are given in Table 2. The nonlinear parameters442

inside the sedimentary basin (unit 1) are calibrated to match the modulus reduction curve443

from a 2D analysis presented in Oral et al. (2022), constrained by the shift in resonance444

frequencies observed during significant events with magnitudes exceeding MW 6.5 within445

the Kathmandu Valley (Rajaure et al., 2017). For the layered bedrocks (units 2 to 5),446

we constrain the nonlinear IVM parameters from experiments by Manogharan et al. (2022)447

investigating nonlinear co-seismic wave speed changes of Westerly granite samples. As448

discussed in Niu et al. (2024), the parameter γb, which determines the amplitude of sta-449

tionary wave speed reductions under dynamic perturbations, can be constrained from450

experiments. However, the time scale τb, which governs how quickly rocks reach the sta-451

tionary state, remains highly uncertain. Here, we assume τb = 10 s in units 1 to 5, which452

is consistent with the time scale at which the changes in wave speed stabilize, as observed453

in experiments on Westerly granite samples (Manogharan et al., 2021).454

Table 2. Material parameters for each geological unit of the computational domain.

region depth cp cs ρ Qp Qs γb τb

unit km m/s m/s kg/m3 1 1 kPa s

1* variable 300 200 1400 20 10 0.5 10
2 variable - 3 5500 3250 2700 325 162.5 356 10
3 3 - 23 5502 3600 2700 360 180 437 10
4 23 - 45 6100 3600 2900 360 180 437 10
5 45 - 200 8100 4500 3300 450 225 550 10

* Plasticity is only effective inside the sedimentary basin in the elasto-plastic simulation. The yielding

strength is 224 kPa, with an internal friction angle of 26 degrees and a visco-plastic relaxation time Tv

of 0.05 s (Wollherr et al., 2018).

We employ a polynomial degree of five and SeisSol’s velocity-aware meshing capa-455

bilities to adapt the element size h for each of the five geological units, ensuring at least456

three elements per S-wave wavelength of a maximum target frequency. In this way, our457

simulations resolve up to 0.5 Hz of the seismic wavefield everywhere in the domain, in-458

cluding in the complex geometry, low-velocity basin. We refine this mesh around the fi-459

nite fault plane, which is embedded in units 1 to 3, to h = 800 m for a higher resolution460

of the kinematic rupture evolution. As a result of the velocity-aware meshing, the sed-461

imentary basin (unit 1) is resolved with a higher mesh resolution of h ≈ 133 m. In units462
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2 and 3, mesh resolution gradually decreases, and h increases from 800 m near the finite463

fault plane to ≈2000 m away from the source region.464

In this example, we implement the finite source model of Wei et al. (2018) on a meshed465

finite fault plane to represent the MW 7.8 Gorkha earthquake. We do not model the spon-466

taneous dynamic rupture process on the fault. The relatively coarse kinematic source467

model is interpolated using 2D polynomial functions of degree three over a 186 km ×468

121 km rectangular fault plane, which results in 22,506 square sub-faults of size 1 km469

× 1 km. We infer a variable slip rate on each of these sub-faults from the finite source470

model. Next, we interpolate the imposed slip rates onto SeisSol’s triangular fault mesh471

as an internal boundary condition. This implementation is based on the approach by Tinti472

et al. (2005); Causse et al. (2014). We use a Gaussian source time function to describe473

the slip rate function on each fault element (Bouchon, 1997).474
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Figure 4. Model setup for the non-linear kinematic simulation of the 2015, MW 7.8 Gorkha

earthquake. (a) Fault slip distribution interpolated from Wei et al. (2018)’s kinematic source

model. The dashed gray line indicates the 12-km depth slice shown in Fig. 5a. (b) Computa-

tional domain, consisting of five geological units. We incorporate topography, as well as the

bathymetry of the sedimentary basin (white region at the upper boundary of the domain). (c)

Shear modulus reduction with strain amplitude of the IVM model (blue curve) within the basin

that has been parameterized to match the IWAN model (dashed red curve, Iwan, 1967). (d) Map

view of sedimentary basin depth variation, with five strong motion stations (Takai et al., 2016)

marked by red triangles.

4.2 Large-scale nonlinear co-seismic wave speed changes475

Our nonlinear simulations reveal a significant reduction of co-seismic wave speed476

changes following the Gorkha earthquake across a vast region (Fig. 5). Fig. 5a shows477
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wave speed changes 80 s after the rupture onset at 12 km depth. Nonlinear co-seismic478

wave speed reductions near the source range between 1% and 10% and are particularly479

pronounced close to the fault plane. For example, in the 12-km depth slice shown in Fig.480

5a), the dashed black line marks the fault plane, which hosts a high slip at this depth.481

The spatial distribution of the near-fault wave speed changes correlates with the482

fault slip distribution (Fig. 4a), with larger reductions in areas of large fault slip. Within483

the range of 70 km from the fault intersection, the wave speed reductions all exceed 0.01%.484

This level of damage is still measurable with coda-wave- or ambient-noise-based inter-485

ferometry (e.g., Brenguier et al., 2014; Gassenmeier et al., 2016; Lu and Ben-Zion, 2022).486
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Figure 5. Map views of co-seismic wave speed changes and fault slip distribution. (a) Co-

seismic wave speed changes at 12 km depth, illustrating spatial variations in velocity reduction.

The dashed black line marks the fault plane location at this depth. (b) Co-seismic wave speed

changes at 2 km depth, highlighting near-surface variations in wave speed reduction. (c) Co-

seismic wave speed changes within the sedimentary basin, showing localized effects of nonlinearity

in low-modulus materials.

