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Earthquake Rupture Forecast (ERF) models, which are one of the two main modeling
components used in modern seismic hazard and risk analysis. One primary future
objective is to provide fully time-dependent models that include both elastic rebound
and spatiotemporal clustering nationwide, which can be particularly important for
shorter-term hazard and risk considerations (e.g., earthquake insurance products). We
also discuss the importance and perennial challenges associated with quantifying
epistemic uncertainties, including those associated with deformation-model slip rates,
un-quantified sampling errors with respect to off-fault seismicity, and any spatial
covariances. The need for more physics-based approaches is also emphasized, as is
the benefit of adding model valuation (quantifying usefulness) to our verification and
validation protocols. Given the multidisciplinary and system-level nature of this activity,
modular design is critical. Future updates will also draw from best-available science by
both the U.S. Geological Survey and the external community. The primary goal of this
paper is to highlight plans that guide research and facilitate community engagement
with model development, especially with respect to lowering the entry barrier for early
career scientists and engineers. The paper is written so readers can focus on the
sections that interest them most (see table of contents), with the Introduction and
Discussion providing a stand-alone overview and summary.
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 17 

Abstract 18 

We articulate a scientific vision and roadmap for the development of improved Earthquake Rupture 19 

Forecast (ERF) models, which are one of the two main modeling components used in modern 20 

seismic hazard and risk analysis.  One primary future objective is to provide fully time-dependent 21 

models that include both elastic rebound and spatiotemporal clustering nationwide, which can be 22 

particularly important for shorter-term hazard and risk considerations (e.g., earthquake insurance 23 

products). We also discuss the importance and perennial challenges associated with quantifying 24 

epistemic uncertainties, including those associated with deformation-model slip rates, un-25 

quantified sampling errors with respect to off-fault seismicity, and any spatial covariances. The 26 

need for more physics-based approaches is also emphasized, as is the benefit of adding model 27 

valuation (quantifying usefulness) to our verification and validation protocols.  Given the 28 

multidisciplinary and system-level nature of this activity, modular design is critical.  Future updates 29 

will also draw from best-available science by both the U.S. Geological Survey and the external 30 

community. The primary goal of this paper is to highlight plans that guide research and facilitate 31 

community engagement with model development, especially with respect to lowering the entry 32 

barrier for early career scientists and engineers.  The paper is written so readers can focus on the 33 

sections that interest them most (see table of contents), with the Introduction and Discussion 34 

providing a stand-alone overview and summary. 35 

  36 
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Introduction & Background 111 

 112 

 The Congressionally enacted Earthquake Hazards Reduction Act of 1977 and subsequent 113 

reauthorizations give the U. S. Geological Survey (USGS) statutory responsibility to study, monitor, 114 

broadcast, and forecast earthquake activity, which it accomplishes via the USGS Earthquake 115 

Hazards Program (Hayes et al., 2024). With respect to forecasting, the USGS produces official 116 

seismic hazard assessments, which quantify the probability of future ground shaking levels 117 

throughout the country (see Figure 1 for USGS regions of purview).  These results are used in 118 

various earthquake risk mitigation efforts, including building code design requirements and various 119 

types of earthquake insurance products.  The USGS also participates in various earthquake risk 120 

analyses, which help quantify threats and consequences associated with the built environment (e.g., 121 

Jaiswal et al., 2023). 122 

Seismic Hazard Model Components  123 

 124 

 As depicted in Figure 2, modern seismic hazard assessment relies on two main modeling 125 

components: 1) an Earthquake Rupture Forecast (ERF), which defines the probability of every 126 

possible fault-rupture event in a region and over a specified timespan (or a suite of synthetic 127 

catalogs of such events); and 2) a Ground Motion Model (GMM), which provides a probability 128 

distribution of possible shaking at one or more sites for a given fault rupture (or a suite of synthetic 129 

seismograms, which can be used to infer a probability distribution).  While the division between 130 

ERFs and GMMs is somewhat artificial (i.e., these components could eventually be merged) the 131 

distinction will likely remain both crucial and useful for at least another decade. This report is 132 

focused on ERF development, although the themes addressed in this Introduction apply equally 133 

well to GMMs. 134 

https://www.fema.gov/sites/default/files/documents/fema_p-366-hazus-estimated-annualized-earthquake-losses-united-states.pdf
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 A few decades ago, both ERF and GMM models were relatively simple (e.g., a single individual or 135 

group could construct both), but today, as we add more realism, these models are much more 136 

"system level" in terms of requiring integration and consistency among a broad range of disciplines 137 

(e.g., seismology, geology, geodesy, and earthquake physics, as illustrated at the top of Figure 2).  138 

Furthermore, while in the past these models primarily influenced a single flagship product (the 139 

National Seismic Hazard Model (NSHM); e.g., Petersen et al., 2023), they are now applicable to an 140 

increasing wide array of applications, such as operational earthquake forecasting (real-time 141 

information on evolving event sequences; Jordan and Jones, 2010; Jordan et al., 2014), as a Bayesian 142 

prior for earthquake early warning (e.g., Cua and Heaton, 2007), and for hazard assessments 143 

related to tsunamis, landslides, and liquefaction.  144 

Biggest Potential Improvements to Seismic Hazard Models 145 

 146 

 All models embody assumptions, approximations, and data uncertainties, so we are perpetually 147 

on the lookout for potential enhancements.  Currently, both ERFs and GMMs have a single, major 148 

improvement that could be made.  For ERFs, this is adding full time-dependence.  Thus far, our 149 

NSHMs have generally been based on time-independent ERFs, especially in terms of ignoring the 150 

spatiotemporal clustering of earthquakes (e.g., aftershocks, which can be large and damaging).  151 

While these approximations are certainly more adequate for the 50-year durations and low 152 

exceedance probabilities considered in typical building codes (the traditional use of NSHMs; e.g., 153 

Building Seismic Safety Council, 2020; Luco et al., 2015), time-dependent effects may be 154 

consequential for the shorter-term hazard or risk estimates relevant to, for example, earthquake 155 

insurance and catastrophe bonds (e.g., Goda et al., 2014), response and recovery efforts  (e.g., 156 

Gerstenberger et al., 2014; Bazzurro et al., 2006), and building codes for temporary structures (e.g., 157 

Mohammadi, 2008). Time-dependence may also be impactful for the higher 50-year exceedance 158 
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probabilities in building codes governing the retrofit of existing structures (e.g., American Society of 159 

Civil Engineers, 2023), the design of tall buildings (e.g., Pacific Earthquake Engineering Research 160 

Center, 2017), and community resilience (e.g., NIST-FEMA, 2021; Blowes et al., 2023).   161 

 Figure 3 illustrates how spatiotemporal seismicity clustering influences earthquake rates (and 162 

the probability of large events by proxy) over a 100-year period, revealing not only order-of-163 

magnitude rate increases following large events, but relatively quiet times as well (see caption for 164 

details).  The general rule of thumb is that every earthquake has about a 5-10% chance of being 165 

followed by something even larger in the week that follows (Reasenberg and Jones, 1989, 1994), 166 

which has been borne out by numerous large-event sequences. This means the 1-year likelihood of 167 

fatalities and financial losses can increase by an order of magnitude following a large mainshock, 168 

whereas earthquake loss modelers typically find 10% changes actionable (e.g., Field, Porter, et al., 169 

2017).  Our current official hazard models ignore this time dependence, which is why the 2023 170 

USGS NSHM explicitly states that applicability is restricted to return periods above ~475 years 171 

(Petersen et al., 2023).  Addressing this limitation is a major theme of this paper.  172 

 With respect to GMMs, the most impactful improvement will be to relax the so-called "ergodic" 173 

assumption (Anderson and Brune, 1999), which basically means developing rupture- and site-174 

specific GMMs (or path-specific models if "path" implicitly includes source and site effects).  The 175 

seismic-hazard calculation for a site involves considering the ground motion produced by every 176 

possible earthquake rupture (defined by the ERF).  Therefore, we would ideally have multiple 177 

realizations of the ground motion produced at each site and for each rupture. Unfortunately (from a 178 

predictability perspective), only a tiny fraction of ERF-represented ruptures has actually occurred, 179 

and those that have produced observed data at only a tiny fraction of sites.  Thus, empirical GMMs 180 

have been forced to aggregate the limited data by magnitude, distance, and a few other variables, 181 

and to apply the consequent, collective variability to that assumed for each unique rupture and site 182 
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combination.  Were we ever to obtain enough recordings, however, we would surely discover that 183 

ground motions for each specific rupture and site combination are systematically higher or lower, 184 

and less variable, than implied by this "ergodic" model.  Efforts to relax this assumption have 185 

demonstrated that doing so can have a dramatic influence on inferred hazard (e.g., Wang and 186 

Jordan, 2014; Abrahamson et al., 2019). 187 

Uncertainty Quantification  188 

 189 

 The hazard and risk posed by an earthquake generally increases with magnitude, which poses a 190 

perennial challenge in that the paucity of larger magnitude events means we are constructing and 191 

testing models with sparse datasets. One consequence and challenge is a need to quantify 192 

forecasting uncertainties, especially given inevitable modeling assumptions, approximations, and 193 

input data limitations.  Such uncertainties are referred to as "epistemic" (due to a lack of 194 

knowledge, which means they could be reduced with further study) in contrast to "aleatory" 195 

uncertainty (intrinsic variability built into a model representing luck of the draw, which cannot be 196 

reduced with more information). This distinction is model dependent in that aleatory uncertainty 197 

can, for example, get converted to epistemic as more parameters are added to a model (see 198 

Marzocchi and Jordan (2018) for an advanced discussion).   199 

 The bottom line is an ERF, or any model for that matter, is limited and questionable without 200 

some indication of epistemic uncertainties.  These are traditionally represented with a logic tree, in 201 

which branches represent the set of options and relative weights (the likelihood of being correct) 202 

for each uncertain model element (see Figure 5 of Petersen et al. (2023) for an example). The result 203 

is some generally large number of alternative models representing the range of possibilities.  204 

Ideally this set is mutually exclusive and collectively exhaustive, but this is usually difficult to 205 

achieve due to, for example, unanticipated correlation among branches and unknown unknowns 206 
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(missing branches).  Full-disclosure obligations dictate that we nevertheless do the best we can, and 207 

while we continually make significant progress, defining an adequately complete and 208 

computationally manageable set of branches  remains a grand and perennial challenge.  A practical 209 

manifestation is that our forecasting uncertainties are generally still growing with each new model, 210 

whereas we want to get to where new research reduces overall uncertainties. A related challenge is 211 

that regions with less information may imply less uncertainty, whereas the opposite should be true.    212 

Physics-Based Modeling  213 

 214 

 Another consequence and challenge due to limited large-magnitude data is a need for more 215 

physics-based modeling approaches, which effectively enable inferences where we lack adequate 216 

observations to constrain statistical models.  However, physics-based modeling presents its own set 217 

of challenges including: having an adequate understanding and numerical representation of the 218 

physical process; developing and maintaining advanced computational platforms; access to rapidly 219 

evolving high-performance-computing facilities; management and processing of massive data sets; 220 

representing and propagating epistemic uncertainties; and maintaining reproducibility.  For these 221 

reasons, the USGS relies heavily on external collaborations to develop and maintain such 222 

capabilities.  Ultimately, physics-based models could be used directly for hazard and risk 223 

estimation, but this is probably at least a decade away.  For now, we use them to help guide the 224 

functional form of more empirical, traditional models.  Nevertheless, it is hard to imagine an activity 225 

that will have a greater impact on what earthquake hazard models look like 20 years from now 226 

given the rarity of large, damaging events. 227 

Basic Research  228 

 229 
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 A key to success with respect to the above model-development challenges is having a strong 230 

and robust earthquake research program, both with respect to identifying and testing the various 231 

scientific hypotheses underpinning the range of viable models, but also with respect to developing 232 

more physics-based approaches.  This obviously includes focus on model elements deemed "best-233 

available science" (defined in Jordan et al. (2023)) with respect to current applications, but also 234 

more exploratory or curiosity-driven science to enable unanticipated innovations.  It is also 235 

important to recognize that system-level ERF and GMM models serve not only practical 236 

applications, but also form a crucial basis for investigating and testing scientific hypotheses.  More 237 

specifically, the process of combining insights from different disciplines (system-level model 238 

construction) often reveals incompatibilities that trigger new investigations that help resolve 239 

outstanding questions much more efficiently than siloed disciplines ever could. 240 

Verification, Validation, and Valuation  241 

 242 

 Another key to ERF development is having robust verification, validation, and valuation 243 

protocols.  Verification ensures our models are implemented as intended (e.g., code debugging).  244 

Validation is the extent to which the models are consistent with nature, which is challenging given a 245 

paucity of data at the large magnitudes that dominate hazard, as discussed more below.   246 

 Valuation is a relatively new concept (e.g., Jordan et al., 2011) born out of the phrase "all models 247 

are wrong ... some are useful" (Box, 1980).  More specifically, given all models embody assumptions, 248 

approximations, and data uncertainties, perhaps the most relevant question is whether a new or 249 

competing model represents value added (e.g., does the increased usefulness outweigh the cost of 250 

development and maintenance?).  The answer to this question depends on the particular use (e.g., 251 

building codes, earthquake insurance, catastrophe bonds). As already noted, our NSHMs have 252 

effectively been tailored for building codes (time-independent, individual site hazard curves).  More 253 
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specifically, questions arose following the release of the 2023 NSHM (Petersen et al., 2023) on 254 

whether the model is appropriate for shorter-term and/or spatially distributed hazard and risk 255 

metrics, which represents a significant issue for the insurance community (e.g., Jordan et al, 2023). 256 

Broader valuation depends on having an operationalized ability to compute an adequate range of 257 

hazard and risk metrics during model development, which is currently a work in progress. Such 258 

valuations can also identify which uncertain model elements are most impactful with respect to 259 

real-world decisions, which feeds back to identifying which scientific studies might be most 260 

beneficial.  This would also sharpen any research priority statements that are currently based on 261 

informed speculation. 262 

 263 

Objectives Of This Document  264 

 265 

 The purpose of this ERF-development roadmap is to: 1) articulate goals, priorities, and 266 

opportunities (low hanging fruit); 2) identify and track the various modular elements that need to 267 

be developed and integrated; 3) clarify how potential participants may contribute; and 4) identify 268 

model aspects that need particular attention.  This effort builds on accomplishments and lessons 269 

learned from the time-independent ERFs developed for the USGS NSHM (Petersen et al., 2023), 270 

including and ERF model for Hawaii (Petersen et al., 2021), Alaska (Powers et al., 2024), and the 271 

Conterminous United States (Field et al., 2023, referred to hereafter as 2023-CONUS-ERF-TI, in 272 

which "TI" indicates time independence).  The latter also provides a comprehensive overview of 273 

these efforts, including model component and construction details, the contributions represented 274 

by more than 25 supporting publications, and an unprecedented review process (Jordan et al. 275 

(2023), which was particularly influential on the views represented here).  We admit this is a USGS-276 

centric roadmap and acknowledge that other countries have some unique issues and perspectives 277 
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(e.g., Gerstenberger et al., 2020; Meletti et al., 2021; Gerstenberger et al., 2023; Danciu et al., 2024; 278 

Mizrahi et al., 2024), which are not addressed or debated here.  We also emphasize that this paper 279 

does not represent a comprehensive review of related research; rather, we cite papers that provide 280 

more information on each topic at hand. 281 

 Mindful that many readers will not want to read this entire document, it has been written so 282 

that the Introduction and Discussion sections stand alone with respect to key, general points 283 

(leading to some redundancy for those reading the entire document).  There is also an uneven level 284 

of detail among sections, as our primary focus here is on ERF construction.  For example, we often 285 

describe what is needed from the various disciplinary groups (e.g., improved slip-rate uncertainties 286 

from tectonic geodesy) without detailed guidance on how to achieve these goals.  Likewise, we do 287 

not elaborate on exactly how to improve model testing, the review process, formalized expert 288 

solicitation (SSHAC, Cooke, Delphi, etc.), product dissemination and public messaging, or exactly 289 

what types of risk metrics that may deserve more scrutiny during model development.  Again, this 290 

is partly to avoid discussing reasonable debates surrounding these topics, all of which are more 291 

general in terms of being applicable to GMMs as well. Likewise, we do not discuss site-specific 292 

hazard analysis (in which practitioners go above and beyond the NSHM model with more detailed, 293 

local information), other than to note that the USGS is open to incorporating what is learned into 294 

our future NSHMs. 295 

 Several of our previously stated general goals were largely accomplished (Field et al., 2023), 296 

including a de-regionalization of model-component development (to eliminate spatial variability 297 

due merely to differing opinions), broader involvement of external collaborators and personnel 298 

across the Earthquake Hazards Program (beyond the NSHM project), and extensibility with respect 299 

to adding time dependence. 300 

Broader goals that were partially fulfilled but are still a work in progress include:  301 
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 More complete representation of epistemic uncertainties 302 

 Removal of previously applied complexities that no longer provide added value  303 

 Maximizing uniformity of model components and simultaneous updates across regions 304 

 More operationalization of model-component development (i.e., push-button updates) 305 

 Improved documentation with respect to implementation and reproducibility 306 

 Enabling customized solutions for users (e.g., a consultant that wants to change a slip 307 

rate constraint in a fault-system solution) 308 

 Better robustness with respect to personnel departures 309 

All these goals are discussed more extensively by Field et al. (2023) and exemplified below. 310 

 311 

ERF Construction (Main Model Elements) 312 

 313 

 Given the system-level nature of ERF development, a modularized construction is critical to 314 

keep things manageable and to enable different groups of scientists to focus within their respective 315 

areas of expertise.  The top-level model components utilized here, and depicted in Figure 4, include 316 

Fault Model(s), Deformation Model(s), Earthquake Rate Model(s), and Earthquake Probability 317 

Model(s). Figure 4 also illustrates that multi-cycle physics-based simulators could be substituted 318 

for the earthquake rate and probability components.  Fault Models provide the three-dimensional 319 

(3D) spatial representation of explicitly modeled faults.  Deformation Models supply at least slip-320 

rate estimates on these fault planes, but ideally the deformation occurring off these faults in 321 

surrounding regions as well.  The Earthquake Rate Model gives the long-term rate of every modeled 322 

earthquake rupture in the region (at some finite discretization level), which is sufficient for a time-323 
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independent ERF.  The Earthquake Probability Model states the likelihood of each rupture 324 

conditioned on other information, such as time since last event on faults and/or the behavior of 325 

nearby seismicity.  In sum, the consequent ERF essentially provides the probability of every 326 

modeled rupture for a specified timespan (a list of all potentially consequential events) or sets of 327 

synthetic catalogs for the timespan (also referred to as "stochastic event sets" in risk modeling).  328 

Multi-cycle physics-based simulators generate synthetic catalogs by modeling the stress 329 

accumulation on faults, the frictional properties leading to rupture, and the stress transfer caused 330 

by each earthquake. 331 

 Each of these elements is discussed in a dedicated section below, followed by further 332 

discussions of operational earthquake forecasting (OEF), model testing and valuation, the 333 

computational infrastructure, and the review process.  Note that we do not categorize discussions 334 

by tectonic region type (active crustal, stable continental, subduction zone, etc.), but rather mention 335 

any associated, unique challenges where appropriate. 336 

 337 

Fault Models 338 

 339 

 A fault model comprises the 3D geometry of explicitly modeled faults (see Hatem et al. (2022) 340 

and Thompson Jobe et al. (2022) for recent examples).  More specifically, a fault model is a list of 341 

fault sections that collectively represent a viable depiction of the known fault system (alternative 342 

interpretations, meaning epistemic uncertainties, are represented with separate fault models). In 343 

its simplest form, a fault section is composed of: 344 

 Fault trace (defined by a list of geographic locations) 345 

 Average fault dip and dip direction 346 
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 Average upper and lower seismogenic depths 347 

 A geologically inferred average rake 348 

 349 

 Fault sections vary widely in length, and some can be quite long (over 200 km) if associated 350 

attributes do not vary along strike.  More complicated, non-planar fault surfaces (e.g., subduction 351 

zones or listric faults) can be represented with triangular surfaces, or by defining an upper and 352 

lower fault trace (reflecting upper and lower seismogenic depths) together with the depths for a set 353 

of points on the fault surface (e.g., evenly discretized when projected to the Earth surface). 354 

What's really down there? 355 

 356 

 The adage that all models represent an approximation of the real system is especially true for 357 

faults.  A fundamental challenge is our limited understanding of what faults look like at depth, 358 

including the dip and its potential variation along strike.  Is a given fault a single, well-defined 359 

surface, or a labyrinth of interconnected micro surfaces, and what about connectivity between 360 

neighboring faults?  How much does this vary throughout the system, or even along a single fault?  361 

Efforts to constrain fault surfaces at depth include examinations of seismicity, seismic reflection 362 

data, and borehole studies, all of which provide only a limited view.  With respect to distinguishing 363 

areas where faulting is highly distributed, as opposed to a well-defined trace, a fault-zone polygon 364 

is typically defined (and sometimes centered on a proxy fault).  The question of where one fault 365 

ends and another begins is critical with respect to the likelihood of multi-fault ruptures, raising the 366 

issue of exactly how to best represent such uncertainties.   367 

What level of detail? 368 

 369 
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 Information on surface fault traces can be relatively detailed, especially when documented 370 

immediately following a (large) earthquake that ruptured to Earth's surface.  In addition to whether 371 

this detail projects to depth, as already noted, there is also the question of how repeatable it is 372 

between earthquakes (versus more chaotic behavior due to shallow geologic heterogeneities and 373 

free surface effects).  Sensitivity tests show that hazard maps are generally insensitive to these 374 

details, mostly because ground-motion models effectively smooth results over several kilometers. 375 

However, greater detail will presumably be influential and appropriate for fault displacement 376 

hazard and when utilizing more physics-based models.   377 

How many faults to include? 378 

 379 

 Given most earthquakes are caused by fault rupture, and we acknowledge that such 380 

earthquakes can occur almost anywhere (modeled with off-fault gridded seismicity discussed 381 

below), there are certainly many more faults than possibly can be identified.  Also, some of those we 382 

know about may be dormant or insignificant with respect to hazard.  On the other hand, adding a 383 

fault to a fault model may be consequential in terms of increasing inferred hazard.  Decisions on 384 

which faults to include are often based on subjective judgements, time constraints, and/or resource 385 

limitations.  Valuation analyses and sensitivity tests would help make such decisions more 386 

quantitative, although we would need to ensure that such interpretations are applicable for all 387 

hazard and risk metrics of potential interest. 388 

Upper and lower seismogenic depths? 389 

 390 

 Upper and lower seismogenic depth is another consequential, yet poorly understood concept.  It 391 

is meant to define the bounds of dynamic rupture, meaning any fault offset occurring above and 392 
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below this range represents stable slip that does not generate damaging seismic waves.  One 393 

problem is this boundary is probably not abrupt, but rather a zone of transition between stable and 394 

unstable slip.  Another is the possibility that this zone varies between earthquakes (e.g., larger 395 

earthquakes may reach below the lower seismogenic depth due to conditional stability of dynamic 396 

rupture).  These questions are intertwined with how creep is handled in deformation models and 397 

how scaling relationships convert rupture area to magnitude, both of which are discussed below.  398 

 399 

Alternative Fault Models? 400 

 401 

 All the above uncertainties can be represented by defining alternative Fault Models and 402 

assigning a relative probability that each is correct (logic-tree branches representing epistemic 403 

uncertainties).  That said, the number of alternative Fault Models was actually reduced to zero in 404 

the latest NSHM, mostly because the impact of available options was generally minimal with respect 405 

to several hazard and risk metrics (Field et al., 2023).  This reversal does not mean these 406 

uncertainties are negligible, but rather reflects the triage mode with respect to addressing the most 407 

consequential issues.  In addition, one should not presume that the insensitivities inferred for 408 

limited set of hazard and risk metrics examined thus far will apply to all other metrics. 409 

Furthermore, many of these questions will be much more relevant for physics-based models, 410 

including the sensitivity of multi-fault ruptures to geometric and jump-distance details between 411 

faults.  Alternatively, physics-based models may be our best option for addressing some of the 412 

questions raised here, such as how dynamic rupture transitions to stable slip near upper and lower 413 

seismogenic depths.   414 



   

 

 

19 

 In summary, it is essential to remain vigilant with respect to fault model uncertainties (e.g., by 415 

conducting sensitivity tests with alternative representations), but also to acknowledge that there 416 

will always be upper limits on what we will ever know (and plan ERF development accordingly).  417 

 418 

Deformation Models 419 

 420 

 Deformation Models provide, for a given Fault Model, slip-rate, rake, and creep-rate estimates 421 

for each fault section, plus the spatial distribution of "off-fault" deformation (if produced by the 422 

model).  Those utilized in the western U.S. portion of the 2023-CONUS-ERF-TI are described in a 423 

special issue of Seismological Research Letters (see Pollitz et al. (2022)  for the overview paper).  424 

The inputs to these models, in addition to a Fault Model, are typically the following: 425 

 426 

1) Geologic slip-rate estimates, including uncertainties, at points on faults (e.g., Hatem et al., 427 

2022), which are either explicit constraints if site-specific geologic studies are available, or 428 

categorical proxy estimates if studies are lacking (based on analogous faults). 429 

2) Global Navigation Satellite System (GNSS) velocity vectors (e.g., Zeng, 2022a). 430 