We show simulated co-seismic wave speed changes at 2 km depth in Fig. 5b, which487

are lower compared with the changes at 12 km depth in Fig. 5a. However, the affected488

region is larger. At 2 km depth, wave speed reductions exceed 0.01% within a 100 km489

radius.490

Within the sedimentary basin, nonlinear co-seismic wave speed changes are much491

larger (Fig. 5c), and peak changes reach 88%, corresponding to local peak strains up to492

3×10−2 as can be seen in the shear modulus reduction curve (Fig. 4c). The spatial dis-493

tribution of these changes correlates with the depth variations of the sedimentary basin494

(Fig. 4 d), with greater reductions in wave speed located in regions with larger basin depths.495

These findings align with field observations of nonlinear site effects, which report signif-496

icant wave speed reductions in soft sediments during strong shaking (Bonilla et al., 2011).497

We will further compare the wave speed changes modeled here with observations in Sec-498

tion 5.499

4.3 Nonlinear site effects and sedimentary basin effects500

In conjunction with co-seismic wave speed changes, we observe clear effects of the501

nonlinear rheology on ground motions. Such effects are exemplified in synthetic seismo-502

grams comparing linear elastic, visco-elastic, perfect elasto-plastic, and nonlinear dam-503

age model simulations (Fig. 6a) at station KTP (Fig. 4d). Compared to the linear elas-504

tic case, all three other models show different levels of ground motion damping at sta-505

tion KTP. The nonlinear damage model exhibits the strongest wave attenuation due to506
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progressive modulus degradation, the accumulation of damage leading to the reduction507

of moduli.508

Our simulations suggest that co-seismic degradation of rock moduli may be an im-509

portant mechanism contributing to the observed low-frequency amplification in soft sed-510

iments (Bonilla et al., 2011). We capture this effect in the spectrograms of nonlinear dam-511

age vs. linear elastic models (Figs. 6b, c). In the amplitude-frequency spectra of the mod-512

eled ground motion recorded between 20 s and 50 s after rupture onset(Fig. 6d), we ob-513

serve a systematic enhancement of low-frequency components (0.1–0.2 Hz). In our sim-514

ulation, this low-frequency amplification is not unique to station KTP. As shown in Fig.515

B1, low-frequency amplification is a general feature of the modeled ground motions at516

stations with high PGV values. High PGVs are correlated with significant ground de-517

formation, leading to strong moduli reduction, consistent with the IVM shear modulus518

reduction curve (Fig. 4c). Such low-frequency amplification is expected during wave prop-519

agation through materials with co-propagating wave speed reduction. For example, a lab-520

oratory acoustic experiment on rock samples illustrates this phenomenon (Remillieux et al.,521

2017), where wave speed reduction delays the arrival time of later phases, elongating the522

period and consequently shifting the energy to a lower frequency.523
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Figure 6. Time series and frequency analysis at station KTP. (a) Time series recorded at

station KTP (marked in Fig. 4b) for different rheological models: elastic (solid blue curve),

elasto-plastic (dash-dotted green curve), visco-elastic (dashed orange curve), and the IVM (solid

red curve). (b) and (c) are spectrograms of the IVM and elastic cases, respectively, showing the

frequency content of the recorded waveforms. The dashed red rectangles highlight the amplifica-

tion of lower-frequency components in the IVM simulation. (d) Normalized frequency spectra of

the time series recorded between 20 s and 50 s, comparing elastic (dashed blue curve) and IVM

(solid red curve) models, illustrating the enhanced low-frequency content in the IVM simulation.

In Fig. B1, we show the frequency spectra of time series recorded at four other stations marked

in Fig. 4d.

4.4 Nonlinear rheology and ground motions (<0.5 Hz)524

We compare modeled shake maps of peak ground velocity (PGV) across models525

with varying rheologies in Fig. 7. Linear elastic simulations show a strong correlation526

between the PGV in Fig. 7a and the depth of the sedimentary basin in Fig. 4d. Visco-527

elastic and elasto-plastic models reduce PGVs inside the Kathmandu basin, consistent528

with previous regional-scale studies (Narayan and Sahar, 2014; Taborda and Roten, 2015;529

Esmaeilzadeh et al., 2019). Extending Southern California ShakeOut simulations to in-530
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clude IWAN plasticity also led to a reduction in ground motion amplitudes (e.g., Roten531

et al., 2023).532

The nonlinear damage model attenuates PGVs across both high- and low-shaking533

intensity regions, unlike the elasto-plastic model, which primarily reduces high PGVs (Fig.534

7b). The elasto-plastic model attenuates regions of high PGVs, such as in the pink dash-535

dotted rectangles in Fig. 7b. However, elasto-plastic effects are negligible in regions with536

relatively low PGVs, such as those marked with blue dashed rectangles in Fig. 7b, which537

is expected from previous theoretical work and numerical simulations (e.g., Roten et al.,538

2014; Kojima and Takewaki, 2016; Seylabi et al., 2021). The plastic yielding surface is539

only reached when stress reaches a certain threshold. Below this threshold, the mechan-540

ical behavior of the material is the same as that of the linear elastic model. In contrast,541

the nonlinear damage model continuously degrades moduli with increasing strain am-542

plitude (Fig. 4c).543
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Figure 7. Maps of peak ground velocity (PGV) for different rheologies: (a) elastic, (b) visco-

elastic, (c) IVM and (d) elasto-plastic. The dashed blue rectangles highlight the region where the

elasto-plastic model exhibits minimal attenuation, while the dash-dotted pink rectangles indicate

areas where attenuation is more pronounced.
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5 Discussion544

5.1 Accuracy and performance of the nonlinear implementation545

In Section 4, we applied the proposed algorithm to model regional-scale nonlinear546

co-seismic wave speed changes in 3D. Nonlinear seismic wave propagation simulations547

are computationally demanding, necessitating efficient algorithms and optimized imple-548

mentations for execution on large-scale high-performance computing (HPC) systems (e.g.,549

Reinarz et al., 2020; Roten et al., 2023). To illustrate the efficiency of our nonlinear PDE550

solver, we analyze its convergence rate with reduced element size h in Section 3.1. We551

also analyze p convergence in Fig. 1, where the L2 errors in numerical solutions decrease552

with element shape functions of higher polynomial degree p.553

Fig. 1 shows a first-order convergence rate for simulations using basis functions of554

polynomial degrees 1 to 5. This low order of convergence results from the linearized Cauchy-555

Kovalevskaya procedure used in the prediction step, c.f. Eq. (A2). The prediction step556

approximates the time-dependent coefficients Ulp(t) within a single time step using a Tay-557

lor series expansion (Toro et al., 2001). In this step, to compute high-order time deriva-558

tives, we linearize the nonlinear hyperbolic equations in Eq. (A2) and apply the Cauchy–Kovalevskaya559

procedure to the linearized system, as detailed in Dumbser and Käser (2006). This lin-560

earization ensures algorithmic generality across various nonlinear rock models but lim-561

its the accuracy of Ulp(t) at higher orders, thus constraining the overall convergence rate.562

A low-order convergence rate observed at solution discontinuities, such as shock563

waves, is consistent with Godunov’s theorem (Godunov and Bohachevsky, 1959). This564

theorem establishes that high-order linear solvers have non-monotonic behavior near steep565

solution gradients. In addition, spectral convergence properties might be reduced to low-566

order accuracy due to the manifestation of the well-known Gibbs phenomena in the vicin-567

ity of strong discontinuities (e.g., Hesthaven and Warburton, 2007, Chapter 5.6). Local568

low-order convergence is also evident in SeisSol’s dynamic rupture implementation (Sec.569

6.3 Wollherr et al., 2018).570

A potentially promising extension of our work is the incorporation of a discrete Pi-571

card iteration scheme (Lindelöf, 1894; Youssef and El-Arabawy, 2007; Dumbser et al.,572

2008; Gassner et al., 2011; Reinarz et al., 2020). The Picard iteration can substitute our573

linearized Cauchy-Kovalevskaya procedure in the prediction step to estimate Di
lp in Eq.574

(3). This approach has been shown to help preserve high-order convergence up to 7 in575

ADER-DG solvers (Dumbser et al., 2008).576

We analyze the performance of our SeisSol implementation on the supercomputer577

Frontera at TACC (Stanzione et al., 2020). Additionally, we suggest potential improve-578

ments to enhance the current algorithm, including future large-scale hardware architec-579

tures.580

We evaluate the scalability and speed-up of the nonlinear SeisSol implementation581

using the 2015 Kathmandu earthquake model shown in Fig. 4b. We here discretize the582

simulation domain with three different meshes containing approximately 17, 40, and 100583

million elements, respectively. In the discontinuous Galerkin (DG) method, the degrees584

of freedom (DOFs) are directly proportional to the number of tetrahedral elements. We585

use a polynomial degree p = 3 (Eq. 5) for performance analysis, resulting in 200 DOFs586

per element.587

The scaling tests consist of simulations using all three meshes and various num-588

bers of compute nodes, running for 3 s of physical simulation time with the same time589

step size. SeisSol employs a hybrid MPI-OpenMP parallelization scheme, utilizing MPI590

for inter-node communication and OpenMP for multi-threaded parallelization within each591

node (Uphoff et al., 2017).592
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Figure 8. Scalability and performance. (a) Speed-up of simulations as a function of the num-

ber of compute nodes, scaling up to 4096 nodes on Frontera (Stanzione et al., 2020). The dashed

black curve represents the ideal strong-scaling regime, where doubling the number of nodes halves

the time to solution. The dash-dotted gray curves illustrate the ideal weak-scaling regime, where

proportionally increasing the number of nodes with the number of mesh elements results in the

same speed-up. Different mesh sizes are represented by red triangles (17 million elements), blue

circles (40 million elements), and purple rectangles (100 million elements). Both axes use a loga-

rithmic scale. (b) Hardware performance analysis during simulations of the 2015 MW 7.8 Ghorka

earthquake (Section 4) for different rock models, shown as a bar plot. The mesh used here con-

tains ≈2.3 million elements, and the simulation ran on 32 nodes of SuperMUC-NG (Phase 1).

We evaluate the performance in terms of speed-up, which is defined as ts/t0 with593

ts being the time to solution for a given combination of mesh size and number of com-594

pute nodes, t0 is the time to solution of the baseline simulation which uses a 100-million-595

element mesh on 128 nodes. Fig. 8 illustrates the scalability on the Frontera supercom-596

puter at TACC (Stanzione et al., 2020). Frontera employs Intel Xeon Platinum 8280 (”Cas-597

cade Lake”) processors, each offering 56 cores per node and operating at 2.7 GHz. The598

total number of available compute nodes is 8,368.599

We analyze how speed-up depends on mesh sizes and the number of compute nodes600

in Fig. 8a. To facilitate direct comparison across different mesh sizes for both strong and601

weak scaling, we normalize the speed-up by nodes per million elements in the following602

discussions. The results indicate that for fewer than 20 nodes per million elements, strong603

scaling is nearly linear using the 100 million element mesh, meaning that speed-up in-604

creases almost proportionally with node count.605

To analyze weak scaling behavior, we compare different mesh sizes using the same606

number of nodes per million elements. The speed-up across the three different mesh sizes607

remains nearly identical as long as the number of nodes per million elements remains be-608

low 20. However, at 40 nodes per million elements, performance deviates significantly609

from ideal scaling in both strong and weak scaling tests. Performance degradation be-610

comes more pronounced as the number of elements increases, corresponding to a larger611

number of compute nodes. One possible explanation is that the communication time be-612

tween MPI ranks occupies a larger proportion of the overall computation time. Optimiz-613

ing SeisSol’s performance at those higher node counts is beyond the scope of this study614

and requires further development efforts.615

–20–



manuscript of JGR: Solid Earth

We compare the performance of our implementation using nonlinear space-time in-616

terpolation kernels with that of existing SeisSol models. Since our implementation in this617

work for nonlinear hyperbolic equations only supports a uniform time step size across618

the entire simulation domain (global time stepping, GTS), we constrain our comparison619

with the other existing models in SeisSol to the GTS scheme. Uphoff et al. (2017) demon-620

strate the strong scaling behavior of SeisSol for dynamic rupture earthquake simulations621

using a linear elastic model. With a mesh containing approximately 51 million elements,622

the parallel efficiency remained ∼95% on 512 nodes compared to a performance of ∼660623

GFLOP/s on 16 nodes. The simulation on 512 nodes corresponds to ∼10 nodes per mil-624

lion elements, which is within the range of our scaling analysis in Fig. 8a.625

In terms of strong scaling, our nonlinear implementation reaches a speed-up of ∼15.3626

when increasing the number of nodes from 128 to 2048 for a mesh with ∼100 million el-627

ements. This result is comparable to the elastic model above, with a parallel efficiency628

of 95.7% up to ∼20 nodes per million elements. However, when the number of nodes is629

further increased to 4,096, the parallel efficiency drops to 61.5%, indicating the need for630

further optimization of our current implementation for handling nonlinear wave prop-631

agation at extreme scales. For example, Wolf et al. (2022) recently optimized the imple-632

mentation of computationally intensive poro-elastic rheologies in SeisSol, achieving per-633

formance degradation of less than 10%, even at more than 40 nodes per million elements.634