3) "Ghost transient" corrections for time-dependent effects caused by viscoelastic relaxation 431 

following large historic events (Hearn, 2022) 432 

4) Fault creep inferences (e.g., Johnson et al., 2022). 433 

 434 

The five different deformation models developed for the 2023-CONUS-ERF-TI highlight several 435 

issues that can benefit from further study.  First, there was often a very high and consequential 436 

https://pubs.geoscienceworld.org/srl/issue/93/6
https://doi.org/10.1785/0220220143
https://doi.org/10.1785/0220220180
https://doi.org/10.1785/0220220156
https://doi.org/10.1785/0220220186
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degree of variability among models in terms of best-estimate slip rates, governed largely by how 437 

much each model was forced to match the geologic slip-rate constraint. Models that weighted mean 438 

geologic values heavily were largely in agreement, whereas those that were less stringent (e.g., with 439 

a more uniform prior with respect to geologic uncertainties) were more variable.  Results from the 440 

latter were often referred to as "outliers" but this does not necessarily mean they are wrong (as 441 

reflected by the fact that such models were given low but non-zero weight). 442 

 443 

Improved Epistemic Uncertainty Representation in Deformation Modeling 444 

 445 

 The fundamental question is how any underdetermined slip rates are being handled, 446 

particularly if geologic uncertainties are large and GNSS constraints are sparse.  In this case, there 447 

will be a range of slip rates that fit the data equally well (the so-called null space from inverse 448 

theory).  To borrow an example from Field et al. (2023), consider two closely spaced parallel faults 449 

with no geologic slip-rate constraints (or very large uncertainties), but nestled between two GNSS 450 

stations.  These faults would exhibit a near-perfect slip-rate tradeoff in terms of satisfying the GNSS 451 

deformation (e.g., a maximum slip rate on one with a minimum on the other, or vice versa, or any 452 

linear combination of these two models, would fit the data equally well).  To reflect such tradeoffs, 453 

multiple realizations from each deformation model would be required to map out the complete 454 

range of viable models (effectively representing the slip-rate covariance between faults).  Instead, 455 

we presently have a "best estimate" from each of the five western U.S. models, and it is highly 456 

doubtful that this set represents the complete range of possibilities. 457 

 458 

Improved Ghost Transient Corrections 459 
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 460 

The deformation models for the 2023 NSHM effort accounted for ghost transients contributed by 461 

earthquake cycles on separate source areas for the southern San Andreas Fault (SAF), the northern 462 

SAF, and the Cascadia megathrust (Hearn, 2022). This correction accounts for time-dependent 463 

deformation during any individual cycle and quantifies the transient at a given time (e.g., the GNSS 464 

observation periods used for the input data) referenced to the expected secular deformation 465 

contributed by that cycle. While the employed corrections in the 2023 NSHM effort covered major 466 

fault cycles and improved the deformation models’ fit to the data, questions arise as to the accuracy 467 

of the correction and whether cycles from additional faults, e.g., along the northern Eastern 468 

California Shear Zone (cycles of 1872 Owens Valley-type earthquakes), could be further significant 469 

contributions. Resolving these questions could require examination of more sophisticated 470 

viscoelastic deformation structures, numerical models that employ these structures, and assembly 471 

of relevant parameters describing additional earthquake cycles (e.g., Guns et al., 2021; Young et al., 472 

2023). 473 

Usefulness of off-fault deformation? 474 

 475 

 Four of the western U.S. deformation models also provided estimates of off-fault deformation 476 

(meaning distributed diffuse deformation that is not accounted for by explicitly modeled faults).  477 

Figure 14 of Pollitz et al. (2022) or Figure 4 of Johnson et al. (2023) reveal a high degree of off-fault 478 

variability between models.  Unfortunately, and as in the previous Uniform California Earthquake 479 

Rupture Forecast, Version 3 effort (UCERF3; Field et al., 2014), it is not clear how much of the 480 

implied features are real versus artifacts of model assumptions and approximations; hence, this 481 

information could not be used to estimate the rate of off-fault seismicity (as an alternative to the 482 

traditional smoothed-seismicity approach discussed below).  This is consistent with 483 

https://doi.org/10.1785/0120220136
https://doi.org/10.1785/0120220136
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recommendations of the deformation model review team (Johnson et al., 2023), who also discuss 484 

what it might take to improve such estimates. 485 

 The previous UCERF3 effort also had the intriguing implication that 30% to 60% of the off-fault 486 

moment rate predicted by deformation models must be aseismic (the maximum magnitudes 487 

required to satisfy full moment rates were unrealistically high).  Not only was this issue never 488 

resolved, but it has not yet been fully examined for the new deformation models. Another question 489 

is the extent to which block rotations can soak up shear strain without contributing to fault slip 490 

rates.   491 

 492 

Earthquake Rate Models 493 

  494 

 An earthquake rate model gives the long-term rate of every modeled earthquake rupture in a 495 

region and at some level of space-time discretization. The model is essentially a list of “sources,” 496 

where each source represents a collection (or list) of related ruptures. The two main types of 497 

sources are off-fault gridded seismicity and fault-based sources, where the latter is further divided 498 

into classic fault sources, fault-zone sources, and fault-system solutions (the last one to represent 499 

multi-fault ruptures).  Field et al. (2023) give an in-depth description of each source type, as well as 500 

implementation details for those utilized in the 2023-CONUS-ERF-TI.  We do not repeat 501 

descriptions of classic fault sources here because they are simple and also represented in the fault-502 

system-solution framework.  Advantages of the latter include automatic computing of various 503 

diagnostics (e.g., implied slip rates), accommodating time dependence when desired, and 504 

applicability to fault systems in any type of tectonic region.  Fault-zone sources are also 505 

conceptually simple, thus, we do not discuss their implementation details either. 506 
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 A fault-system solution, which represents the rate of large earthquakes throughout an 507 

interconnected fault system, is specified by: 508 

 509 

1) a list of fault subsections (same finite-surface representation as described in Fault Models 510 

section above) 511 

2) a list of fault ruptures (each of which has a magnitude, long-term rate, average rake, and a 512 

finite rupture surface defined as a list of utilized subsections).  513 

 514 

The rates of ruptures can be: 1) prescribed by imposing a specific magnitude-frequency 515 

distribution (MFD) for simple fault systems; 2) based on an inversion that is constrained to match a 516 

variety of data constraints; or 3) inferred from multi-cycle physics-based simulator results (e.g., 517 

Shaw et al., 2018; Milner et al., 2021). 518 

 519 

Inversion-Based Fault System Solutions 520 

 521 

Inversion-based solutions are the most general, flexible, reproducible, and comprehensive with 522 

respect to representing a full range of viable models (epistemic uncertainties). The model usually 523 

applies to "supra-seismogenic" ruptures (i.e., length ≥ full down-dip width) and event rates are 524 

inferred by satisfying various data constraints using inverse theory (Figure 5).  The literature on 525 

this approach is now extensive (Andrews and Schwerer, 2000; Field and Page, 2011; Field et al., 526 

2014; Page et al., 2014; Valentini et al., 2020; Field et al., 2020a, Field et al., 2023, and Milner and 527 

Field, 2023) and we believe this type of model has received much more scrutiny than classic fault 528 



   

 

 

24 

sources.  Furthermore, with recent enhancements such as full adjustability with respect to 529 

segmentation and multifault ruptures (Milner and Field, 2023), future work might amount to fine 530 

tuning and (hopefully) trimming some of the present epistemic uncertainties.  Field et al. (2023) 531 

provide a comprehensive overview and Milner and Field (2023) state important implementation 532 

details, which are not repeated here.  Instead, we focus on the main ingredients and possible 533 

refinements. 534 

 535 

Defining the Rupture Set (Plausibility Filter) 536 

 537 

 Starting from a deformation model (and the associated fault model), a crucial step is defining 538 

the set of viable ruptures using a "plausibility filter" because otherwise the set can become 539 

unmanageable for large fault systems. The latest approach, developed by Milner et al. (2022), 540 

utilizes Coulomb favorability metrics, and so far, no major issues have been identified.  That said, 541 

we do find specific cases that some question, usually a blockage to throughgoing rupture that 542 

geologists would like to relax (e.g. due to a fault gap being too large or Coulomb incompatibility 543 

with respect to styles of faulting). Exceptions can be made, of course, but we also want to keep 544 

things reproducible by avoiding ad hoc or "hard coded" exceptions. Further enhancements can be 545 

made to the plausibility filter, such as imposing a maximum rupture length (e.g., Rodriguez Padilla 546 

et al., 2024), but it is also important to keep in mind that no set of rules will be perfect, especially 547 

given inherent fault-model uncertainties. 548 

Treatment of Fault Creep 549 

 550 

https://doi.org/10.1785/0120210322
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 Creep estimates, where available (e.g., Johnson et al., 2022), are used to define a creep fraction 551 

for each fault within each deformation model (specified relative to the slip rate).  Creep fraction is 552 

then used to set the aseismicity factor and coupling coefficient, which are applied as a fractional 553 

reduction of seismogenic area and slip rate, respectively. For the 2023 NSHM, the first 40% of 554 

fractional creep defines a rupture-area reduction and the remainder a slip-rate reduction as 555 

follows: 556 

 557 

𝑖𝑓 𝑐𝑟𝑒𝑒𝑝 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ≤ 0.4: 558 

𝑎𝑠𝑒𝑖𝑠𝑚𝑖𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑐𝑟𝑒𝑒𝑝 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 559 

𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 1.0 560 

𝑖𝑓 𝑐𝑟𝑒𝑒𝑝 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 > 0.4: 561 

𝑎𝑠𝑒𝑖𝑠𝑚𝑖𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 = 0.4 562 

𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 1.0 −
1

1 − 0.4
(𝑐𝑟𝑒𝑒𝑝 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 − 0.4) 563 

 564 

Area reductions are accomplished by lowering the upper seismogenic depth (surface creep), and a 565 

default creep fraction of 0.1 is typically applied where data are lacking.  Here again, no major 566 

problems have been identified, but this may be more about our limited understanding of creep and 567 

its rupture manifestations than having an unquestionable model.  We also need to make sure GMMs 568 

are making consistent assumptions (e.g., with respect to depth to top of rupture). 569 

 570 

https://doi.org/10.1785/0220220186
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Scaling Relationships 571 

 572 

 The magnitude of each rupture is determined from rupture area using an empirical scaling 573 

relationship, with the latest options applied in the U.S. being specified by Shaw (2023) and 574 

summarized in Field et al. (2023).  Three of the models utilize a functional form of M=log(A)+c, 575 

where M and A are magnitude and area (km2) and c is constant with values of 4.1, 4.2, or 4.3 576 

(equally weighted) for plate boundary and intraslab events.   A "Width Limited" model is also 577 

applied, for which magnitudes scale with rupture length at lower magnitudes and with down-dip 578 

width at higher magnitudes (Shaw, 2023).   579 

 Scaling relations are also used to define the average slip for each rupture (used for satisfying 580 

slip rates in the inversion), with three options being defined for NSHM 2023: 1) that implied from 581 

moment (𝐷𝑎𝑣𝑒 = (101.5𝑀+9.05)/(𝜇𝐴), where 𝜇 is shear modulus); 2) square-root length scaling (𝐷𝑎𝑣𝑒 =582 

0.22√𝐿, where L is length (km)); and 3) constant stress drop scaling (e.g., Shaw, 2023).  Differences 583 

between these models reflect assumptions regarding the depth of rupture for larger events; the 584 

first option (1) assumes ruptures do not penetrate below the depth of microseismicity, producing a 585 

larger average slip than typically observed at the surface, whereas the other two options assume 586 

surface slip is consistent with that at depth and that large ruptures must therefore penetrate below 587 

microseismity depths (e.g., King and Wesnousky, 2007; Zielke et al., 2020). 588 

 We believe this set of models adequately covers the range of possibilities, so further work will 589 

hopefully trim some options, perhaps based on physics-based modeling.  One exception is a 590 

possible slip-rate dependence (Anderson et al., 2021). Another is with respect to large, multifault 591 

ruptures, for which scaling might be different (observations are sparse).  There also remains an 592 

alternative hypothesis that slip at a point on a fault is independent of rupture magnitude (Hecker et 593 

al., 2013), so further study may be in order. 594 

https://doi.org/10.1785/0120220144
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 595 

Average Slip Along Rupture 596 

 597 

 In satisfying fault slip rates from the chosen deformation model, assumptions need to be made 598 

about how average slip is distributed along the rupture length.  We have traditionally applied one of 599 

two options: a tapered rainbow (sin1/2; Weldon et al., 2007) model versus a uniform (boxcar) 600 

model.  Only the latter option was applied in the 2023 NSHM because implied differences were 601 

generally negligible, and applying the tapered model demands careful consideration of how slip 602 

rates transition along strike as well.  However, the biggest question is whether either of these 603 

models applies to large, multifault ruptures, which might exhibit tapers at jumping points (multiple 604 

rainbows).  Physics-based simulators could also be useful in addressing this question. 605 

Paleoseismic Event-Rates 606 

 607 

 Another important set of inversion constraints are paleoseismically inferred event rates, the 608 

derivation of which requires careful geologic interpretations and advanced statistical analyses (see 609 