The strong scaling behavior does not fully capture the absolute performance of the635

code in terms of floating point operations per second (FLOP/s). To provide a more pre-636

cise assessment, we compare FLOP/s among simulations using the four material mod-637

els described in Section 4. For a 2.3 million element mesh, performance measurements638

are taken from results running on 16 nodes of SuperMUC-NG (Phase 1) with shape func-639

tions of polynomial degree 3. SuperMUC-NG employs Intel Xeon Platinum 8174 pro-640

cessors, each equipped with 48 cores per node, operating at 2.7 GHz. As shown in Fig.641

8b, simulations with elastic, visco-elastic, and elasto-plastic materials achieve a node-642

average performance of 654 GFLOP/s, 636 GFLOP/s, and 550 GFLOP/s, respectively,643

using double-precision floating-point arithmetic. In contrast, the nonlinear implemen-644

tation with IVM achieves 360 GFLOP/s, which represents a 45% reduction in compu-645

tational performance compared to the elastic model.646

The current implementation does not yet support local time stepping (LTS, Breuer647

et al., 2016; Uphoff, 2020), which is crucial for efficiently handling non-uniform element648

sizes due to mesh refinement near faults, complex fault geometries, or highly-varying sur-649

face topography. Thus, on the same mesh, the time-to-solution for the nonlinear IVM650

implementation is approximately 5.56 times longer than the linear elastic material in our651

simulations presented in Section 4. Therefore, future implementation of LTS for nonlin-652

ear models is a promising avenue for improving computational efficiency while maintain-653

ing accuracy.654

5.2 Linking co-seismic wave speed changes of rocks from laboratory mea-655

surements to regional scale field observations656

In this section, we discuss what the simulations of the 2015 Ghorka earthquake re-657

veal about co-seismic wave speed changes in linking measurements of co-seismic wave658

speed changes from the laboratory with field-scale observations. Under well-controlled659

environments and boundary conditions in the laboratory, the dynamic responses of rocks660

to seismic wave fields can be better constrained. In this work, we employ an experimen-661

tally constrained continuum mechanics model, the IVM (Berjamin et al., 2017; Niu et al.,662

2024). However, the amplitudes of the modeled regional wave speed changes may not663

be comparable to observations during the 2015 Ghorka earthquake. In the following, we664

discuss reasons that may contribute to the amplitude difference between the simulated665

regional co-seismic wave speed changes and those in field observations.666

–21–



manuscript of JGR: Solid Earth

Lu and Ben-Zion (2022) show that the average wave speed changes within a depth667

range from 0 to ≈3 km can exceed 1% within 90 km from the fault. These changes are668

two orders of magnitude larger than our simulated wave speed changes at depths of 2669

km within 100 km from the fault, which is likely due to large perturbations within soft670

sediments across the upper few hundred meters below the surface. Such significant per-671

turbations inside the sediments are not reflected in our analysis of a depth slice at 2 km.672

Fig. 5c shows that wave speed changes within the sedimentary basin reach 88%. Sim-673

ilarly, using seismic observations from the KiK-net network, Bonilla et al. (2019) observe674

wave speed reductions greater than 60% in shallow soft sediments within 150 s after the675

occurrence of the 2011 MW 9.0 Tohoku-oki earthquake in Japan. These results suggest676

that incorporating the shallowest sedimentary layers may increase the average wave speed677

changes, potentially enabling a more quantitative comparison between numerical sim-678

ulations and field observations.679

Although this study demonstrates how to adapt laboratory-derived nonlinear mod-680

els to regional-scale numerical simulations of co-seismic wave speed changes, the non-681

linear IVM material properties used in our simulations were not constrained with rock682

samples from the Kathmandu Valley. However, the spatial variation patterns of co-seismic683

wave speed changes modeled here may be transferable across similar lithologies. For ex-684

ample, our simulations reveal that the amplitude of co-seismic wave speed changes cor-685

relates strongly with fault slip close to the source (Figs. 5a and 4a). At increasing dis-686

tances from the fault, the dynamic strain amplitude is modulated by the layered Earth687

model, shown in Fig. 4. With slightly softer rocks (lower cs in Table 2) at a depth of 2688

km, the region where the changes in wave speed are greater than 0.01% is broader than689

that at a depth of 12 km (Fig. 5a and 5b). This effect is particularly prominent within690

the sedimentary basin, where low-moduli unconsolidated materials experience greater691

strain amplification. We find that the basin depth distribution is an additional factor692

that adds to the spatial variability of changes in nonlinear wave speed. Our results (Fig.693

5c) indicate that larger sedimentary basin depths lead to greater co-seismic wave speed694

reductions. Other factors that might contribute to the variation, for example, the direc-695

tion of incoming waves (Oral et al., 2022), require further investigation as a next step.696

A limitation of our approach is that the nonlinear damage model (IVM) remains697

isotropic even as damage accumulates. However, material anisotropy may develop un-698

der high damage levels (Fig. 3), further influencing directivity effects and path and site699

effects. Accounting for non-linear anisotropy will introduce additional challenges in ac-700

curately implementing free-surface boundary conditions. Although the method outlined701

in Section A3 is suitable for isotropic models only, it can serve as a first-order approx-702

imation for damage- and stress-induced moduli changes at the free-surface boundary by703

only accounting for the induced changes in the effective Lamé parameters in Eq. (A17).704

5.3 Incorporating background stress effects on co-seismic non-linear wave705

speed changes706

In Section 4, we use the IVM with experimentally constrained parameters (Niu et al.,707