McPhillips (2022) for a recent example).  If these constraints are at odds with slip rates, their 610 

influence can be adjusted to provide a range of models (epistemic uncertainties). An important 611 

element of this constraint is defining the probability of missed events (the fraction of ERF ruptures 612 

that might have gone undetected at the paleoseismic site). We have thus far applied a simple model, 613 

with a key parameter calibrated from a single San Andreas fault paleoseismic site. However, the 614 

probability of missed events likely varies from site to site, according to the local depositional 615 

environment and character of faulting. Another, antithetic type of uncertainty stems from the 616 

potential over-interpretation of the number of inferred events at a paleoseismic site, which would 617 

also be site dependent (McPhillips, 2022).  Better quantification of these uncertainties could 618 
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improve our rupture forecasts and might also help to address the so-called "paleo hiatus" problem 619 

in California (Biasi and Scharer, 2019). 620 

Target MFDs and b-value Branches 621 

 622 

 Solving for the rate of ruptures from slip rate and paleoseismic event rates is an inherently 623 

underdetermined problem, meaning there is a wide range of models that can fit the data equally 624 

well (the null space).  We therefore need a mechanism to control where each inversion lands in this 625 

null space so we can define a representative set of viable models (epistemic uncertainty). We can 626 

achieve this by specifying a target MFD shape for each fault section, and thus far we have assumed a 627 

Gutenberg-Richter distribution and specified the target b-value (the slope of the distribution in log-628 

linear space).  By adjusting the b-value over a range of values (e.g., between 0.0 and 1.0), we 629 

effectively consider a range of total-rate models that are believed to cover an adequate range of 630 

models in terms of hazard implications (and note that the b-value = 0.0 case produces a system-631 

wide MFD with b-value ≈ 1.0 due to varying fault sizes).   632 

  To date, applications have assumed that on-fault b-values are correlated across the region, 633 

which may not be correct.  Adjacent fault sections most certainly have correlated b-values (because 634 

they participate in the same larger events), but it is also reasonable to presume that distant faults 635 

are not correlated.  Assuming full correlation is more reasonable for site-specific hazard curves 636 

because they are typically influenced by just a few nearby faults.  However, the assumption is more 637 

questionable for spatially distributed hazard and risk estimates (e.g., average annual statewide 638 

losses), so one might at least want to lower the weights on extreme branches.  Better yet, we would 639 

define a specific b-value correlation structure, but unfortunately it is not obvious how to do so.  640 

Additionally, there may be certain well-studied faults (or categories of faults, such as those in a 641 

particular region and of a certain faulting style) that warrant different weighting of the b-value 642 
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branches.  In the meantime, exploring the implications of current assumptions with respect to 643 

spatially distributed hazard and risk metrics (a work in progress) could be influential. 644 

Segmentation Constraints 645 

 646 

 Segmentation refers to the extent to which ruptures are confined to individual faults versus 647 

being capable of jumping to neighboring faults (as multi-fault ruptures). An important recent 648 

innovation is the addition of flexible and efficient segmentation constraints that are (optionally) 649 

jump-distance dependent (Milner and Field, 2023).  The degree of segmentation is quantified by the 650 

fractional passthrough rate (set to zero for strict segmentation and 1.0 for zero co-rupture 651 

penalization). This is applied as an inequality constraint, meaning relative passthrough rates can be 652 

less but not greater than the target value (depending on the influence of other inversion data 653 

constraints).  For the western U.S. portion of the 2023-CONUS-ERF-TI, we defined five different 654 

logic-tree branches, going from a maximally segmented (classic) model to a completely 655 

unsegmented model (fault-to-fault jumps up to 15 km), with three intermediate models having 656 

various degrees of distance-dependent passthrough rates.  Note that these branches also reflect 657 

fault model uncertainties. For example, allowing a 15 km jump is in part a proxy for an unknown 658 

connector fault being present, and preventing short jumps via the classic model can be a proxy for 659 

the connectivity being over estimated.  660 

 We believe this set is a good representation of the viable range, with the current question being 661 

whether any branches should be trimmed, or their weights adjusted.  For example, there was much 662 

discussion of whether the more permissive branches are inconsistent with a lack of globally 663 

observed crustal ruptures with lengths exceeding 500 km (see text regarding Figure 21 of Field et 664 

al., 2023).  To this end, detailed surface-rupture observations and statistical analyses thereof (e.g., 665 

Biasi and Wesnousky, 2016, 2017; Rodriguez Padilla et al., 2024) might be informative, but 666 
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attempts thus far have been hampered by questions like whether those details project to depth and 667 

that our fault models generally lack such detail in the first place (our simplified traces do not reflect 668 

the detail we expect in future large ruptures). Questions also remain on whether ruptures can 669 

completely pass through the San Andreas creeping section, perhaps rupturing the entire San 670 

Andreas fault; answers implied by our 2023 model range from yes to no.  As with the b-value 671 

constraint above, we have assumed full spatial correlation with respect to segmentation branches 672 

(e.g., the classic model applies everywhere), which again may be a questionable approximation with 673 

respect to spatially distributed hazard and risk metrics.  We did not find these questions highly 674 

influential with respect to 2023 NSHM results (time-independent hazard curves at individual sites), 675 

but they could be highly consequential with respect to spatially distributed hazard and risk metrics 676 

(e.g., average annual loss in California).  Going forward, global compilations of observed rupture 677 

lengths and fault-jump distances will be important to further constrain both these and more 678 

physics-based models. 679 

Implementation Details 680 

  681 

 While we have asserted that fault system solutions are conceptually simple, we also admit that 682 

the inversion-based solutions are far from trivial and will always remain a black box for many 683 

stakeholders.  As such, it is important to interrogate results in every imaginable way, which we 684 

have thus far accomplished via extensive web-based solution reports (e.g., Milner and Field, 2023). 685 

So far, results have passed muster with respect to representing best available science (e.g., 686 

according to the 2023-CONUS-ERF-TI review panel; Jordan et al., 2023).  Considerable effort has 687 

also gone into the computational infrastructure in terms of numerical efficiency, automatization, 688 

and reproducibility (Milner and Field, 2023). That said, the remainder of this section discusses 689 

some implementation details or features that might benefit from further refinement. 690 
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 One challenge is handling correlation between the b-value and fault-segmentation branches 691 

because the latter has a strong influence on the MFD shape as well.  A variety of solutions were 692 

explored by Milner and Field (2023), several of which worked equally well in terms of equivalent 693 

hazard implications, but it's possible that something even better could be developed.   694 

 Our focus on supra-seismogenic ruptures (full down-dip ruptures) means that the minimum 695 

magnitude on some shallow dipping faults can be as large as M 7 (smaller events are treated as 696 

gridded seismicity). In other words, we no longer float ruptures down dip, which could be rectified 697 

if deemed problematic (especially on subduction zones, as exemplified by Gerstenberger et al., 698 

2024). 699 

 We continue to use simulated annealing to solve the inverse problem, but it's possible that an 700 

even better numerical solver could be found with respect to: computational efficiency; controlling 701 

where results land in the solution space; even-fitting data (getting a range of solutions that mimic 702 

data uncertainties); and generating models with smoother MFDs, minimized rate variability along 703 

strike, and better control on the fraction of zero-rate ruptures. 704 

 With respect to reducing fault slip rates by the amount taken up by subseismogenic ruptures, 705 

we have not yet found an algorithm for obtaining fault-specific values (assumptions required are 706 

highly questionable).  Although the impact is generally negligible relative to overall uncertainties, 707 

further refinements here might be value added. 708 

Adding Other Geologic Constraints 709 

 710 

 A significant enhancement for fault system solution inversions would be support for other 711 

geologic constraints, such as paleoliquefaction, tsunami inundation, fragile geologic features, or 712 

paleolacustrine disturbances or deposits, some of which are already used to constrain CEUS and 713 
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subduction-zone sources (e.g., Thompson Jobe et al., 2022; Walton et al., 2021).  A challenge is that 714 

none of these observations relate directly to rupture rates, but rather reflect ground shaking events.  715 

One approach is to assume the observations only associate with ruptures on a specific fault (or fault 716 

zone), which is effectively what has been done to date.  This makes sense if strict segmentation or a 717 

characteristic rupture is assumed, but the inversion approach relaxes these assumptions.  In 718 

general, there will be many different ruptures that could have produced the observations, so what 719 

we ultimately need are models that provide the probability of producing the disturbance given any 720 

arbitrary rupture.  Implementing such constraints in the inversion will be relatively easy compared 721 

to creating these probability models.  A more modest approach would be to check hazard results 722 

against such models (post processing reality check), perhaps leading to branch weight adjustments. 723 

Gridded Seismicity Sources  724 

 725 

 Gridded seismicity or “background” sources represent the seismicity that is not captured by 726 

explicitly modeled faults (see Llenos et al. (2024) for a recent example).  These are presently 727 

composed of:  728 

 729 

1) A polygon defining the region and a spatial discretization interval to define the grid cells 730 

(typically 0.1 degrees) 731 

2) A spatial probability distribution defining the relative rate of earthquake nucleation within 732 

each grid cell 733 

3) A Total M≥5 Rate and b-value for the region 734 

4) An assumed maximum magnitude for the region (or spatial distribution thereof) 735 

https://doi.org/10.1146/annurev-earth-071620-065605
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5) A probability distribution of focal mechanisms for each grid cell 736 

6) Rules for converting a nucleation point into a finite rupture surface (usually application of a 737 

random strike) 738 

 739 

This type of source is also used to represent events within a down going subduction slab.  The main 740 

ingredients utilized in generating the above elements are an earthquake catalog, aftershock 741 

declustering algorithms, and spatial smoothing procedures. 742 

Earthquake Catalogs 743 

 744 

 Earthquake catalogs usually represent an aggregation of events identified by seismic networks 745 

(instrumental seismicity) and those inferred from historical records (e.g., newspaper accounts). 746 

Important steps in assembling a suitable catalog (e.g., Mueller, 2019) include the removal of 747 

duplicate events (recorded by multiple seismic networks), explosions and other mining-related 748 

events, and perhaps other human-induced earthquakes (depending on how these are handled in 749 

the model).  Network reported magnitudes are generally converted to uniform moment 750 

magnitudes, and bias corrections are made with respect to sampling events from a Gutenberg-751 

Richter distribution.  Ideally, uncertainties are provided for all event attributes.  Finally, magnitude 752 

incompleteness estimates are needed to define the probability that events went undetected (ideally 753 

as a function of time, space, and magnitude). 754 

 Multiple issues make achieving a uniform earthquake catalog challenging.  Routinely 755 

determined magnitudes are subject to numerous potential biases, which vary as a function of 756 

magnitude type, space, time, and monitoring network. Although conversion relationships have been 757 

developed in some areas to try to homogenize the available catalog magnitudes to uniform moment 758 
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magnitudes (Electric Power Research Institute/Department of Energy/Nuclear Regulatory 759 

Commission, 2012), these conversion relationships do not always perform well, and biases of up to 760 

0.5 magnitude units (equivalent to a factor of ~3 in seismicity rate for typical b-values) have been 761 

observed in some cases (e.g., Shelly et al., 2022).  These biases can also impact the estimated b-762 

values from a catalog.  763 

Fortunately, avenues exist to improve catalog homogeneity. Although previous work has mostly 764 

used a single “preferred” magnitude for each earthquake in the catalog, for modern events multiple 765 

magnitudes often exist, and these magnitudes could be used together to provide a more stable 766 

converted moment magnitude. Further use of techniques that can directly compute moment 767 

magnitude for small events (e.g., Mayeda et al., 2003) could also help to calibrate conversion 768 

relationships and reduce dependency on them. 769 

Total Regional Rate and b-value Estimates 770 

 771 

 The total magnitude-frequency distribution of a region is usually assumed to follow a 772 

Gutenberg Richter distribution, which can be specified by the Total M≥5 Rate, b-value, maximum 773 

magnitude, and the shape of the distribution at the largest magnitudes.  State of the art for inferring 774 

b-value is the "b-Positive" technique of van der Elst (2021).  Inferring Total M≥5 Rate is less 775 

standardized, often involving Monte Carlo sampling algorithms that account for uncertainties in b-776 

value, event magnitudes, and spatially and temporally variable magnitudes of completeness.  A 777 

particular concern is whether such procedures produced biased estimates in low-seismicity regions 778 

(Iturrieta et al., 2024). 779 

Gridded Seismicity Spatial PDFs 780 

 781 

https://doi.org/10.1785/0120230164
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 Inferring the long-term spatial probability density function of seismicity rates requires catalog 782 

declustering. Otherwise, rates will be biased high where larger events happen to have occurred and 783 

biased low where they have not (e.g., Frankel, 1995).  Lacking a perfect model for aftershock 784 

occurrence, a variety of catalog declustering algorithms have been adopted, including Gardner and 785 