2024) on Westerly granite to quantify the spatial distribution of co-seismic wave speed708

reductions following the 2015 MW 7.8 Ghorka earthquake. This model assumes a uni-709

versal co-seismic wave speed reduction, irrespective of the initial stress state. Similar uni-710

versal reductions in wave speed under dynamic perturbations have been observed in lab-711

oratory rock samples under unconfined stress conditions Remillieux et al. (2017); Feng712

et al. (2018) and under uniaxial compression of up to 20 MPa (Rivière et al., 2015; Manogha-713

ran et al., 2021). However, Manogharan et al. (2022) show that the level of uniaxial com-714

pression exerts a second-order influence on the amplitude of co-seismic wave speed re-715

ductions, indicating that a more advanced model is needed to incorporate the dependence716

of wave speed changes on the background stress state.717
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The CDM (Lyakhovsky et al., 1997a), described in Eq. (3), explicitly accounts for718

the background stress state. In this model, the amplitude of damage accumulation de-719

pends on how close the current stress state is to a critical stress threshold, defined by720

ξ0 in Eq. (3). In Section 3.3, we demonstrate that our proposed algorithm can quantify721

stress- and damage-induced anisotropy in wave propagation using CDM. However, ap-722

plying CDM to co-seismic wave speed changes requires sufficient knowledge of the pre-723

existing background stress state.724

Properly configuring the background stress state is especially important when mod-725

eling layered geological structures, particularly when accounting for spatially varying bathymetry726

in sedimentary basins (unit 1 in Fig. 4). Using CDM, the background stress state is im-727

posed by specifying the initial strain tensor. To prevent spurious wave generation at the728

beginning of the simulation, it is necessary to ensure the stress continuity condition at729

layer boundaries. This is challenging when incorporating geometrically complex basin730

bathymetry, where the strain tensor must be reoriented according to the basin geome-731

try. A potential solution to this challenge in future work may be first to solve the static732

strain field resulting from the overburden of rocks and soils. This balanced strain field733

may then be applied as the initial strain state for wave simulations, ensuring a physi-734

cally consistent background stress distribution.735

6 Conclusions736

To develop a seismic wave propagation method capable of modeling observed co-737

seismic wave speed changes, we propose a generic numerical algorithm based on the dis-738

continuous Galerkin (DG) method that can be applied to a wide range of nonlinear rock739

models. We verify the numerical solutions obtained using our new approach implemented740

in the open-source software SeisSol against three sets of analytical solutions and confirm741

the convergence of the algorithm. Using the Riemann problem setup, we demonstrate742

that the proposed method accurately resolves discontinuities in nonlinear hyperbolic equa-743

tions. We find a 1st order convergence rate at solution discontinuities with basis func-744

tions of polynomial degrees 1 to 5. On the same mesh, using higher-degree basis func-745

tions leads to lower numerical errors. We show that the method can accurately resolve746

the amplitude of high-frequency harmonics generated by wave propagation in the Mur-747

naghan nonlinear elasticity model. The proposed method can also properly quantify the748

stress- and damage-induced mechanical anisotropic behaviors of rocks.749

We evaluate the parallel performance of our implementation on Frontera and find750

that both weak and strong scaling remain close to linear up to 20 nodes per million el-751

ements, allowing efficient simulations on meshes with up to 100 million elements and scal-752

ability up to 2048 nodes. However, despite the good parallel scalability, node-level per-753

formance remains non-optimal, indicating the need for further optimizations to improve754

computational efficiency and reduce runtime for handling future nonlinear wave prop-755

agation simulations at extreme scales.756

We apply our algorithm to regional-scale earthquake simulations, including non-757

linear wave propagation effects from source to site. We use the experimentally constrained758

nonlinear model IVM to capture co-seismic wave speed changes during the 2015 Mw 7.8759

Gorkha earthquake in the Kathmandu Valley, incorporating a free surface with topog-760

raphy, a sedimentary basin with low wave speeds and complex bathymetry, a layered ge-761

ological structure, and a finite source model that accounts for rupture directivity effects.762

The simulation results show that co-seismic wave speed reductions depend on the fault763

slip distribution near the source and are modulated by basin depth tens of kilometers764

away from the fault. Co-seismic wave speed changes also enhance low-frequency com-765

ponents in soft sedimentary layers, affecting ground motions. This study demonstrates,766

using a physics-based framework to quantify nonlinear earthquake effects at a regional767

scale, the importance of damage-induced wave speed variations for seismic hazard as-768
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sessment, ground motion predictions, and as an observable to better constrain earthquake769

physics and rock mechanics.770
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Appendix A DG algorithm for nonlinear wave equations794

In this section, we provide the details on three components of the DG algorithm795

proposed in this work: prediction step, correction step, and boundary conditions.796

A1 Prediction step: linearization and temporal approximation797

In the prediction step, we retain only the conservative term of Eq. (4) assuming798

weak nonlinearity (∂σij/∂εmn and ∂σij/∂α → constant) and employ a linearization pro-799

cedure. Our main motivation for this linearization in the prediction step is to maintain800

the HPC-optimized data structure of SeisSol (Uphoff et al., 2024). We will release this801

restriction in the subsequent correction step described later. This assumption preserves802

the convergence of the algorithm for nonlinear hyperbolic PDEs but can have an effect803

on the convergence rate, as we will discuss in Section 3.1.804

We write for the linearized prediction step:805

∂up

∂t
= −

∂F d
p

∂xd

= −
∂F d

p

∂uq

∂uq

∂xd
, (A1)

where F d
p = F d

p (u−
) is a nonlinear function of the conservative variables up, with

∂F d
p

∂uq
806

corresponding to its Jacobian matrix. Taking a time derivative on both sides of Eq. (A1),807

we approximate the second time derivative of up as:808
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∂2up

∂t2
= − ∂

∂t

(
∂F d

p

∂uq

∂uq

∂xd

)

= − ∂

∂t

(
∂F d

p

∂uq

)
∂uq

∂xd
−

∂F d
p

∂uq

∂

∂xd

(
∂uq

∂t

)

≈ −
∂F d

p

∂uq

∂

∂xd

(
∂uq

∂t

)
. (A2)

This condition is satisfied if
∂

∂t

(
∂F d

p

∂uq

)
∂uq

∂xd
�

∂F d
p

∂uq

∂

∂xd

(
∂uq

∂t

)
, which requires809

∂F d
p

∂uq
to vary slowly in time compared to the temporal variation of uq.810

From Eqs. (1) and (4), F d
p incorporates the nonlinear stress-strain relationships.811