Knopoff (1974), Reasenberg (1985), Zaliapin and Ben-Zion (2020), and others. Declustered catalogs 786 

are then smoothed and normalized to provide a spatial probability distribution of event nucleation, 787 

typically using either a fixed width, two-dimensional (2D) Gaussian kernel (Frankel, 1995) or an 788 

adaptive-width, nearest-neighbor algorithm that provides a more spatially refined estimate where 789 

there is a higher density of observed events (Helmstetter et al., 2007). Floor-level rates may be 790 

applied in areas with very few earthquakes. See Llenos et al. (2024) for recent examples of these 791 

procedures, and Llenos and Michael (2020) for a newer, promising approach that is particularly 792 

attractive in terms of being more consistent with assumptions made in the fully time dependent 793 

models discussed below. 794 

 A large uncertainty that has yet to be fully addressed is the sampling error associated with this 795 

spatial distribution being inferred from one historical sample of earthquakes.  In other words, is 796 

what we have inferred from recent history consistent with what we may see in the next equivalent 797 

timeframe, or what is the variance we should see over 10,000 such samples?  The fully time-798 

dependent models discussed below (including spatiotemporal clustering) are seemingly required 799 

to adequately address this question, as they can provide any number of historically consistent 800 

samples with realistic aftershocks sequences.  However, we will need to operationalize these 801 

analyses, and perhaps utilize high-performance computing, to handle such large synthetic data sets. 802 

Maximum Magnitudes, Focal Mechanisms, and Finite Rupture Surfaces 803 

 804 

https://doi.org/10.1785/0120230220
https://doi.org/10.1785/0120190279
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 Assumptions regarding maximum magnitudes are generally based on expert opinion, in part 805 

because they are generally not that consequential, especially in areas dominated by fault-based 806 

ruptures.  Nevertheless, further investigations could be impactful, especially for longer period 807 

ground motions in seismically quieter regions.  Promising approaches include pooling data across 808 

tectonically similar regions (Coppersmith et al., 2012; Vanneste et al., 2016) and extreme value 809 

theory (although Zöller (2013, 2022) articulates challenges with the latter). 810 

 The spatial distribution of focal-mechanism probabilities is another area of potential 811 

improvement.  Current models generally specify the fraction of strike slip, reverse, and normal 812 

faulting events over large regions, and assuming a uniform probability of strike direction, so we 813 

could certainly do better by considering regional stresses, earthquake focal mechanisms, and 814 

geologic fabrics.  Whether this would be value added in terms of hazard assessment remains to be 815 

seen. 816 

 A related issue is how to turn a nucleation point into a finite rupture surface, with a number of 817 

approximate procedures currently being available.  Although these details may not be hugely 818 

consequential either, improvements may be desired from an elegance perspective as we produce 819 

synthetic catalogs from fully time-dependent models (discussed below).  For example, are we 820 

willing to tolerate a gridded seismicity event that has a rupture surface crossing an explicitly 821 

modeled fault (such as the San Andreas)? 822 

Merging Fault and Gridded Seismicity Source Models 823 

 824 

 The MFD defined for gridded seismicity represents the regional total, including fault-based 825 

sources, so it can be important to avoid double counting. This is now typically done by subtracting 826 

the fault-based MFD from the regional total and applying the result to gridded seismicity, with 827 
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perhaps additional care in terms of tapering the rate of large, gridded-seismicity events in the 828 

vicinity of fault-based sources.  Although the latter is not very consequential in terms of implied 829 

hazard, it can be an important requirement in terms getting fully time-dependent models to behave 830 

properly.  No such corrections were made in the CEUS portion of the 2023 NSHM, leading to an 831 

apparent factor of ~3 over-prediction of rates at M≥7.5 (see Figure 25a of Field et al., 2023).  832 

 833 

Earthquake Probability Models 834 

  835 

 A probability model gives the occurrence probability for each rupture (defined in the 836 

earthquake-rate model) for a specified timespan and conditioned on whatever other information is 837 

available.  As such, a probability model represents a fully specified ERF. For time-independent ERFs 838 

the Poisson model is applied, as in all previous USGS NSHMs. Various time-dependent 839 

enhancements are described below, including fully time-dependent models that include 840 

spatiotemporal clustering.  The latter produce synthetic catalogs (stochastic event sets) from which 841 

rupture probabilities can be inferred. 842 

Long-Term Time Dependence - Elastic Rebound 843 

 844 

 The most common type of time-dependence is elastic rebound, where the probability of a large 845 

event drops where and when a fault has had a large rupture and grows with time as tectonic 846 

stresses reload (Reid, 1910). A classic renewal model (e.g., Lognormal or Brownian Passage Time) 847 

is usually used to represent the recurrence-interval distribution.  The procedure becomes non-848 

trivial once a strict fault-segmentation assumption is relaxed, as overlapping adjacent ruptures can 849 

produce short recurrence intervals at points on faults, which are generally inconsistent with the 850 
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renewal model being assumed (and perhaps biasing probability estimates as well).  A solution to 851 

this problem was developed for the UCERF3 long-term time-dependent model (Field et al., 2015), 852 

based in large part on studying results from multi-cycle physics-based-simulators (Field, 2015).  853 

Additional benefits of this algorithm include probability estimates even where the date of last event 854 

is unknown and the option for magnitude-dependent coefficients of variation (less periodicity for 855 

smaller ruptures).  This algorithm remains best available science, as we know of no viable 856 

alternatives at this point.  The algorithm is far from perfect, however.  For example, perhaps 857 

coefficients of variation should also depend on fault maturity (more periodicity on well-worn or 858 

higher slip-rate faults?). With any such algorithm, it is important to verify that Monte Carlo 859 

simulations (randomly sampled earthquakes over long time periods) produce rates that are 860 

consistent with what is assumed in the first place.  861 

 862 

Short-term Time Dependence - Spatiotemporal Clustering 863 

 864 

 Spatiotemporal clustering (aftershocks and otherwise triggered events) is the other obvious 865 

time dependence to include.  In fact, previous USGS NSHMs have included "cluster" models where, 866 

for example, in the latest model some large New Madrid, Missouri earthquakes are assumed to 867 

occur as doublets or triplets, and there is an option where a series of M 8 events progress down the 868 

Cascadia subduction zone.  There are no statements about how quickly such events occur, other 869 

than within the 50-year forecast window, so it is not clear how to apply these models in short-term 870 

forecasts. 871 

 The Epidemic Type Aftershock Sequence Model (ETAS, Ogata, 1988, 1998) appears to be the 872 

best option for representing spatiotemporal clustering, at least for now (discussed below).  The 873 
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significant challenge is merging this point-process model with a forecast that includes finite faults.  874 

The UCERF3-ETAS model (Field et al., 2017) represents one attempt to do so, raising several first-875 

order questions and issues: 876 

 877 

 What is the long-term MFD near faults, and how does this transition spatially into the 878 

surrounding region? 879 

 An elastic-rebound component is apparently needed to suppress re-rupture of the same 880 

fault surface (without it, a triggered event will spatially overlap with the triggering 881 

event much more than is seen in nature). 882 

 Can a large, triggered event nucleate from well within the rupture area of the triggering 883 

earthquake? (this has a first order influence of conditional triggering probabilities in 884 

UCERF3-ETAS) 885 

 For implied long-term rates to match those defined in the earthquake rate model, one 886 

needs a time-dependent fraction of spontaneous (versus triggered) events due to our 887 

limited knowledge of previous earthquakes, and spatial variability as well in areas 888 

where MFDs are non Gutenberg Richter. 889 

 890 

 So far UCERF3-ETAS appears to produce realistic and plausible results (Page and van der Elst, 891 

2018), as illustrated in Figure 3.  However, it embodies a host of assumptions and approximations, 892 

and the implications of many uncertainties have yet to be thoroughly explored.  The important 893 

point here is that there is lots of room for potential improvements.  One particular challenge is 894 

having rates implied by very long-duration simulations exactly match those implied by the 895 

underlying long-term model; in fact, this may never be possible, but these discrepancies should at 896 
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least be significantly less than overall epistemic uncertainties.  Another challenge is representing 897 

epistemic uncertainties, especially because they can evolve with time (e.g., aftershock productivity 898 

estimates) and the ballooning number of branches.  Improving these models, not to mention 899 

deploying them as operational earthquake forecasts (discussed below), might require significant 900 

resources.  We may also need to enlist multi-cycle physics-based simulators to address many of the 901 

questions posed here. 902 

Induced Seismicity 903 

 904 

 Induced seismicity refers to earthquakes caused by human activities, such as those associated 905 

with oil and gas extraction, geothermal energy, and carbon dioxide sequestration (e.g., Ellsworth, 906 

2013).  Cochran et al. (2024) provide a comprehensive overview and strategic vision with respect 907 

to USGS efforts in this area, including state of knowledge, research activities, and efforts to quantify 908 

associated hazards. Following an alarming increase in seismicity rates caused by expanded oil and 909 

gas operations in the central United States between 2009 and 2015, three 1-year induced seismicity 910 

forecasts were published by the USGS NSHM (Petersen et al., 2016, 2017, and 2018).  These 911 

"official" forecasts have so far been based on a pure gridded seismicity model (described above), 912 

with particular challenges being catalog quality, distinguishing induced from tectonic events, what 913 

type of declustering is appropriate (if any), how to extrapolate low-magnitude b-values to higher 914 

magnitudes, and whether the maximum magnitude of induced earthquakes should be the same as 915 

that assumed for tectonic events.  Updates for such USGS induced-seismicity forecasts are on hiatus 916 

because seismicity rates are no longer increasing in Oklahoma (for now), other competing priorities 917 

and limited resources, addressing important questions related to declustering, and taking a 918 

strategic pause to gauge actual uptake in user communities. 919 
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 More complex models have also been explored, such as ETAS with a time-varying rate of 920 

spontaneous events (Llenos and Michael, 2013), and more physics-based approaches that combine 921 

stressing rate changes from injection with rate-and-state-based friction models (e.g., Norbeck and 922 

Rubinstein, 2018; Rubinstein et al., 2021).  See Cochran et al. (2024) for other examples. 923 

 Going forward, it could be beneficial to ensure that development of these models is well 924 

coordinated and integrated with other ERF developments, and that computational resources are 925 

shared as much as possible.  For example, if we succeed in operationalizing statistical seismology 926 

processing for the gridded seismicity components, short-term forecast updates might become 927 

relatively effortless. 928 

 929 

Static Stress Change Models 930 

 931 

 The 1992 Landers earthquake and a 70-year sequence of events on the North Anatolian fault 932 

implied that static stress change models might be useful in forecasting large, triggered events (e.g., 933 

King et al., 1994; Stein et al., 1997; Parsons and Dreger, 2000).  This approach computes the spatial 934 

distribution of stress change caused by a main shock and applies the rate and state model of 935 

Dieterich (1994) to infer event probabilities.  Although there was hope this might "dramatically 936 

improve scientists' ability to pinpoint future shocks" (from the sub-title of Stein (2003)), the 937 

ultimate value remains to be seen, as Coulomb rate-and-state models rarely outperform statistical 938 

models such as ETAS (Woessner et al., 2011; Segou et al., 2013; Catannia et al., 2018).  However, 939 

Mancini et al. (2020) found that physics-based models outperform ETAS for the Ridgecrest 940 

earthquake, with accounting for faulting heterogeneities and secondary triggering being critical to 941 

success.   Furthermore, our assertion above that elastic rebound is needed to get spatiotemporal 942 
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clustering models to work with finite faults suggests that some relaxation process exists, implying 943 

there is something to static stress change.  Parsons et al. (2023) tested this prospectively following 944 

the 2008 M 7.9 Wenchuan earthquake in China; as of 2023, all but one of the subsequent shocks in 945 

the region that caused casualties were identified as posing increased hazard in 2008, and the 946 

exception was triggered by induced hydraulic fracturing.  Remaining questions include: 1) defining 947 

fault orientations of potentially triggered events; 2) the competing influence of dynamic triggering 948 

effects (e.g., Parsons, 2002; Hardebeck and Harris, 2022); and 3) the extent to which we can resolve 949 

stress-change distributions given uncertainties in mainshock slip and crustal heterogeneities, 950 

which appears to cause an underestimation of the observed degree of spatial clustering 951 

(Hardebeck, 2021).  Furthermore, we need to run such models over multiple cycles to ensure there 952 

are no systematic biases; doing so would make such models consistent with the multi-cycle physics-953 

based simulators described below.  954 

 A final application of static stress transfer concepts can be applied to the whole crust by using 955 

fault-based earthquake rate models to calculate the long-term stress effects of slipping the model in 956 

the surrounding crust. If we find large positive stress concentrations in regions where there are no 957 

mapped faults, we may be missing seismic sources and/or the result can be compared with 958 

observed background (off-fault) seismicity as a means of model testing.  959 

 960 

Machine Learning Approaches 961 

 962 

 In recent years, multiple research groups have made progress in applying machine-learning 963 

models to the temporal (Dascher-Cousineau et al., 2023; Stockman et al., 2023) and spatiotemporal 964 

earthquake forecasting problem (Zlydenko et al., 2023). Future earthquake rates can be forecast 965 
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using a neural point process (NPP) trained on past seismicity, and, with enough training data, these 966 

machine-learning-based methods outperform simple ETAS formulations (Dascher-Cousineau et al., 967 

2023; Stockman et al., 2023; Zlydenko et al., 2023).  Machine-learning formulations have the 968 

advantage of being extremely flexible: they can quickly adapt to the productivity of an ongoing 969 

aftershock sequence; they infer non-stationarities and irregularities present in earthquake catalogs; 970 

and they continue to improve with additional small earthquakes, even if catalogs are highly 971 

incomplete (e.g., Stockman et al., 2023).  Some models can also be used to make multiple synthetic 972 

catalog continuations, much like ETAS (Dascher-Cousineau et al., 2023).  NPP models also require 973 

significantly less computational power to train for large datasets compared to ETAS, since they 974 

scale linearly with the number of training earthquakes rather than quadratically (Dascher-975 