Consequently,
∂F d

p

∂uq
changes gradually under weak nonlinearity. The weak nonlinearity812

makes Eq. (A2) a more accurate approximation for the second-order time derivative of813

up. We reiterate that this assumption only pertains in the prediction step.814

Following Uphoff (2020), the arbitrary order (i) derivative of qp in time (Di
lp) is com-815

puted as follows:816

Di
lp

∫
Tm

φkφldV = −
∫
Tm

φkB
d
pq(u−

tn)D(i−1)
lq

∂φl

∂xd
dV, (A3)

where Di
lqφl =

∂iuq

∂ti
.817

For linear wave equations, we derive Bd
pq =

∂F d
p

∂uq
as a cell-wise constant that keeps818

its value along the simulation (Uphoff, 2020). In our nonlinear case, we need to re-compute819

the cell-wise averaged Bd
pq from utn

p at the beginning of each time step tn, i.e. B
d,tn
pq =820

Bd
pq(u−

tn) =
∫
Tm

Bd
pq(u−

tn)dV/Ve and Ve is the volume of the tetrahedral element.821

If we substitute Bd,tn
pq in Eq. (A3), the integration in a reference cell E3, which is822

defined in a reference Cartesian coordinate system where the position vector of a point823

is ξi, will be824

Di
lp|J |

∫
E3

φkφldV = −|J |Θ−1
ed D

(i−1)
lp Bd,tn

pq

∫
E3

φk
∂φl

∂ξe
dV, (A4)

where Θ−1
ed = ∂ξe/∂xd. We refer to Chapter 3.1 of Uphoff (2020) for the detailed def-825

inition of the reference Cartesian coordinate system. Defining Mkl =
∫
E3

φkφldV and826

Ke
lk =

∫
E3

φk
∂φl

∂ξe
dV , we derive827

Di
lp|J |Mkl = −|J |Θ−1

ed D
(i−1)
lq Bd,tn

pq Ke
lk, (A5)

which is directly comparable to Eq.(3.31) in Uphoff (2020).828

If the nonlinear source term is considered, we simplify and add the nonlinear source829

term only when i = 1 in Eq. (A5).830
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D1
lp|J |Mkl = −|J |Θ−1

ed D0
lqB

d,tn
pq Ke

lk + |J |
∫
E3

sp(q
−
tn)φkdV, (A6)

where utn
q = D0

lqφl, with the same definition of Θ−1
ed as Eq. (A4). The nonlinear source831

function sp(u−
tn) is evaluated on a nodal basis of utn

q projected from the modal basis co-832

efficients D0
lq as presented by Wollherr et al. (2018).833

A2 Correction step: time integration and discontinuity handling834

The weak form of Eq. (4) with integration by part looks like835

∂

∂t

∫
Tm

φkUlp(t)φldV +

∫
∂Tm

φk(F
d
p nd)

∗dS −
∫
Tm

∂φk

∂xd
F d
p dV =

∫
Tm

sp(Ulpφl)φkdV, (A7)

where sp(Ulpφl) = (0, 0, 0, 0, 0, 0, 0, 0, 0, rα)
T as in Eq. (4). nd is the normal vector of836

the interface ∂Tm. Integrating both sides of the Eq. (A7) in one time step [tn, tn+1] yields837

∫
Tm

φkφl[Q
n+1
lp − Un

lp]dV +

∫
∂Tm

φk

∫ tn+1

tn

(F d
p nd)

∗dτdS −
∫
Tm

∂φk

∂xd

∫ tn+1

tn

F d
p dτdV

=

∫
Tm

φk

∫ tn+1

tn

sp(Ulpφl)dτdV. (A8)

According to Eqs. (5) and (6), we estimate the space-time integration in each term838

of Eq. (A8) with Di
lp derived from the prediction step.839

We expand on the space-time integration term by term in the following. We start840

from the second term on the left-hand-side of Eq. (A8) when ∂Tm is on the element sur-841

faces that are not on the boundaries of the computation domain. The latter case will be842

addressed in Section A3. The interface flux within the computational domain (F d
p nd)

∗
843

must account for the solution discontinuities on each side of the interface. Strictly speak-844

ing, this requires solving the Riemann problem for a nonlinear hyperbolic system (LeV-845

eque, 2002). Here we use the local Lax-Friedrich flux FLF
p which has a simple form while846

preserving numerical stability. Its expression is847

FLF
p = (F d

p nd)
∗
p

=
1

2
(F d

p (u
+
p ) + F d

p (u
−
p ))nd +

1

2
C(u−

p − u+
p ), (A9)

where C is the largest eigenvalues of the matrix Bd
pq((u−

++u
−
−)/2) in Eq. (A3). As de-848

fined in Eq. (A9), FLF
p is a nonlinear function of up on both sides of u+

p and u−
p . For849

the numerical integration, we evaluate FLF
p at the quadrature points in space and time850

following Uphoff (2020) and expand the second term on the left-hand-side of Eq. (A8)851

as852

∫
∂Tm

φk

∫ tn+1

tn

(F d
p nd)

∗dτdS

=

Ns∑
i=1

βiφk,i

Nt∑
z=1

γzF
LF
lp,z,s|Sf |Δt, (A10)

where βi and γz are weights, respectively, for surface and time integration.853
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For the third term on the left-hand-side of Eq. (A8), we also discretize F d
p = Fd

lp(t)φl(x)854

with the same modal basis functions as up. We briefly summarize the procedures here855

and refer to Wollherr et al. (2018) for the detailed formulae. The evaluation of Fd
lp(t)856

follows 3 steps: (1) Project Ulp(t) into a nodal basis and obtain the UNode
lp (t) coefficients857

in the nodal basis; (2) Evaluate the coefficients Fd,Node
lp in nodal space by substituting858

UNode
lp (t) into the nonlinear function Fd

p (U
Node
lp ) based on Eq. (1) to Eq. (3); (3) Ob-859

tain the coefficients Fd
lp(t) in modal space by projecting back from the nodal space co-860

efficients Fd
p (U

Node
lp ). The third term on the left-hand-side of Eq. (A8) then becomes861

∫
Tm

∂φk

∂xd

∫ tn+1

tn

F d
p dτdV

=

∫ tn+1

tn

Fd
lp(τ)dτ

∫
Tm

∂φk

∂xd
φldV. (A11)