Cousineau et al., 2023). There are challenges, however, like whether these models can produce long 976 

synthetic catalog continuations that remain accurate, and how they perform with respect to the 977 

larger (and rarer) events that influence seismic hazard.  978 

Other Time Dependencies 979 

 980 

 Real earthquakes almost certainly embody other time dependencies, with one obvious example 981 

being earthquake swarms, which represent sequences of seismic events that occur in a localized 982 

area over a short period of time without a single outstanding mainshock. Unlike typical earthquake 983 

sequences, which have a clear mainshock followed by smaller aftershocks, swarms consist of 984 

numerous earthquakes of similar magnitudes. Swarms can last from days to years and are often 985 

associated with volcanic or geothermal activity, although they can also occur in tectonic regions. 986 

The causes of earthquake swarms are diverse, including magma movement, fluid injection or 987 

extraction, and tectonic stress adjustments. Efforts to model such events for hazard quantification 988 

purposes include Llenos and Michael (2019) and Llenos and van der Elst (2019). 989 

https://doi.org/10.1785/0120190020
https://doi.org/10.1785/0120180332
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 Other time dependencies are implied by the "paleo hiatus" discrepancy identified by David 990 

Jackson (Biasi and Scharer, 2019), “super cycles” , which refer to clusters of large events that are 991 

separated by some period of time (Grant and Sieh, 1994; Weldon et al., 2004; Dolan et al., 2007; 992 

Goldfinger et al., 2013; Rockwell et al., 2014; Schwartz et al., 2014), and “mode switching”, which 993 

represents the idea that one region or fault will activate for a time and then shut down as another 994 

area activates (Dahmen et al., 1998; Ben-Zion et al., 1999; Zaliapin et al., 2003; Ben-Zion, 2008, 995 

Hatem and Dolan, 2018).  Another is apparent seismicity rate changes associated with strain 996 

accumulation over seismic cycles (e.g., Zeng et al., 2018) and temporal changes in fault slip rates 997 

(e.g., Wallace, 1987).  Current official probability models also lack the ability for a long rupture on 998 

one fault to temporarily reduce the likelihood of such an event on an adjacent nearby fault (e.g., the 999 

1906 SAF earthquake stress shadowing the parallel Maacama fault, which is something static stress 1000 

models could account for). The practical question is whether these effects are significant with 1001 

respect to inferred hazard and risk. Multi-cycle, physics-based simulators seem to be our best hope 1002 

for addressing such questions. 1003 

 1004 

Multi-Cycle Physics-Based Simulators 1005 

  1006 

 Multi-cycle physics-based simulators, as described in a special issue of Seismological Research 1007 

Letters (Tullis, 2012), are arguably our best hope for addressing many earthquake-forecasting 1008 

questions, especially given the slow trickle of large-event observations.  Rather than the traditional 1009 

approach of inferring earthquake magnitudes from fault area or length using statistical scaling 1010 

relationships, and associated frequencies of occurrence by matching fault slip-rate and/or 1011 

paleoseismic recurrence intervals, these physics-based models apply tectonic loading to a fault 1012 

system and utilize frictional properties on those faults to determine when and where earthquakes 1013 
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occur, with each earthquake transferring stress and thereby influencing the occurrence of 1014 

subsequent events.  This approach effectively combines the earthquake rate and probability 1015 

components (Figure 4), and the output is a synthetic catalog of earthquakes covering thousands to 1016 

millions of years (or whatever is desired).  1017 

Common Criticisms 1018 

 1019 

 All models embody assumptions, approximations, and input-data uncertainties, so the relevant 1020 

question is whether such simulators are useful.  A common criticism is that there is not yet enough 1021 

physics in the current physics-based simulators.  But enough physics for what?  The potential 1022 

usefulness of a model cannot be ascertained outside the context of a specific inference, and answers 1023 

will certainly vary among different uses (i.e., inferring elastic rebound predictability versus 1024 

inferring the propensity of multi-fault ruptures).  And even if we get the physics and numerical 1025 

approximations exactly right, we will still be plagued by uncertainties in what faults look like at 1026 

depth (e.g., Zielke and Mai, 2025). We therefore should not let perfection be the enemy of a more 1027 

useful model.   1028 

 That said, significant challenges remain with respect to these models.  Perhaps the most 1029 

pressing is that they generally ignore, or crudely approximate, the influence of propagating seismic 1030 

waves (inertial/dynamic effects).  They also generally ignore the 3D velocity structure, non-elastic 1031 

effects at depth, off-fault yielding, and other things such as the influence of fluids.  Single-cycle 1032 

(single-event) dynamic rupture models (e.g., Harris et al., 2018) are better able to represent such 1033 

effects, but computational limits currently limit such sophistication in the multi-cycle models 1034 

needed for earthquake forecasting.  The relevant question is their relative value in the context of 1035 

implied epistemic uncertainties and the cost of development and maintenance. 1036 
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 The ultimate inference would be the probability of future ruptures, conditioned on what we 1037 

know about past events. However, we cannot simply start these models at present conditions and 1038 

get multiple realizations of what comes next.  This is because they must be “spun up” for thousands 1039 

of virtual years before stable behavior emerges, leaving one to search for periods in a simulation 1040 

that match as close as possible to the historical record (e.g., Aalsburg et al., 2010).  In other words, 1041 

even if these models were a perfect representation of nature, there would still be work in terms of 1042 

figuring out how to use them to infer time-dependent earthquake probabilities.   1043 

Potential Inferences 1044 

  1045 

 A more modest use of multi-cycle physics-based simulators is to test various implications, 1046 

assumptions, or epistemic uncertainties in current ERFs, such as those associated with: 1047 

 1048 

• Average rupture rates 1049 

• Multi-fault rupture plausibility (Milner et al., 2022) 1050 

• Scaling relationships 1051 

• Average slip along rupture, especially for multi-fault events 1052 

• MFDs near faults (non Gutenberg Richter?) 1053 

• Influence of creep (area versus slip-rate reduction) and seismogenic depths 1054 

• Elastic rebound predictability (e.g., Field et al., 2015) 1055 

• Spatiotemporal clustering (e.g., is ETAS adequate at large magnitudes?) 1056 

• Other time dependencies (mode switching, super cycles, paleo hiatus) 1057 



   

 

 

47 

 1058 

 These multicycle simulators may also represent our best physics-based option for obtaining 1059 

multiple slip-time-history realizations for specific ruptures, which are needed to address ground-1060 

motion questions such non-ergodic effects and how directivity manifests for multifault ruptures. 1061 

 1062 

Currently Viable Models 1063 

 1064 

 Multi-cycle simulators have been around for decades and continue to be improved upon.  Here, 1065 

we focus on current models that can accommodate the space and time scales that interest us, 1066 

meaning hundreds of faults and thousands of years.  This means approximations must be made, 1067 

including the abandonment of inertial waves (analogous to climate versus weather models).  1068 

Smaller scale tests should be conducted against more sophisticated models to ensure consistency 1069 

(e.g., Harris, et al, 2009; Jiang, et al, 2022; Erickson, et al, 2023), although comparisons will 1070 

eventually need to be statistical in nature given the effective stochasticity of results (Tullis, et al, 1071 

2012). 1072 

 Given overall limitations, it would be advantageous to have a wide variety of simulators under 1073 

development and analysis, both for epistemic uncertainty quantification and ensemble forecasting.  1074 

Although the following reflects the currently limited number of models (that we know of), hopefully 1075 

this discussion will motivate other efforts.   1076 

RSQSim 1077 

 1078 

 RSQSim stands for "Rate and State EarthQuake Simulator" (Dieterich and Richards-Dinger, 1079 

2010; Richards-Dinger and Dieterich, 2012; Shaw, 2019).  It models a complex fault system using 1080 

https://doi.org/10.1785/0120180128
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rectangular or triangular boundary elements with back slip.  It avoids repeated incremental 1081 

solutions of large system of equations by applying event-driven computations based on changes in 1082 

fault sliding state, where each element may be in only one of three sliding states: 1) locked (aging 1083 

by log time of stationary contact); 2) nucleating slip (analytic solutions of the rate-state equations 1084 

for accelerating slip to nucleate earthquakes, and track the time- and slip-dependent breakdown 1085 

process at the rupture front); and 3) earthquake slip (quasi-dynamic, in which slip speed is based 1086 

on shear wave impedance).  The model is thereby currently able to model millions of years of M≥4 1087 

earthquakes throughout a large complex fault system.  RSQSim can also model slow-slip events, 1088 

fault creep, induced seismicity, and the interaction of these with normal tectonic events.  1089 

Comparisons with fully dynamic, finite-element simulation for individual ruptures (Richards-1090 

Dinger and Dieterich, 2012) show good agreement, and rupture jumps between disconnected faults 1091 

are in good agreement with more detailed rupture modeling.  RSQSim also produces realistic 1092 

spatiotemporal clustering (aftershocks or Omori behavior) as inferred from interevent waiting time 1093 

distributions and space-time distributions. 1094 

 RSQSim has already contributed to earthquake hazard estimates, including elastic rebound 1095 

inferences (Field, 2015), scaling relationships (Shaw, 2023), developing improved rupture sets for 1096 

fault inversions (Milner, et al, 2022), and fault segmentation parameterizations (Milner and Field 1097 

2023). It has also been shown to replicate long-term hazard at the scale of fault systems (Shaw, et 1098 

al, 2018).  As such, RSQSim remains a leading simulator based on capabilities, validation, and 1099 

applications to hazard. 1100 

MCQsim (Zielke and Mai, 2023) 1101 

 1102 

 MCQsim stands for "MultiCycle EarthQuake simulator". Like RSQSim, it uses triangular 1103 

boundary elements that interact elasto-statically to create cascading earthquake ruptures (as well 1104 

http://dx.doi.org/10.1785/0120220248
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as inter- and post-seismic phases) on arbitrarily complex fault geometries. In contrast to RSQSim, 1105 

MCQsim uses a linear slip-weaking law to describe frictional breakdown during sliding. Fault 1106 

elements exhibit unstable, conditionally stable or stable seismogenic behavior, based on their 1107 

strength relative to elastic properties of the half-space and their slip-weaking distance. As such, the 1108 

MCQsim natively provides an upper and lower depth for the seismogenic zone, further permitting 1109 

incorporation of strength asperities, fault after-slip, and partial locking (i.e., creep).  Coseismic slip 1110 

rates are limited by a radiation damping approximation that is continuously updated during the 1111 

rupture phase. Yoffe-like slip pulses, similar to those in dynamic rupture simulations, emerge from 1112 

the simulations.  A nice feature of the model is that it optionally includes plastic loading on the 1113 

lower crust, with stresses relaxing postseismically on the lower horizontal surface below the 1114 

seismic faults, in a Maxwellian exponential decay. While there is not a nucleation process that 1115 

would lead to Omori-law clustering, the viscous relaxation process (also present as after-slip on 1116 

conditionally stable and stable elements) does enable some longer time scale and finite depth crust 1117 

interactions to be explored.  A comparison of an individual rupture starting from the same initial 1118 

conditions against an elastodynamic finite element code and RSQsim (Richards-Dinger and 1119 

Dieterich, 2012) shows good correspondence between all three models (Zielke and Mai, 2023).  The 1120 

ability of the model to simulate complex, individual ruptures and complex sequences of ruptures on 1121 

complex fault networks with a range of geometries and rakes makes this a promising model. 1122 

MCQsim model development is ongoing (e.g., implementation of H-matrices, poro-elastic effects, 1123 

alternative tectonic loading, topography, and layered medium) to further boost its capabilities, 1124 

computational efficiency, and applicability to earthquake forecasting. 1125 

Tandem (Uphoff et al., 2022) 1126 

 1127 

https://doi.org/10.1093/gji/ggac467
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 Tandem is an open-source software package for the simulation of earthquake sequences and 1128 

aseismic slip in volumetric domains accounting for complicated geometries (e.g., topography, 1129 

complex fault systems) and heterogeneous subsurface properties.  It is the first muti-cycle 1130 

earthquake simulator to use the Discontinuous Galerkin differential equation solver, and it utilizes 1131 

the Portable, Extensible Toolkit for Scientific Computation (PETSc, Balay et al., 2023) for scaling 1132 

and parallelization on a wide variety of advanced high-performance computing platforms.  The 1133 

model supports both quasi-dynamic and fully dynamic rate-and-state friction capabilities, although 1134 

the extent to which the latter can scale to large fault systems remains to be seen. It can handle 1135 

complex curvilinear, intersecting faults and inhomogeneous bulk material properties.  It has 1136 

demonstrated good agreement with other codes in community benchmark problems (Uphoff, et al., 1137 

2022, Erickson et al., 2023) and in applications (e.g., Biemiller et al., 2024). In recent work, Tandem 1138 

has been utilized to simulate seismic cycles in subduction zone settings, introducing curved 1139 

megathrust geometries and variations in elastic parameters dependent on distance from the trench 1140 

and depth (Biemiller et al., 2024). These variations can significantly influence the behavior of 1141 

earthquake cycles. These simulations help to more comprehensively understand how co-seismic, 1142 

post-seismic, and inter-seismic deformation interact across multiple earthquake cycles. 1143 

A Path Forward 1144 

 1145 

 Confidence in inferences would certainly be bolstered by consistency among several alternative 1146 

simulator models.  The reality is, however, that these models are challenging and expensive to 1147 

develop and maintain, as they typically require collaboration with computer scientists, access to 1148 

high-performance computing, an ability to curate and document both computer codes and results, 1149 

and an ability to reproduce the latter.  They also depend on inputs that are themselves difficult to 1150 

develop and maintain (e.g., detailed fault models). 1151 
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 With respect to not having "enough" physics, we need to define smaller-scale test problems so 1152 

they can be compared against more sophisticated methodologies (e.g., full dynamic models).  To 1153 

this end, it would be beneficial to have a set of standard evaluation metrics, including whatever 1154 

inferences are desired with respect to ERF development (e.g., the list above).  Again, we will have 1155 

greater confidence to the extent that alternative models agree with respect to inferences.  For 1156 

example, we already noted that our elastic-rebound predictability algorithm was inferred from a 1157 

number of simulators, so the challenge now is whether a viable simulator can be constructed that 1158 

does not exhibit such behavior.  Even if all current models are found lacking in terms of usefulness, 1159 

it only means we may need to push development even harder, especially if they are really our best 1160 

hope for improved ERFs.  That said, these models will always be an approximation of the system, 1161 

especially with respect to limited knowledge of subsurface structural details, so inferences will 1162 

need to be considered carefully on a case-by-case basis. 1163 

 1164 

Operational Earthquake Forecasting (OEF) 1165 

 1166 

 Operational Earthquake Forecasting (OEF) aims to provide authoritative, real-time information 1167 

on evolving earthquake probabilities, including triggered events (Jordan and Jones, 2010; Jordan et 1168 

al., 2011).  While it is one thing to develop a fully time-dependent ERF (described above), it is quite 1169 

another to deploy it as a continuously running, real-time system.   1170 

 The USGS has been issuing various aftershock warnings since the 1980s, providing the 1171 

probability of aftershocks above various magnitude thresholds (Roeloffs and Goltz, 2017).  1172 

Significant progress has been made in recent years with respect to updating computer codes to a 1173 

modern modular framework, defining region-dependent generic parameters, implementing 1174 

sequence-specific parameter estimation (especially for productivity), improving how real-time 1175 
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catalog incompleteness is handled, implementing an automatic forecasting system, having a manual 1176 

graphic-user-interfaced-based application for both computing and pushing results to USGS web 1177 

pages, implementing a tiered-communications strategy with both graphics and text, and versioning 1178 

results for posterity and testing purposes.  Many of these capabilities were exemplified by Michael 1179 

et al. (2019). 1180 

 Progress is also being made with respect to replacing the traditional Reasenberg and Jones 1181 

(1989, 1994) algorithm with an ETAS model because it handles large aftershocks more elegantly 1182 

and can more easily provide the spatial distribution of expected aftershocks.  Adopting an object-1183 

oriented framework has made this transition from Reasenberg-Jones to ETAS much easier (plug 1184 

and play with respect to most downstream analyses), and use of OpenSHA (Field et al., 2003) has 1185 

made the generation of hazard curves and maps relatively easy.  To make this work effective, user 1186 

workshops held in the United States, Mexico, and El Salvador focused on understanding user needs 1187 

and improving communications of aftershock forecasts and short-term hazard maps (Schneider et 1188 

al., 2025). 1189 

 These aftershock warnings are called Operational Aftershock Forecasting (OAF) because they 1190 

address only triggered events.  OEF, on the other hand, aims to forecast all events (spontaneous and 1191 

triggered), with the model of Gerstenberger et al. (2004) being a pioneering example, and Spassiani 1192 

et al. (2023) being a more modern (ETAS) example. The primary advantage of OEF, versus OAF, is 1193 

the ability to quantify probability gains with respect long-term or pre-mainshock values (e.g., see 1194 

Field et al. (2018) for various hazard and risk examples for the "Haywired" scenario based on 1195 

UCERF3-ETAS and a no-faults version of the model).  In contrast to OAF’s event-triggered mode of 1196 

operation, OEF could be run at any or all times, enabling users to define actionable thresholds 1197 

themselves (honoring the hazard-risk separation principle; Jordan et al., 2014) or to know when 1198 

probabilities are unusually low.   1199 
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 A series of USGS Powell Center workshops were conducted between 2015 and 2018 to review 1200 

best-available science and potential usefulness of OEF, with a number of stakeholders and likely 1201 

early adopters in attendance (e.g., Field et al., 2016).  In short, OEF was deemed potentially useful in 1202 

that probability gains can far exceed the 10% actionable threshold typically defined by users, but 1203 

legitimate questions remain with respect to the influence of temporal decay and delays in issuing 1204 

forecasts (latency).  Based on the outcome of the Powell Center meetings, together with a follow up 1205 

review of viable models, the National Earthquake Prediction Evaluation Counsel (NEPEC) wrote the 1206 

following in a 2017 report to the USGS Earthquake Hazards Program: 1207 

 1208 

“…the Council strongly recommends that the USGS press forward to develop a fully 1209 

operationalized nationwide OEF system that carries calculations, combining the background 1210 

rate of seismicity and earthquake clustering, through to hazard.” 1211 

 1212 

(see Data and Resources section for a link). 1213 

 1214 

 Development of OEF has been hampered in part by information technology (IT) requirements 1215 

(not just more resources, but also better coordination of the ones we have).  There is also the 1216 

question related to operationalization.  UCERF3-ETAS can be run by a human on demand, as 1217 

demonstrated following the Ridgecrest sequence (Milner et al., 2020; Savran et al., 2020).  1218 

Automating the system would require a significant increase in effort, which requires ensuring that 1219 

the value of doing so would outweigh the costs.  Here we have a bit of the chicken-and-egg problem 1220 

(users cannot deem it useful without having access to such a model, and we don't want to deploy 1221 

the model unless it is useful).  The solution appears to be an iterative one, in which fully time-1222 

https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/eq-nepec/NEPEC_Report_November2017.pdf
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dependent (but non-operationalized) results are made available so that users can explore various 1223 

"what if" questions.  Given that the risk modeling community stands to benefit particularly from 1224 

such models, it would also help to calculate various risk metric during the model-building process 1225 

(in-house valuation). This would allow knowing whether the latest NSHM is appropriate for 1226 

shorter-term and spatially distributed hazard and risk metrics. 1227 

 1228 

Model Testing and Valuation 1229 

  1230 

 Model testing is both a hallmark of science and critical for any predictive models used by 1231 

society.  As noted, the paucity of large event data makes testing earthquake forecasts particularly 1232 

challenging.  Furthermore, human frailties like apophenia (seeing signal in noise) and confirmation 1233 

bias (ignoring contrary evidence) imply that an independent, objective process of evaluation is 1234 

needed. Our primary solution to this has been the Collaboratory for the Study of Earthquake 1235 

Predictability (CSEP; see Data and Resources), which represents an infrastructure for testing 1236 

earthquake forecast models.  This international effort has produced interesting results (e.g., see 1237 

Michael and Werner (2018), which is the preface to a CSEP-related special issue of Seismological 1238 

Research Letters), including the conclusion that ETAS remains the best model with respect to 1239 

spatiotemporal clustering, but that more physics-based and machine-learning approaches may be 1240 

catching up.  However, these tests only have strength at lower magnitudes, and our ability to test 1241 

models at the large magnitudes that dominate hazard (M≥6.5) continues to be hampered by the 1242 

limited large-event observations, which may always be the case.  Nevertheless, successful testing at 1243 

lower magnitudes is still useful if such events are used to forecast the occurrence of larger ones (as 1244 

in ETAS), making passing these tests a necessary (but not sufficient) condition. Another approach is 1245 

to put candidate models through a standard battery of “Turing tests” (e.g., the Page and van der Elst 1246 
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(2018) evaluation of UCERF3-ETAS). These included evaluating total regional rate variability, the 1247 

spatial distribution of aftershocks, the mean and variability of aftershock productivity, the depth 1248 

distribution of earthquakes, and the nearest-neighbor analysis of Zaliapin et al. (2008).  Making 1249 

such analyses routine and automated would make the model development process more efficient.   1250 

Finally, it is also useful to test individual assumptions or components utilized in an ERF (e.g., 1251 

elastic-rebound predictability), which falls under the purview of traditional analysis and 1252 

publication. 1253 

 At the same time, we know all models are ultimately wrong, so what seems equally important is 1254 

testing relative model usefulness, or the practical value of one model versus another (valuation). 1255 

For example, it’s been clearly demonstrated that aftershock productivity for a given mainshock 1256 

magnitude can vary by more than an order of magnitude, and that sequence-specific models have 1257 

superior forecasting skill (e.g., Page et al, 2016).  However, it takes time and effort to infer sequence 1258 

specific parameters, during which the sequence will have decayed to a lower level, so it is not clear 1259 

that sequence-specific forecasts will always provide added value.  Likewise, while UCERF3-ETAS 1260 

seems to be the most realistic OEF candidate in terms of including faults, it also requires more 1261 

computing power to operate.  If UCERF3-ETAS and a no-faults ETAS model produce the same result 1262 

for some hazard or risk metric, then why not go with the more efficient option?  In other words, 1263 

testing relative model usefulness (valuation) seems just as important as validation, and perhaps 1264 

more so in terms of providing immediate answers that can help the USGS set deployment and 1265 

scientific priorities. 1266 

 The question of relative value for different options arises constantly in the model development 1267 

process.  We have thus far conducted such sensitivity analyses using long-term, individual-site 1268 

hazard curves (i.e., building code metrics).  However, as noted in the Introduction and elsewhere in 1269 

this paper, such results are not necessarily applicable to other risk metrics of interest, such as 1270 
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average annual loss in a region, or the loss that has a specified probability of exceedance.  1271 

Consequently, some users, including one of the largest providers of homeowner earthquake 1272 

insurance in the world, are currently advised to use caution with our latest NSHM (Petersen et al., 1273 

2023; Field et al., 2023; Jordan et al., 2023).  The obvious solution, in addition to developing fully 1274 

time dependent models, is to enable routine evaluation of a standard set of risk metrics during 1275 

model development, a capability we are presently pursuing.  The primary aim is to have risk results 1276 

available during model development and review. 1277 

 1278 

Computational Infrastructure 1279 

 1280 

Comments here apply to the entire forecasting infrastructure, not just ERF development.  Being able 1281 

to understand and modify elements of the computational infrastructure is critical if you want to 1282 

make significant forecasting improvements (as opposed to routine implementations).  To this end, 1283 

the following are important guiding principles: 1284 

 1285 

 The infrastructure must be modular (object oriented) to allow different groups to focus on 1286 

their components of interest (without having to understand details of others). 1287 

 The infrastructure needs to be accessible to scientists (the domain experts) or progress on 1288 

innovations will grind to a halt; this means keeping the framework conceptually intuitive 1289 

and avoiding arcane and cryptic coding options as much as possible. 1290 

 The infrastructure requires careful coordination and collaboration.  Adding new features or 1291 

capabilities does not always necessitate hiring an additional person (and doing so can 1292 

actually impede progress).  1293 
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 Robustness with respect to personnel departures (which can run counter to employee job 1294 

security consideration in terms of making oneself indispensable). A related issue is having 1295 

stable, long-term support. 1296 

 Access to affordable high-performance computing, especially with respect to epistemic 1297 

uncertainty quantification, full time-dependent ERFs, and more physics-based models. 1298 

 Expanded support for the following types of hazard calculations: fault displacement, 1299 

liquefaction, landslides, and fragile geologic features. 1300 

 Support for command-line and GUI-based apps (for those that are coding averse) 1301 

 3D visualization capabilities  1302 

 1303 

Review Process  1304 

 1305 

 As ERFs become increasingly sophisticated, and beyond the comprehension of any one 1306 

individual, model review becomes more and more important, especially with respect to ensuring 1307 

consistency among assumptions made in different model components.  To this end, we will strive to 1308 

maintain the formal ERF review panel established for the 2023 model (the chair of which also 1309 

serves on the NSHMP steering committee).  Not only did this professionally diverse group provide 1310 

one of the most extensive ERF reviews to date, but they also published their findings in a peer 1311 

reviewed journal (Jordan et al., 2023) -- a hugely valuable resource that influenced this document 1312 

greatly.  Starting this ongoing review process early, and in the context of developing a more 1313 

continuous "living" research model, could help lessen the time crunch associated with building code 1314 

deadlines (the next one being 2029).  To keep the review process independent, membership 1315 

decisions could remain under the purview of USGS Earthquake Hazards Program leadership. 1316 
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 We will, of course, also endeavor to host public workshops with scientists and stakeholders, as 1317 

well as convene ad hoc groups to focus on specific elements of concern (i.e., deformation models 1318 

and multi-fault ruptures for the 2023 model).  Finally, we could also continue to benefit from 1319 

feedback from early adopters, especially practitioners implementing the model in their own codes 1320 