We employ a similar procedure for the right-hand-side of Eq. (A8). We discretize862

sp(t) = Slp(t)φl and yield863

∫
Tm

φk

∫ tn+1

tn

sp(Ulpφl)dτdV

=

∫ tn+1

tn

Slp(τ)dτ

∫
Tm

φkφldV. (A12)

A3 Free surface and absorbing boundary conditions864

We need to take care of the numerical flux (F d
p nd)

∗ in the second term of Eq. (A8)865

when ∂Tm is defined on two types of boundaries that are important for earthquake sim-866

ulations: the absorbing boundary and the free-surface boundary. While IVM in Eq. (2)867

remains isotropic with damage accumulation, CDM in Eq. (3) can introduce stress-induced868

anisotropic mechanical responses in rocks (Hamiel et al., 2009). Such anisotropy inside869

the bulk materials can be resolved using the local Lax-Friedrich flux in Eq. (A9) (de la870

Puente et al., 2007). In defining the boundary conditions of the simulation domain, we871

simplify by only considering the nonlinear effects on the isotropic moduli, i.e., the two872

Lamé parameters. To achieve this, we retain only the components of B
=

d = Bd
pq that873

correspond to the isotropic effective Lamé parameters, denoting an approximated ma-874

trix as B
=

d,eff . The expressions for B
=

d,eff are (Wilcox et al., 2010):875

B
=

1,eff =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

2
0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1

2
0

−λeff + 2μeff

ρ
−λeff

ρ
−λeff

ρ
0 0 0 0 0 0 0

0 0 0 −2μeff

ρ
0 0 0 0 0 0

0 0 0 0 0 −2μeff

ρ
0 0 0 0

0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A13)
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B
=

2,eff =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1

2
0 0 0

0 0 0 0 0 0 0 0 −1

2
0

0 0 0 0 0 0 0 0 0 0

0 0 0 −2μeff

ρ
0 0 0 0 0 0

−λeff + 2μeff

ρ
−λeff

ρ
−λeff

ρ
0 0 0 0 0 0 0

0 0 0 0 −2μeff

ρ
0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A14)

B
=

3,eff =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

2
0 0

0 0 0 0 0 0 −1

2
0 0 0

0 0 0 0 0 −2μeff

ρ
0 0 0 0

0 0 0 0 −2μeff

ρ
0 0 0 0 0

−λeff

ρ
−λeff + 2μeff

ρ
−λeff

ρ
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A15)

The effective Lamé parameters for IVM are876

{
λeff = (1− α)λ0

μeff = (1− α)μ0

. (A16)

The effective Lamé parameters for CDM are877

{
λeff = λ0 − αγrε/

√
I2

μeff = μ0 − αξ0γr − 0.5αγrξ
, (A17)

where ε = (εxx + εyy + εzz)/3.878

We compute the numerical fluxes (F d
p nd)

∗ on both the absorbing boundary and the879

free-surface boundary based on the solutions of the Riemann problem with an upwind880

method using the approximate effective matrix B
=

d,eff defined in Eq. (A13) to (A15).881

We assume that the outgoing waves at the element interface are only influenced by the882

state in the element that the interface belongs to; the incoming waves at the element in-883

terface are only influenced by the state in the neighboring element.884
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To compute the upwind flux, we diagonalize matrix B
=

1,eff = R
=
Λ
=
R
=

−1, where Λ
=
=885

diag(−ceffp ,−ceffs ,−ceffs , 0, 0, 0, ceffs , ceffs , ceffp , 0), ceffp =
√
(λeff + 2μeff )/ρ, c

eff
p =886 √

μeff/ρ, and887

R
=
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 − λeff

λeff + 2μeff
0 − λeff

λeff + 2μeff
0 0 −1 0

0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0

0
1

2
0 0 0 0 0 −1

2
0 0

0 0 0 0 1 0 0 0 0 0

0 0
1

2
0 0 0 −1

2
0 0 0

ceffp 0 0 0 0 0 0 0 ceffp 0
0 ceffs 0 0 0 0 0 ceffs 0 0
0 0 ceffs 0 0 0 ceffs 0 0 0
0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A18)

where the last column results from the extra zero eigenvalues due to the introduction888

of the damage variable.889

For the absorbing boundaries, we use the same method as Dumbser and Käser (2006).890

F abs
p = (F d

p nd)
∗
p

= TpqB
1,eff,+
qr T−1

rs qs, (A19)

where B
=

1,eff,+ = R
=
Λ+

=
R
=

−1. Λ+

=
= diag(0, 0, 0, 0, 0, 0, ceffs , ceffs , ceffp , 0) only keeps the891

positive terms in Λ
=
. T−1

pq is the rotation matrix that operates on the vector of the con-892

servative variables us, rotating the quantities to the face-aligned coordinate system.893

T
=
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n2
x s2x t2x 2nxsx 2sxtx 2txnx 0 0 0 0

n2
y s2y t2y 2nysy 2syty 2tyny 0 0 0 0

n2
z s2z t2z 2nzsz 2sztz 2tznz 0 0 0 0

nxny sxsy txty nxsy + nysx txsy + tysx nxty + nytx 0 0 0 0
nzny szsy tzty nzsy + nysz tzsy + tysz nzty + nytz 0 0 0 0
nxnz sxsz txtz nxsz + nzsx txsz + tzsx nxtz + nztx 0 0 0 0
0 0 0 0 0 0 nx sx tx 0
0 0 0 0 0 0 ny sy ty 0
0 0 0 0 0 0 nz sz tz 0
0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A20)

For the free-surface boundaries, we first rotate uq to the face-aligned coordinate894

system as un
p = T−1

rs us. We then derive the constraints to the conservative variables895

ub
q on the boundary face from an upwind flux below in a similar way as Uphoff (2020).896
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u
−
b = u

−
− + ω1r−

1 + ω2r−
2 + ω3r−

3

= u
−
− + ω1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0

ceffp

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ω2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1/2
0
0
0

ceffs

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ω3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1/2
0
0

ceffs

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A21)

where u
−
− is the projection of solutions in the local element on the free surface; r