(which has consistently represented an important code verification process). 1321 

 1322 

Discussion 1323 

 1324 

 The first section here reiterates and summarizes our main future objectives with respect to ERF 1325 

development, and the second section gives a summary of our short-term roadmap giving steps and 1326 

goals that could be achieved before the next building-code deadline in 2029.  In terms of whether 1327 

main future objectives are foundational versus aspirational, a theme of USGS Earthquake Hazards 1328 

Program Decadal Science Strategy (Hayes et al., 2024), the answer is both; each activity is already 1329 

partially funded, seemingly critical to the core functionality and global leadership of the EHP, and 1330 

perhaps in need of additional support to be fully realized.   1331 

 1332 

Main Future Objectives 1333 

 1334 

Develop full time-dependent models (with spatiotemporal clustering) 1335 

 1336 

 This represents perhaps the biggest potential improvement with respect to ERFs, particularly in 1337 

terms of short-term hazard and risk metrics. (e.g., insurance products), but also with respect to 1338 

response and recovery efforts and performance-based engineering.  For example, practitioners 1339 
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generally find 10% changes in statewide average annual losses actionable (e.g., triggering an 1340 

adjustment of reinsurance levels), but this metric can easily increase by an order of magnitude 1341 

following a large mainshock, implying there is significant remaining predictability in the system 1342 

(Field et al., 2017).  Such models are also seemingly needed to, for example, address the adequacy 1343 

of the Poisson assumption with other hazard and risk metrics, and to quantify historical seismicity 1344 

sampling errors.  The continued development of these models is therefore foundational, but their 1345 

operationalization is aspirational given additional resources would almost certainly be needed. 1346 

  1347 

Improved epistemic uncertainty representation 1348 

 1349 

 As mentioned throughout this manuscript, representing epistemic uncertainties will remain a 1350 

perennial challenge (both foundational and aspirational).  This includes those related to 3D fault 1351 

geometries, slip rates (deformation models), the fact that we infer gridded seismicity rates from a 1352 

single historical sample of events, and the degree to which epistemic uncertainties are spatially 1353 

correlated.  Any of these could significantly impact spatially distributed hazard and risk metrics. We 1354 

also want more uniform treatments across regions, especially to avoid the paradoxical situation 1355 

where fewer data constraints imply less model uncertainty.  Questions also remain on how to most 1356 

efficiently manage the ballooning number branches when computing hazard and risk (e.g., traverse 1357 

the entire logic tree systematically, resort to Monte Carlo sampling, or hybrid approaches?), what 1358 

down-sampling strategies might be appropriate for different applications, and how to best 1359 

communicate these uncertainties to users. 1360 

Risk related valuation metrics 1361 

 1362 
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 Previous USGS NSHMs have effectively been tailored for building codes (long-term, individual-1363 

site hazard curves), raising questions with respect to appropriateness for other applications (e.g., 1364 

shorter-term and/or spatially distributed hazard and risk).  We therefore might want to add the 1365 

evaluation of risk metrics to our model-building process, which in turn will require adopting some 1366 

benchmark exposure and vulnerability models (the elements needed for risk analysis, representing 1367 

the distribution and value of assets and the vulnerability of each to ground shaking). There is, of 1368 

course, an effective infinite number of risk metrics of potential interest, so we would need to work 1369 

with users to define a minimal, necessary, and sufficient set. 1370 

Multi-cycle physics-based simulators 1371 

 1372 

 These models represent perhaps our best opportunity for longer-term ERF improvements, 1373 

especially in terms of dealing with the lack of observations at larger magnitude.  However, they also 1374 

raise significant challenges with respect to model development, maintenance, and epistemic 1375 

uncertainty representation.  Their usefulness will also be limited by their sensitivity to rheologic 1376 

and structural details that may never be well known.   Nevertheless, we have already utilized these 1377 

models to inform ERF development, and we will certainly continue to strive to do so.  The USGS will 1378 

likely continue to rely on external partners given limited internal capabilities. 1379 

Short-term Roadmap Summary 1380 

 1381 

 Here we outline some anticipated steps and goals we will strive to accomplish before the next 1382 

building-code deadline in 2029, in approximate chronological order (and to likely begin within the 1383 

next year).  Results would be published and incorporated into research models as they become 1384 

available. Whether versions of this living model will be sanctioned for official use will presumably 1385 

be a joint decision among the authors, the review panel, and USGS earthquake hazards program 1386 
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leadership. Our aims at model simplification, automated processing, and maintaining an elegant and 1387 

efficient computational infrastructure should be taken as given. 1388 

 1389 

Develop ERFs for U.S. territories 1390 

These include one for Puerto Rico and the U.S. Virgin Islands, Guam, and American Samoa. 1391 

Anticipated innovations here include applying the inversion fault-system-solution approach to 1392 

subduction zones (as exemplified by Gerstenberger et al., 2024) and dealing with earthquake 1393 

catalog quality issues (e.g., biases and uncertainties). 1394 

 1395 

Publish nationwide long-term time-dependent ERF 1396 

This is to account for the time-since last event on explicitly modeled faults using elastic-rebound-1397 

motivated renewal models.  Where the data of last event is unknown, constraints on the open 1398 

interval could be utilized (the time over which we are certain no event occurred).  We might 1399 

endeavor to apply this nationwide, although results will only differ from Poisson where the open 1400 

interval is approaching the average recurrence interval on each fault. 1401 

 1402 

Launch new deformation modeling effort 1403 

Fault slip rates, specified by deformation models, are among the most critical model constraints 1404 

when it comes to earthquake hazard and risk, yet they generally remain poorly quantified.  This 1405 

initiative would establish the next-generation deformation models in as many areas as possible, 1406 

with emphasis on improving slip-rate uncertainties (covariance), off-fault deformation estimates, 1407 

viscoelastic corrections, and block-rotation effects. 1408 
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 1409 

Improve Central and Eastern U.S. (CEUS) fault sources 1410 

As discussed by Field et al. (2023) and Jordan et al. (2023), existing USGS CEUS fault-based sources 1411 

generally assume that only a single-sized event ever occurs on each fault (we just do not yet know 1412 

what that characteristic magnitude is).  This approximation no longer represents best available 1413 

science and is inconsistent with fault-model applications in other regions. Epistemic uncertainties 1414 

should also to be redefined (e.g., to achieve the next goal below) and ideally made consistent with 1415 

those defined in other regions. 1416 

 1417 

Full, nationwide epistemic uncertainty quantification for 2023 NSHM 1418 

We have yet to quantify, nationwide, the hazard uncertainties associated with the logic trees 1419 

defined for the 2023 USGS NSHM (only those for a small set of locations have been examined, and in 1420 

an approximate manner; e.g., Figure 17 of Petersen et al., 2023).  This will presumably require high-1421 

performance computing and novel algorithms with respect to sampling all branches. 1422 

 1423 

Inversion-based fault system solutions 1424 

These models represent our best representation of large, fault-based ruptures, especially with 1425 

sampling epistemic uncertainties.  In addition to the subduction zones mentioned for the U.S. 1426 

territories above, the following would presumably benefit from inversion-based fault system 1427 

solutions: Alaska faults and subduction zone; the Cascadia subduction zone; and the fault system in 1428 

the New Madrid, MO area. One opportunity, and challenge, is incorporation of liquefaction and 1429 
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lacustrine paleoseismology constraints. This initiative also involves providing command-line tools 1430 

that enabling others to re-generate models with customized attributes (e.g., alternative slip rates). 1431 

 1432 

Operationalize statistical seismology processing 1433 

Seismicity processing that current and future ERFs depend upon (regional rate and b-value 1434 

estimates, declustering, and seismicity smoothing) could be operationalized by porting to a 1435 

modern, object-oriented code base (thereby avoiding delays associated with scientists re-running 1436 

their personal codes every time a minor catalog correction is made).  This would also reduce 1437 

latency in updating induced seismicity hazard estimates, improve reproducibility, and facilitate 1438 

quantification of historical-seismicity related sampling errors (using simulations from fully time-1439 

dependent models).  This would also free our statistical seismologists to focus more on scientific 1440 

advancements.  1441 

 1442 

Enable benchmark risk-metric calculations 1443 

This is to begin satisfying the valuation need discuss throughout this document (and under Risk 1444 

related valuation metrics in the previous section) by initiating benchmark portfolio risk 1445 

calculations (e.g., average annual dollar loss and loss exceedance curves for canonical portfolios and 1446 

vulnerability functions). This would involve working with user communities to establish 1447 

appropriate, public-domain elements for these benchmark calculations. 1448 

 1449 

Coordinate multi-cycle physics-based simulator developments 1450 
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Consider establishing a working group of current and potential simulator model developers, 1451 

articulate the various inferences that have and could aid ERF development, strategize resources 1452 

sharing, establish standardized file formats and evaluation metrics, ensure reproducibility and 1453 

access to results, and develop a support and maintenance business model.  This would presumably 1454 

be a very long-term endeavor, but results could also impact ongoing ERF development as well. 1455 

 1456 

Develop nationwide, fully time dependent ERFs (including spatiotemporal clustering) 1457 

Building off long-term ERFs and recent operational aftershock forecasting developments, we might 1458 

want to develop at least a prototype model, or set of models with various tradeoffs between 1459 

efficiency and sophistication (e.g., 2D versus 3D and with-faults versus no-faults). 1460 

 1461 

Model Testing Efforts 1462 

We could coordinate with the Collaboratory for the Study of Earthquake Predictability (CSEP; see 1463 

Data and Resources), operationalize standard Turing test comparisons (Page and van Der Elst, 1464 

2018), and evaluate model consistency against fragile geologic features. 1465 

 1466 

The above do not represent a complete list of ongoing activities or worthy pursuits.  A more 1467 

detailed compilation of possible improvements can be found in the ERF section of the USGS 1468 

Earthquake Hazards Program annual external grants announcement (see Data and Resources 1469 

section).  The bottom line is there are many interesting and potentially impactful ways we can 1470 

improve the ERFs used in hazard and risk assessments, including the USGS NSHMs. 1471 

  1472 
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 1473 

 1474 

 1475 

Data and Resources 1476 

 1477 

The USGS Earthquake Hazards Program external grants announcement is available at 1478 

https://www.usgs.gov/programs/earthquake-hazards/science/external-grants-overview (last 1479 

accessed in Aug., 2024). 1480 

 1481 

The 2017 report from the National Earthquake Prediction Evaluation Council (NEPEC) to the USGS 1482 

Earthquake Hazards Program referenced in the paper is available at: https://d9-wret.s3.us-west-1483 

2.amazonaws.com/assets/palladium/production/s3fs-1484 

public/atoms/files/NEPEC_Report_November2017.pdf (last accessed Dec. 2024). 1485 

 1486 

The web site for the Collaboratory for the Study of Earthquake Predictability (CSEP) is: 1487 

http://cseptesting.org (last accessed Feb., 2025). 1488 
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earthquake rupture forecast published by Field et al. (2021) and FEMA P366 is the nationwide 2298 
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Figure 3. Illustration of time-dependent vs fully time-independent models.  The lower panel shows 2301 

the monthly rate of M≥2.5 events in California over a 100-year simulation window, with red and 2302 

black depicting the time-dependent and time-independent rates, respectively.  The top panel shows 2303 
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the timing of M≥6 events for each model (with circle size varying with magnitude).  The time-2304 

dependent simulation is based on the UCERF3-ETAS model (Field et al., 2021), for which aftershock 2305 

sequences can be seen following larger events.  The time-independent model is based on the same 2306 

set of events, but with event times randomized to mimic a Poisson process.  Changes in M≥2.5 rates 2307 

for the time-dependent (red) model are a good proxy for the change in large-event probabilities.  2308 

Note that rates (and probabilities) can increase by more than an order of magnitude following large 2309 

events and can also be lower by a factor two during quiet times, relative to the Poisson 2310 

approximation.     2311 
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Figure 4. Earthquake Rupture Forecast (ERF) main modeling components.   2313 
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Figure 5.  An illustration of the inversion-based fault system solution.  The fault system is 2315 

subdivided into a number of subsections and viable fault ruptures are defined as occurring on a set 2316 

of these subsections. The rate or frequency of each rupture (fr) is then determined by solving a set 2317 

of equations based on various data constraints. 2318 
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Figure 4. Earthquake Rupture Forecast (ERF) main modeling components.  2349 

 2350 

         2351 

  2352 



   

 

 

95 

 2353 

 2354 

Figure 5.  An illustration of the inversion-based fault system solution.  The fault system is 2355 

subdivided into a number of subsections and viable fault ruptures are defined as occurring on a set 2356 

of these subsections. The rate or frequency of each rupture (fr) is then determined by solving a set 2357 

of equations based on various data constraints. The fault model depicted is for California and comes 2358 

from Field et al. (2014). 2359 
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