−
1 is the897

column in R
=

that corresponds to -ceffp in Λ
=
; r
−
2 and r

−
3 are the two columns in R

=
that898

correspond to -ceffs in Λ
=
. ω1, ω2 and ω3 are unknowns to be constrained from the free-899

surface boundary conditions, which we will further define below.900

We derive from ub
p the face-aligned boundary stress uσ,b

p = (σxx, σyy, σzz, σxy, σyz, σzx, vx, vy, vz, α)
T ,901

where902

uσ,b
p = Cpqu

b
q

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λeff + 2μeff λeff λeff 0 0
λeff λeff + 2μeff λeff 0 0 1
λeff λeff λeff + 2μeff 0 0 0 0

=

0 0 0 2μeff 0 0
0 0 0 0 2μeff 0
0 0 0 0 0 2μeff

0
−

I
=

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
u
−
b,

(A22)

where I
=
is a 4 by 4 identity matrix, while 0

=
and 0

−
are, respectively, the zero matrix and903

zero vector that complete the matrix Cpq.904

On the free surface, σxx, σxy and σzx in uσ,b
p should be zero. With these three more905

constraints, we solve the unknowns ω1, ω2 and ω3 in Eq. (A21). We can substitute these906

unknowns back in Eq. (A21) to obtain ub
q in the face-aligned coordinate system. We fi-907

nally compute the boundary flux with ub
q as below.908

F free
p = (F d

p nd)
∗
p

= TpqB
1,eff
qr ub

r. (A23)

Appendix B Frequency components of the ground motion recorded909

at different stations inside the Kathmandu Valley910

This section provides supporting information for reproducing the low-frequency en-911

hancement observed in ground motions from our simulations using the nonlinear dam-912

age model, IVM. We present comparisons between the frequency components of the ve-913

locity time series predicted by the elastic model and the IVM at four additional strong914

motion stations within the Kathmandu Valley, as shown in Fig. B1. Among the four listed915

stations, we find a prominent low-frequency enhancement in the simulations with IVM916

between 0.2 Hz and 0.35 Hz at station TVU and between 0.3 Hz and 0.45 Hz at station917
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KATNP. In contrast, the frequency spectra at stations THM and PTN show negligible918

differences between simulations using the linear elastic model and those with IVM. peak919

ground velocity (PGV) is strongly correlated with the prominence of the low-frequency920

enhancement. Specifically, the PGV at station TVU and KATNP is approximately twice921

and four times higher, respectively, than at station THM. The PGV at the station PTN922

is approximately 60% larger than that at station THM. With such an intermediate PGV923

value, only a minor low-frequency enhancement between 0.25 Hz and 0.4 Hz is observed924

at station PTN. The more prominent low-frequency enhancement associated with larger925

PGV is attributed to the stronger reduction in co-seismic moduli in regions with high926

PGV values.927
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Figure B1. Normalized frequency spectra of the upward-downward velocity time series

recorded between 20 s and 50 s for simulations employing elastic model (the dashed blue curve)

and IVM (the solid red curve) at 4 stations: (a) TVU, (b) KATNP, (c) THM, and (d) PTN. We

provide peak magnitudes of the velocity vector at the four stations on the top right of each sub-

figure.
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Broadband dynamic rupture modeling with fractal fault roughness, frictional1235

heterogeneity, viscoelasticity and topography: The 2016 Mw 6.2 Amatrice, Italy1236

earthquake. Geophysical Research Letters 49, e2022GL098872.1237

Tinti, E., Spudich, P., Cocco, M., 2005. Earthquake fracture energy inferred from1238

kinematic rupture models on extended faults. Journal of Geophysical Research:1239

Solid Earth 110.1240

Titarev, V.A., Toro, E.F., 2002. Ader: Arbitrary high order Godunov approach.1241

Journal of Scientific Computing 17, 609–618.1242

Toro, E.F., Millington, R., Nejad, L., 2001. Towards very high order Godunov1243

schemes, in: Godunov methods: theory and applications, Springer. pp. 907–940.1244

Uphoff, C., 2020. Flexible model extension and optimisation for earthquake simula-1245

tions at extreme scales. Ph.D. thesis. Technische Universität München.1246

Uphoff, C., Bader, M., 2016. Generating high performance matrix kernels for earth-1247

quake simulations with viscoelastic attenuation, in: 2016 international conference1248

on high performance computing & simulation (HPCS), IEEE. pp. 908–916.1249

Uphoff, C., Krenz, L., Ulrich, T., Wolf, S., Schneller, D., Kurapati, V., Knoll, A., Li,1250

D., Dorozhinskii, R., Heinecke, A., Wollherr, S., Bohn, M., Schliwa, N., Brietzke,1251

G., Taufiqurrahman, T., Anger, S., Rettenberger, S., Simonis, F., Gabriel, A.,1252

Pauw, V., Breuer, A., Kutschera, F., Hendrawan Palgunadi, K., Rannabauer, L.,1253

van de Wiel, L., Li, B., Chamberlain, C., Yun, J., Rekoske, J., G, Y., Bader,1254

M., 2024. SeisSol. URL: https://doi.org/10.5281/zenodo.14051105,1255

doi:10.5281/zenodo.14051105.1256

Uphoff, C., Rettenberger, S., Bader, M., Madden, E.H., Ulrich, T., Wollherr, S.,1257

Gabriel, A.A., 2017. Extreme Scale Multi-physics Simulations of the Tsunami-1258

genic 2004 Sumatra Megathrust Earthquake, in: Proceedings of the International1259

Conference for High Performance Computing, Networking, Storage and Analysis,1260

ACM, New York, NY, USA. pp. 21:1–21:16. doi:10.1145/3126908.3126948.1261

Vardanega, P.J., Bolton, M.D., 2013. Stiffness of clays and silts: Normalizing shear1262

modulus and shear strain. Journal of Geotechnical and Geoenvironmental Engi-1263

neering 139, 1575–1589.1264

Wang, S.Y., Zhuang, H.Y., Zhang, H., He, H.J., Jiang, W.P., Yao, E.L., Ruan, B.,1265

Wu, Y.X., Miao, Y., 2021. Near-surface softening and healing in eastern Honshu1266

–37–



manuscript of JGR: Solid Earth

associated with the 2011 magnitude-9 Tohoku-Oki Earthquake. Nature communi-1267

cations 12, 1–10.1268

Wei, S., Chen, M., Wang, X., Graves, R., Lindsey, E., Wang, T., Karakaş, Ç., Helm-1269
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